Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 209, Numéro 1, 2015
Page(s) 3 - 33
Section Conférences Nobel 2013
DOI https://doi.org/10.1051/jbio/2015012
Publié en ligne 26 juin 2015
  • Acuna, C., Guo, Q., Burre, J., Sharma, M., Sun, J., and Südhof, T.C. (2014). Microsecond Dissection of Neurotransmitter Release: SNARE-Complex Assembly Dictates Speed and Ca2+-Sensitivity. Neuron, 82, 1088-1100. [CrossRef] [PubMed]
  • Ahmad, M., Polepalli, J.S., Goswami, D., Yang, X., Kaeser-Woo, Y.J., Südhof, T.C., and Malenka, R.C. (2012). Postsynaptic Complexin Controls AMPA Receptor Exocytosis During LTP. Neuron, 73, 260-267. [CrossRef] [PubMed]
  • Augustin, I., Rosenmund, C., Südhof, T.C., and Brose, N. (1999). Munc-13 is essential for fusion competence of glutamatergic synaptic vesicles. Nature, 400, 457-461. [CrossRef] [PubMed]
  • Bacaj, T., Wu, D., Yang, X., Morishita, W., Zhou, P., Xu, W., Malenka, R.C., and Südhof, T.C. (2013). Synaptotagmin-1 and -7 Trigger Synchronous and Asynchronous Phases of Neurotransmitter Release. Neuron, 80, 947-959. [CrossRef] [PubMed]
  • Balch, W.E., Dunphy, W.G., Braell, W.A., and Rothman, J.E. (1984). Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell, 39, 405-416. [CrossRef]
  • Betz, A., Ashery, U., Rickmann, M., Augustin, I., Neher, E., Südhof, T.C., Rettig, J., and Brose, N. (1998). Munc13-1 is a presynaptic phorbol ester receptor that enhances neurotransmitter release. Neuron, 21, 123-36. [CrossRef] [PubMed]
  • Betz, A., Thakur, P., Junge, H.J., Ashery, U., Rhee, J.S., Scheuss, V., Rosenmund, C., Rettig, J. and Brose, N. (2001). Functional interaction of the active zone proteins Munc13-1 and RIM1 in synaptic vesicle priming. Neuron, 30, 183-196. [CrossRef] [PubMed]
  • Blasi, J., Chapman, E.R., Yamasaki, S., Binz, T., Niemann, H., and Jahn, R. (1993a). Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin. EMBO J, 12, 4821-4828. [PubMed]
  • Blasi, J., Chapman, E.R., Link, E., Binz, T., Yamasaki, S., De Camilli, P., Südhof, T.C., Niemann, H., and Jahn, R. (1993b). Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature, 365, 160-163. [CrossRef] [PubMed]
  • Bollmann, J.H., Sakmann, B., and Borst, J.G. (2000). Calcium sensitivity of glutamate release in a calyx-type terminal. Science, 289, 953-957. [CrossRef] [PubMed]
  • Borst, J.G., and Sakmann, B. (1996). Calcium influx and transmitter release in a fast CNS synapse. Nature, 383, 431-434. [CrossRef] [PubMed]
  • Brenner, S. (1974). The genetics of Cænorhabditis elegans. Genetics, 77, 71-94. [PubMed]
  • Brose, N., Petrenko, A.G., Südhof, T.C., and Jahn, R. (1992). Synaptotagmin: A Ca2+-sensor on the synaptic vesicle surface. Science, 256, 1021-1025. [CrossRef] [PubMed]
  • Burré, J., Sharma, M., Tsetsenis, T., Buchman, V., Etherton, M.R., and Südhof, T.C. (2010). α-Synuclein Promotes SNARE-Complex Assembly in Vivo and in Vitro. Science, 329, 1663-1667. [CrossRef] [PubMed]
  • Cao, P., Maximov, A., and Südhof, T.C. (2011). Activity-Dependent IGF-1 Exocytosis is Controlled by the Ca2+-Sensor Synaptotagmin-10. Cell, 145, 300-311. [CrossRef]
  • Cao, P., Yang, X., and Südhof, T.C. (2013). Complexin Activates Exocytosis of Distinct Secretory Vesicles Controlled by Different Synaptotagmins. J Neurosci, 33, 1714-1727. [CrossRef] [PubMed]
  • Carr, C.M., Grote, E., Munson, M., Hughson, F.M., and Novick, P.J. (1999). Sec1p binds to SNARE complexes and concentrates at sites of secretion. J Cell Biol, 146, 333-344. [CrossRef] [PubMed]
  • Ceccarelli, B., Hurlbut, W.P., and Mauro A. (1973). Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J Cell Biol, 57, 499–524. [CrossRef] [PubMed]
  • Chandra, S., Gallardo, G., Fernández-Chacón, R., Schlüter, O.M., and Südhof, T.C., (2005). α-Synuclein Cooperates with CSPα in Preventing Neurodegeneration. Cell, 123, 383-396. [CrossRef]
  • Chapman, E.R., Hanson, P.I., An, S., and Jahn, R. (1995). Ca2+ regulates the interaction between synaptotagmin and syntaxin 1. J Biol Chem, 270, 23667-23671. [CrossRef] [PubMed]
  • Chen, X., Tomchick, D.R., Kovrigin, E., Araç, D., Machius, M., Südhof, T.C., and Rizo, J. (2002). Three-dimensional structure of the complexin/SNARE complex. Neuron, 33, 397-409. [CrossRef] [PubMed]
  • Clary, D.O., Griff, I.C., and Rothman, J.E., (1990). SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell, 61, 709-721. [CrossRef] [PubMed]
  • Coussens, L., Parker, P.J., Rhee, L., Yang-Feng, T.L., Chen, E., Waterfield, M.D., Francke, U., and Ullrich, A. (1986). Multiple, distinct forms of bovine and human protein kinase C suggest diversity in cellular signaling pathways. Science, 233, 859-866. [CrossRef] [PubMed]
  • Corbalan-Garcia, S., and Gómez-Fernández, J.C. (2014). Signaling through C2 domains: More than one lipid target. Biochim Biophys Acta, 1838, 1536-1547. [CrossRef] [PubMed]
  • Davletov, B.A., and Südhof, T.C. (1993). A single C2-domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid-binding. J Biol Chem, 268, 26386-26390. [PubMed]
  • Davletov, B.A., and Südhof, T.C. (1994). Ca2+-dependent conformational change in synaptotagmin I. J Biol Chem, 269, 28547-28550. [PubMed]
  • Deák, F., Shin, O.H., Tang, J., Hanson, P., Ubach, J., Jahn, R., Rizo, J., Kavalali, E.T., and Südhof, T.C. (2006). Rabphilin Regulates SNARE-Dependent Re-Priming of Synaptic Vesicles for Fusion. EMBO J, 25, 2856-2866. [CrossRef] [PubMed]
  • de Wit, H., Walter, A.M., Milosevic, I., Gulyás-Kovács, A., Riedel, D., Sørensen, J.B., and Verhage, M. (2009). Synaptotagmin-1 docks secretory vesicles to Syntaxin-1/SNAP-25 acceptor complexes. Cell, 138, 935-946. [CrossRef]
  • Deng, L., Kaeser, P.S., Xu, W., and Südhof, T.C. (2011). RIM Proteins Activate Vesicle Priming by Reversing Auto-Inhibitory Homodimerization of Munc13. Neuron, 69, 317-331. [CrossRef] [PubMed]
  • DiAntonio, A., Parfitt, K.D., and Schwarz, T.L. (1993). Synaptic transmission persists in synaptotagmin mutants of Drosophila. Cell, 73, 1281-1290. [CrossRef]
  • Dulubova, I., Sugita, S., Hill, S., Hosaka, M., Fernandez, I., Südhof, T.C., and Rizo, J. (1999). A conformational switch in syntaxin during exocytosis. EMBO J, 18, 4372-4382. [CrossRef] [PubMed]
  • Dulubova, I., Yamaguchi, T., Gao, Y., Min, S.W., Huryeva, I., Südhof, T.C., and Rizo, J. (2002). How Tlg2p/syntaxin16 ‘snares’ Vps45. EMBO J, 21, 3620-3631. [CrossRef] [PubMed]
  • Dulubova, I., Lou, X., Lu, J., Huryeva, I., Alam, A., Schneggenburger, R., Südhof, T.C., and Rizo, J. (2005). A Munc13/RIM/Rab3 Tripartite Complex: From Priming to Plasticity? EMBO J, 24, 2839-2850. [CrossRef] [PubMed]
  • Dulubova, I., Khvotchev, M., Südhof, T.C., and Rizo, J. (2007). Munc18-1 Binds Directly to the Neuronal SNARE Complex. Proc Natl Acad Sci USA, 104, 2697-2702. [CrossRef]
  • Fenster, S.D., Chung, W.J., Zhai, R., Cases-Langhoff, C., Voss, B., Garner, A.M., Kaempf, U., Kindler, S., Gundelfinger, E.D., and Garner, C.C. (2000). Piccolo, a presynaptic zinc finger protein structurally related to bassoon. Neuron, 25, 203-214. [CrossRef] [PubMed]
  • Fernandez, I., Ubach, J., Dulubova, I., Zhang, X., Südhof, T.C., and Rizo, J. (1998). Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin 1A. Cell, 94, 841-849. [CrossRef]
  • Fernandez, I., Araç, D., Ubach, J., Gerber, S.H., Shin, O., Gao, Y., Anderson, R.G., Südhof, T.C. and Rizo, J. (2001). Three-dimensional structure of the synaptotagmin 1 C2B-domain: Synaptotagmin 1 as a phospholipid binding machine. Neuron, 32, 1057-1069. [CrossRef] [PubMed]
  • Fernández-Chacón, R., and Südhof, T.C. (2000). Novel SCAMPs lacking NPF repeats: ubiquitous and synaptic vesicle-specific forms implicate SCAMPs in multiple membrane-trafficking functions. J Neurosci, 20, 7941–7950. [PubMed]
  • Fernández-Chacón, R., Königstorfer, A., Gerber, S.H., García, J., Matos, M.F., Stevens, C.F., Brose, N., Rizo, J., Rosenmund, C., and Südhof, T.C. (2001). Synaptotagmin I functions as a Ca2+-regulator of release probability. Nature, 410, 41-49. [CrossRef] [PubMed]
  • Fernández-Chacón, R., Wölfel, M., Nishimune, H., Tabares, L., Schmitz, F., Castellano-Muñoz, M., Rosenmund, C., Montesinos, M.L., Sanes, J.R., Schneggenburger, R., and Südhof, T.C. (2004). The synaptic vesicle protein CSPα prevents presynaptic degeneration. Neuron, 42, 237-251. [CrossRef] [PubMed]
  • Forsythe, I.D. (1994). Direct patch recording from identified presynaptic terminals mediatingglutamatergic EPSCs in the rat CNS, in vitro. J Physiol, 479, 381-387. [CrossRef] [PubMed]
  • Garcia, E.P., Gatti, E., Butler, M., Burton, J., and De Camilli, P. (1994). A rat brain Sec1 homologue related to Rop and UNC18 interacts with syntaxin. Proc Natl Acad Sci USA, 91, 2003-2007. [CrossRef]
  • Geppert, M., Archer, B.T. III, and Südhof, T.C. (1991). Synaptotagmin II: a novel differentially distributed form of synaptotagmin. J Biol Chem, 266, 13548-13552. [PubMed]
  • Geppert, M., Goda, Y., Hammer, R.E., Li, C., Rosahl, T.W., Stevens, C.F., and Südhof, T.C. (1994a). Synaptotagmin I: A major Ca2+-sensor for transmitter releaseat a central synapse. Cell, 79, 717-727. [CrossRef]
  • Geppert, M., Bolshakov, V.Y., Siegelbaum, S.A., Takei, K., De Camilli, P., Hammer, R.E., and Südhof, T.C. (1994b). The role of Rab3A in neurotransmitter release. Nature, 369, 493-497. [CrossRef] [PubMed]
  • Gerber, S.H., Rah, J.C., Min, S.W., Liu X, de Wit, H., Dulubova, I., Meyer, A.C., Rizo, J., Arancillo, M., Hammer, R.E., Verhage, M., Rosenmund, C., and Südhof, T.C. (2008). Conformational Switch of Syntaxin-1 Controls Synaptic Vesicle Fusion. Science, 321, 1507-1510. [CrossRef] [PubMed]
  • Giraudo, C.G., Eng, W.S., Melia, T.J., and Rothman, J.E. (2006). A clamping mechanism involved in SNARE-dependent exocytosis. Science, 313, 676-680. [CrossRef] [PubMed]
  • Gracheva, E.O., Hadwiger, G., Nonet, M.L., and Richmond, J.E. (2008). Direct interactions between C. elegans RAB-3 and Rim provide a mechanism to target vesicles to the presynaptic density. Neurosci Lett, 444, 137-142. [CrossRef] [PubMed]
  • Graf, E.R., Valakh V, Wright, C.M., Wu, C, Liu, Z., Zhang, Y.Q., and DiAntonio, A. (2012). RIM promotes calcium channel accumulation at active zones of the Drosophila neuromuscular junction. J Neurosci, 32, 16586-16596. [CrossRef] [PubMed]
  • Grote, E., Carr, C.M., and Novick, P.J. (2000). Ordering the final events in yeast exocytosis. J Cell Biol, 151, 439-452. [CrossRef] [PubMed]
  • Grumelli, C., Verderio, C., Pozzi, D., Rossetto, O., Montecucco, C., and Matteoli, M., (2005). Internalization and mechanism of action of clostridial toxins in neurons. Neurotoxicology, 26, 761-767. [CrossRef] [PubMed]
  • Gundersen, C.B., Mastrogiacomo, A, Faull, K., and Umbach, J.A. (1994). Extensive lipidation of a Torpedo cysteine string protein. J Biol Chem, 269, 19197-19199. [PubMed]
  • Gustavsson, N., Lao, Y., Maximov, A., Chuang, J.C., Kostromina E., Repa, J.J., Li, C, Radda, G.K., Südhof, T.C., and Han, W. (2008). Impaired insulin secretion and glucose intolerance in Synaptotagmin-7 null mutant mice. Proc Natl Acad Sci USA, 105, 3992-3997. [CrossRef]
  • Gustavsson, N., Wei, S.H., Hoang, D.N., Lao, Y., Zhang, Q., Radda, G.K., Rorsman, P., Südhof, T.C., and Han, W. (2009). Synaptotagmin-7 is a principal Ca2+ sensor for Ca2+-induced glucagon exocytosis in pancreas. J Physiol, 587, 1169-1178. [CrossRef] [MathSciNet] [PubMed]
  • Han, Y., Kaeser, P.S., Südhof, T.C., and Schneggenburger, R. (2011). RIM determines Ca2+-channel density and vesicle docking at the presynaptic active zone. Neuron, 69, 304-316. [CrossRef] [PubMed]
  • Hanson, P.I., Roth, R, Morisaki, H, Jahn, R., and Heuser, J.E. (1997). Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell, 90, 523-535. [CrossRef]
  • Harrison, S.D., Broadie, K., van de Goor, J., and Rubin, G.M. (1994). Mutations in the Drosophila Rop gene suggest a function in general secretion and synaptic transmission. Neuron, 13, 555-566. [CrossRef] [PubMed]
  • Hata, Y., Slaughter, C.A., and Südhof, T.C. (1993). Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature, 366, 347-351. [CrossRef] [PubMed]
  • Hata, Y., Butz, S., Sudhof, T.C. (1996) CASK: A novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J Neurosci, 16, 2488-2494. [PubMed]
  • Hayashi, T., McMahon, H., Yamasaki, S., Binz, T., Hata, Y., Südhof, T.C., and Niemann, H. (1994). Synaptic vesicle membrane fusion complex: Action of clostridial neurotoxins on assembly. EMBO J, 13, 5051-5061. [PubMed]
  • Heuser, J.E., and Reese, T.S. (1973). Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol, 57, 315-344. [CrossRef] [PubMed]
  • Huntwork, S., and Littleton, J.T. (2007). A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth. Nat Neurosci, 10, 1235-1237. [CrossRef] [PubMed]
  • Ishizuka, T., Saisu, H., Odani, S., and Abe, T. (1995). Synaphin: a protein associated with the docking/fusion complex in presynaptic terminals. Biochem Biophys Res Commun, 213, 1107-1114. [CrossRef] [PubMed]
  • Janz, R., Hofmann, K. and Südhof, T.C. (1998). SVOP, an evolutionarily conserved synaptic vesicle protein, suggests novel transport functions of synaptic vesicles. J Neurosci, 18, 9269-9281. [PubMed]
  • Janz, R., Südhof, T.C., Hammer, R.E., Unni, V., Siegelbaum, S.A., and Bolshakov, V.Y. (1999). Essential roles in synaptic plasticity for synaptogyrin I and synaptophysin I. Neuron, 24, 687-700. [CrossRef] [PubMed]
  • Katz, B. (1969). The Release of Neural Transmitter Substances. Liverpool, Liverpool Univ. Press.
  • Kaeser, P.S., Deng, L., Wang, Y., Dulubova, I., Liu, X., Rizo, J., and Südhof, T.C. (2011). RIM proteins tether Ca2+-channels to presynaptic active zones via a direct PDZ-domain interaction. Cell, 144, 282-295. [CrossRef]
  • Kaeser, P.S., Deng, L, Fan, M., and Südhof, T.C. (2012). RIM Genes Differentially Contribute to Organizing Presynaptic Release Sites. Proc Natl Acad Sci USA, 109, 11830-11835. [CrossRef]
  • Kaeser-Woo, Y.J., Yang, X., and Südhof, T.C. (2012). C-terminal Complexin Sequence is Selectively Required for Clamping and Priming but Not for Ca2+-Triggering of Synaptic Exocytosis. J Neurosci, 32, 2877-2885. [CrossRef] [PubMed]
  • Khvotchev, M., Dulubova, I., Sun, J., Dai, H., Rizo, J., and Südhof, T.C. (2007). Dual Modes of Munc18-1/SNARE Interactions Are Coupled by Functionally Critical Binding to Syntaxin-1 N-terminus. J Neurosci, 27, 12147-12155. [CrossRef] [PubMed]
  • Koushika, S.P., Richmond, J.E., Hadwiger, G., Weimer, R.M., Jorgensen, EM. and Nonet, M.L. (2001). A post-docking role for active zone protein Rim. Nat Neurosci, 4, 997-1005. [CrossRef] [PubMed]
  • Lee, J.O., Yang, H., Georgescu, M.M., Di Cristofano, A., Maehama, T., Shi, Y., Dixon, J.E., Pandolfi, P., and Pavletich, N.P. (1999). Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell, 99, 323-334. [CrossRef] [PubMed]
  • Li, C, Ullrich, B, Zhang, J.Z., Anderson, R.G., Brose, N., and Südhof, T.C. (1995a) Ca2+-dependent and Ca2+-independent activities of neural and non neuronal synaptotagmins. Nature, 375, 594-599. [CrossRef] [PubMed]
  • Li, C., Davletov, B.A., and Südhof, T.C. (1995b). Distinct Ca2+- and Sr2+-binding properties of synaptotagmins: definition of candidate Ca2+-sensors for the fast and slow components of neurotransmitter release. J Biol Chem, 270, 24898-24902. [CrossRef] [PubMed]
  • Lin, R.C., and Scheller, R.H. (1997). Structural organization of the synaptic exocytosis core complex. Neuron, 19, 1087-1094. [CrossRef] [PubMed]
  • Link, E., Edelmann, L., Chou, J.H., Binz, T., Yamasaki, S., Eisel, U., Baumert, M., Südhof, T.C., Niemann, H., and Jahn, R. (1992). Tetanus toxin action: Inhibition of neurotransmitter release linked to synaptobrevin poteolysis. Biochem Biophys Res Comm, 189, 1017-1023. [CrossRef]
  • Lipstein, N., Sakaba, T., Cooper, B.H., Lin, K.H., Strenzke, N., Ashery, U., Rhee, J.S., Taschenberger, H., Neher, E., and Brose, N. (2013). Dynamic control of synaptic vesicle replenishment and short term plasticity by Ca2+-calmodulin-Munc13-1 signaling. Neuron, 79, 82-96. [CrossRef] [PubMed]
  • Littleton, J.T., Stern, M., Schulze, K., Perin, M., and Bellen, H.J. (1993). Mutational analysis of Drosophila synaptotagmin demonstrates its essential role in Ca2+-activated neurotransmitter release. Cell, 74, 1125-1134. [CrossRef]
  • Liu, K.S., Siebert, M., Mertel, S., Knoche, E., Wegener, S., Wichmann, C., Matkovic, T., Muhammad, K., Depner, H., Mettke, C., Bückers, J., Hell, S.W., Müller, M., Davis, G.W., Schmitz, D., and Sigrist, S.J. (2011). RIM-binding protein, a central part of the active zone, is essential for neurotransmitter release. Science, 334, 1565-1569. [CrossRef] [PubMed]
  • Lu, J., Machius, M., Dulubova, I., Dai, H., Südhof, T.C., Tomchick, D.R., and Rizo, J. (2006). Structural Basis for a Munc13-1 Homodimer-Munc13-1/RIM Heterodimer Switch: C2-domains as Versatile Protein-Protein Interaction Modules. PLOS Biology, 4, e192. [CrossRef] [PubMed]
  • Ma, C., Li, W., Xu, Y., and Rizo, J. (2011). Munc13 mediates the transition from the closed syntaxin-Munc18 complex to the SNARE complex. Nat Struct Mol Biol, 18, 542-549. [CrossRef] [PubMed]
  • Mackler, J.M., and Reist, N.E. (2001). Mutations in the second C2 domain of synaptotagmine disrupt synaptic transmission at Drosophila neuromuscular junctions. J Comp Neurol, 436, 4-16. [CrossRef] [PubMed]
  • Maroteaux, L., Campanelli, J.T., and Scheller, R.H. (1988). Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci, 8, 2804-2815. [PubMed]
  • Matthew, W.D., Tsavaler, L and Reichardt, L.F. (1981). Identification of a synaptic vesicle specific membrane protein with a wide distribution in neuronal and neurosecretory tissue. J Cell Biol, 91, 257-269. [CrossRef] [PubMed]
  • Maximov, A., and Südhof, T.C. (2005). Autonomous Function of Synaptotagmin 1 in Triggering Synchronous Release Independent of Asynchronous Release. Neuron, 48, 547-554. [CrossRef] [PubMed]
  • Maximov, A., Lao, Y., Li, H., Chen, X., Rizo, J., Sørensen, J.B., and Südhof, T.C. (2008). Genetic analysis of Synaptotagmin-7 function in synaptic vesicle exocytosis. Proc Natl Acad Sci USA, 105, 3986-3991. [CrossRef]
  • Maximov, A., Tang, J., Yang, X., Pang, Z.P., and Südhof, T.C. (2009). Complexin Controls the Force Transfer from SNARE complexes to membranes in Fusion. Science, 323, 516-521. [CrossRef] [PubMed]
  • Mayer, A., Wickner, W., and Haas, A. (1996). Sec18p (NSF)-driven release of Sec17p (alpha-SNAP) can precede docking and fusion of yeast vacuoles. Cell, 85, 83-94. [CrossRef]
  • McMahon, H., Ushkaryov, Y.A., Edelmann, L., Link, E., Binz, T., Niemann, H., Jahn, R., and Südhof, T.C. (1993). Cellubrevin: A ubiquitous tetanus-toxin substrate homologous to a putative synaptic vesicle fusion protein. Nature, 364, 346-349. [CrossRef] [PubMed]
  • McMahon, H.T., and Südhof, T.C. (1995). Synaptic core complex of synaptobrevin, syntaxin, and SNAPS forms high affinity α-SNAP binding site. J Biol Chem, 270, 2213-2217. [CrossRef] [PubMed]
  • McMahon, H.T., Missler, M., Li, C. and Südhof, T.C. (1995). Complexins: cytosolic proteins that regulate SNAP-receptor function. Cell, 83, 111-119. [CrossRef] [PubMed]
  • Meijer, M., Burkhardt, P., de Wit, H., Toonen, R.F., Fasshauer, D., and Verhage, M. (2012). Munc18-1 mutations that strongly impair SNARE-complex binding support normal synaptic transmission. EMBO J, 31, 2156-2168. [CrossRef] [PubMed]
  • Neher, E., and Penner, R. (1994) Mice sans synaptotagmin [news]. Nature, 372, 316-317. [CrossRef] [PubMed]
  • Nonet, M.L., Grundahl, K., Meyer, B.J., and Rand, J.B. (1993). Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin. Cell, 73, 1291-1305. [CrossRef]
  • Novick, P., and Schekman, R. (1979). Secretion and cell-surface growth are blocked in a temperature-sensitive mutant of Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 76, 1858-1862. [CrossRef]
  • Ohtsuka, T., Takao-Rikitsu, E., Inoue, E., Inoue, M., Takeuchi, M., Matsubara, K., Deguchi-Tawarada, M., Satoh, K., Morimoto, K., Nakanishi, H., and Takai, Y. (2002). Cast: a novel protein of the cytomatrix at the active zone of synapses that forms a ternary complex with RIM1 and munc13-1. J Cell Biol, 158, 577-590. [CrossRef] [PubMed]
  • Pang, Z.P., Shin, O.H., Meyer, A.C., Rosenmund, C., and Südhof, T.C. (2006a). A gain-of-function mutation in Synaptotagmin-1 reveals a critical role of Ca2+-dependent SNARE-complex binding in synaptic exocytosis. J Neurosci, 26, 12556-12565. [CrossRef] [PubMed]
  • Pang, Z.P., Sun, J., Rizo, J., Maximov, A., and Südhof, T.C. (2006b). Genetic Analysis of Synaptotagmin 2 in Spontaneous and Ca2+-Triggered Neurotransmitter Release. EMBO J, 25, 2039-2050. [CrossRef] [PubMed]
  • Pang, Z.P., Melicoff, E., Padgett, D., Liu, Y., Teich, A.F., Dickey, B.F., Lin, W., Adachi, R., and Südhof, T.C. (2007). Synaptotagmin-2 is Essential for Survival and Contributes to Ca2+-Triggering of Neurotransmitter Release in Central and Neuromuscular Synapses. J Neurosci, 26, 13493-13504. [CrossRef]
  • Perin, M.S., Fried, V.A., Slaughter, C.A., and Südhof, T.C. (1988). The structure of cytochrome b561, a secretory vesicle-specific electron transport protein. EMBO J, 7, 2697–2703. [PubMed]
  • Perin, M.S., Fried, V.A., Mignery, G.A., Jahn, R., Südhof, T.C. (1990). Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature, 345, 260-263. [CrossRef] [PubMed]
  • Perin, M.S., Fried, V.A., Stone, D.K., Xie, X.S., and Südhof, T.C. (1991a). Structure of the 116 kDa polypeptide of the clathrin-coated vesicle/synaptic vesicle proton pump. J Biol Chem, 266, 3877-3881. [PubMed]
  • Perin, M.S., Johnston, P.A., Ozcelik, T., Jahn, R., Francke, U., and Südhof, T.C. (1991b). Structural and functional conservation of synaptotagmin (p65) in Drosophila and humans. J Biol Chem, 266, 615–622. [PubMed]
  • Pevsner, J., Hsu, S.C., and Scheller, R.H. (1994). n-Sec1: a neural-specific syntaxin-binding protein. Proc Natl Acad Sci USA, 91, 1445-1449. [CrossRef]
  • Poirier, M.A., Xiao, W., Macosko, J.C., Chan, C., Shin, Y.K., and Bennett, M.K. (1998). The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat Struct Biol, 5, 765-769. [CrossRef] [PubMed]
  • Rathore, S.S., Bend, E.G., Yu, H., Hammarlund, M., Jorgensen, E.M., and Shen, J. (2010). Syntaxin N-terminal peptide motif is an initiation factor for the assembly of the SNARE-Sec1/Munc18 membrane fusion complex. Proc Natl Acad Sci USA, 107, 22399-22406. [CrossRef]
  • Regehr, W.G. (2012). Short-term presynaptic plasticity. Cold Spring Harb Perspect Biol, 4, a005702. [CrossRef]
  • Reim, K., Mansour, M., Varoqueaux, F., McMahon, H.T., Südhof, T.C., Brose, N., and Rosenmund, C. (2001). Complexins regulate the Ca2+-sensitivity of the synaptic neurotransmitter release machinery. Cell, 104, 71-81. [CrossRef]
  • Rhee, J.S., Betz, A., Pyott, S., Reim, K., Varoqueaux, F., Augustin, I., Hesse, D., Südhof, T.C., Takahashi, M., Rosenmund, C., and Brose, N. (2002). Beta phorbol ester- and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell, 108, 121-133. [CrossRef]
  • Rizo, J. and Südhof, T.C. (1998). C2-domains, structure of a universal Ca2+-binding domain”. J Biol Chem, 273, 15879-15882. [CrossRef] [PubMed]
  • Rizo, J., and Südhof, T.C. (2012). The Membrane Fusion Enigma: SNAREs, SM Sec1/Munc18 Proteins, and Their Accomplices – Guilty as Charged? Annu Rev Cell Dev Biol, 28, 279-308. [CrossRef] [PubMed]
  • Robinson, I.M., Ranjan, R., and Schwarz, T.L. (2002). Synaptotagmin I and IV promote transmitter release independently of Ca2+ binding in the C2A domain. Nature, 418, 336-340. [CrossRef] [PubMed]
  • Rosahl, T.W., Geppert, M., Spillane, D., Herz, J., Hammer, R.E., Malenka, R.C., and Südhof, T.C. (1993). Short term synaptic plasticity is altered in mice lacking synapsin I. Cell, 75, 661-670. [CrossRef]
  • Sabatini, B.L., and Regehr, W.G. (1996). Timing of neurotransmission at fast synapses in the mammalian brain. Nature, 384, 170-172. [CrossRef] [PubMed]
  • Salminen, A., and Novick, P.J. (1987). A ras-like protein is required for a post-Golgi event in yeast secretion. Cell, 49, 527-538. [CrossRef]
  • Schiavo, G., Benfenati, F., Poulain, B., Rossetto, O., Polverino de Laureto, P., DasGupta, B.R., and Montecucco, C. (1992). Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature, 359, 832-835. [CrossRef] [PubMed]
  • Schiavo, G., Rossetto, O., Catsicas, S., Polverino de Laureto, P., DasGupta, B.R., Benfenati, F., and Montecucco, C. (1993). Identification of the nerve terminal targets of botulinum neurotoxin serotypes A, D, and E. J Biol Chem, 268, 23784-23787. [PubMed]
  • Schlüter, O.M., Schnell, E., Verhage, M., Tzonopoulos, T., Nicoll, R.A., Janz, R., Malenka, R.C., Geppert, M., and Südhof, T.C. (1999). Rabphilin knock-out mice reveal rat rabphilin is not required for rab3 function in regulating neurotransmitter release. J Neurosci, 19, 5834-5846. [PubMed]
  • Schlüter, O.M., Schmitz, F., Jahn, R., Rosenmund, C., and Südhof, T.C. (2004). A complete genetic analysis of neuronal Rab3 function. J Neurosci, 24, 6629-6637. [CrossRef] [PubMed]
  • Schlüter, O.M., Südhof, T.C., and Rosenmund, C. (2006). Rab3 Superprimes Synaptic Vesicles for Release: Implications for Short Term Synaptic Plasticity. J Neurosci, 26, 1239-1246. [CrossRef] [PubMed]
  • Schneggenburger, R., and Neher, E. (2000). Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature, 406, 889-893. [CrossRef] [PubMed]
  • Schoch, S., Castillo, P.E., Jo, T., Mukherjee, K., Geppert, M., Wang, Y., Schmitz, F., Malenka, R.C., and Südhof, T.C. (2002). RIM1α forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature, 415, 321-326. [CrossRef] [PubMed]
  • Schonn, J., Maximov, A., Lao, Y., Südhof, T.C., and Sørensen, J.B. (2008). Synaptotagmin-1 and -7 are functionally overlapping Ca2+ sensors for exocytosis in adrenal chromaffin cells. Proc Natl Acad Sci USA, 105, 3998-4003. [CrossRef]
  • Shao, X., Davletov, B.A., Sutton, R.B., Südhof, T.C., and Rizo, J. (1996). Bipartite Ca2+-binding motif in C2 domains of synaptotagmin and protein kinase C. Science, 273, 248-251. [CrossRef] [PubMed]
  • Shao, X., Li, C., Fernandez, I., Zhang, X., Südhof, T.C., and Rizo, J. (1997). Synaptotagmin-syntaxin interaction: the C2-domain as a Ca2+-dependent electrostatic switch. Neuron, 18, 133-142. [CrossRef] [PubMed]
  • Shao, X., Fernandez, I., Südhof, T.C., and Rizo, J. (1998). Solution structures of the Ca2+-free and Ca2+-bound C2A domain of synaptotagmin I: does Ca2+ induce a conformational change? Biochemistry, 37, 16106-16115. [CrossRef] [PubMed]
  • Sharma, M., Burré, J., Bronk, P., Zhang, Y., Xu, W., and Südhof, T.C. (2011a). CSPα Knockout Causes Neurodegeneration by Impairing SNAP-25 Function. EMBO J, 31, 829-841. [CrossRef] [PubMed]
  • Sharma, M., Burré, J., and Südhof, T.C. (2011b). CSPα Promotes SNARE-Complex Assembly by Chaperoning SNAP-25 during Synaptic Activity. Nature Cell Biol, 13, 30-39. [CrossRef]
  • Sharma, M., Burré, J., and Südhof, T.C. (2012). Proteasome Inhibition Alleviates SNARE-Dependent Neurodegeneration in CSPα Knockout Mice. Science Transl Medicine, 4, 147ra113. [CrossRef]
  • Shen, J., Tareste, D.C., Paumet, F., Rothman, J.E., and Melia, T.J. (2007). Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell, 128, 183-195. [CrossRef] [PubMed]
  • Shirataki, H., Kaibuchi, K., Sakoda, T., Kishida, S., Yamaguchi, T., Wada, K., Miyazaki, M., and Takai, Y. (1993). Rabphilin-3A, a putative target protein for smg p25A/rab3A p25 small GTP-binding protein related to synaptotagmin. Mol Cell Biol, 13, 2061-2068. [PubMed]
  • Shin, O.H., Rhee, J.S., Tang, J., Sugita, S., Rosenmund, C., and Südhof, T.C. (2003). Sr2+-Binding to the Ca2+-Binding Site of the Synaptotagmin 1 C2B-Domain Triggers Fast Exocytosis Without Stimulating SNARE Interactions. Neuron, 37, 99-108. [CrossRef] [PubMed]
  • Shin, O.H., Xu, J., Rizo, J., and Südhof, T.C. (2009). Differential but convergent functions of Ca2+-binding to Synaptotagmin-1 C2-domains mediate neurotransmitter release. Proc Natl Acad Sci USA, 106, 16469-16474. [CrossRef]
  • Shin, O.H., Lu, J., Rhee, J.S., Tomchick, D.R., Pang, Z.P., Wojcik, S.M., Camacho-Perez, M., Brose, N., Machius, M., Rizo, J., Rosenmund, C., and Südhof, T.C. (2010). Munc13 C2B-domain – an activity-dependent Ca2+-regulator of synaptic exocytosis. Nature Struct Mol Biol, 17, 280-288. [CrossRef]
  • Söllner, T., Whiteheart, S.W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P., and Rothman, J.E. (1993a). SNAP receptors implicated in vesicle targeting and fusion. Nature, 362, 318-324. [CrossRef] [PubMed]
  • Söllner, T., Bennett, M.K., Whiteheart, S.W., Scheller, R.H., and Rothman, J.E. (1993b). A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell, 75, 409-418. [CrossRef] [PubMed]
  • Sørensen, J.B., Fernández-Chacón, R., Südhof, T.C., and Neher, E. (2003). Examining synaptotagmin1 function in dense core vesicle exocytosis under direct control of Ca2+. J Gen Physiol, 122, 265-276. [CrossRef] [PubMed]
  • Stein, A., Weber, G., Wahl, M.C., and Jahn, R. (2009). Helical extension of the neuronal SNARE complex into the membrane. Nature, 460, 525-528. [PubMed]
  • Südhof, T.C. (2004). The synaptic vesicle cycle. Annu Rev Neurosci, 27, 509-547. [CrossRef] [PubMed]
  • Südhof, T.C. (2012). The presynaptic active zone. Neuron, 75, 11–25. [CrossRef] [PubMed]
  • Südhof, T.C. (2013a) A molecular machine for neurotransmitter release: Synaptotagmin and beyond. Nature Medicine, 19, 1227-1231. [CrossRef] [PubMed]
  • Südhof, T.C. (2013b). Neurotransmitter release: The last millisecond in the life of a synaptic vesicle. Neuron, 80, 675-690. [CrossRef] [PubMed]
  • Südhof, T.C., Lottspeich, F., Greengard, P., Mehl, E., and Jahn, R. (1987). Synaptophysin: A synaptic vesicle protein with four transmembrane regions and a novel cytoplasmic domain. Science, 238, 1142-1144. [CrossRef] [PubMed]
  • Südhof, T.C., Czernik, A.J., Kao, H.T., Takei, K., Johnston, P.A., Horiuchi, A., Kanazir, S.D., Wagner, M.A., Perin, M.S., De Camilli, P., et al. (1989a). Synapsins: mosaics of shared and individual domains in a family of synaptic vesicle phosphoproteins. Science, 245, 1474-1480. [CrossRef] [PubMed]
  • Südhof, T.C., Baumert, M., Perin, M.S., and Jahn, R. (1989b). A synaptic vesicle membrane protein is conserved from mammals to Drosophila. Neuron, 2, 1475-1481. [CrossRef] [PubMed]
  • Südhof, T.C., Fried, V.A., Stone, D.K., Johnston, P.A., and Xie, X.S. (1989c). Human endomembrane H+-pump strongly resembles the ATP-synthetase of archaebacteria. Proc Natl Acad Sci USA, 86, 6067-6071. [CrossRef]
  • Südhof, T.C., and Jahn, R. (1991). Proteins of synaptic vesicles involved in exocytosis and membrane recycling. Neuron, 6, 665-677. [CrossRef] [PubMed]
  • Südhof, T.C., DeCamilli, P., Niemann, H., and Jahn, R. (1993). Membrane fusion machinery: Insights from synaptic proteins. Cell, 75, 1-4. [CrossRef]
  • Südhof T.C., and Rothman, J.E, (2009). Membrane Fusion: Grappling with SNARE and SM Proteins. Science, 323, 474-477. [CrossRef] [PubMed]
  • Sugita, S., Hata, Y., and Südhof, T.C. (1996). Distinct Ca2+ dependent properties of the first and second C2-domains of synaptotagmin I. J Biol Chem, 271, 1262-1265. [CrossRef] [PubMed]
  • Sugita, S., Han, W., Butz, S., Liu, X., Fernández-Chacón, R., Lao, Y., and Südhof, T.C. (2001). Synaptotagmin VII as a plasma membrane Ca2+-sensor in exocytosis. Neuron, 30, 459-473. [CrossRef] [PubMed]
  • Sugita, S, Shin, O.H., Han, W., Lao, Y., and Südhof, T.C. (2002). Synaptotagmins form a hierarchy of exocytotic Ca2+-sensors with distinct Ca2+-affinities. EMBO J, 21, 270-280. [CrossRef] [PubMed]
  • Sun, J., Pang, Z.P., Qin, D., Fahim, A.T., Adachi, R., and Südhof, T.C. (2007). A Dual Ca2+-Sensor Model for Neuro-transmitter Release in a Central Synapse. Nature, 450, 676-682. [CrossRef] [PubMed]
  • Sutton, R.B., Davletov, B.A., Berghuis, A.M., Südhof T.C., and Sprang, S.R. (1995). Structure of the first C2-domain of synaptotagmin I: A novel Ca2+/phospholipid binding fold. Cell, 80, 929-938. [CrossRef]
  • Sutton, R.B., Fasshauer, D., Jahn, R., and Brunger, A.T. (1998). Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature, 395, 347-353. [CrossRef] [PubMed]
  • Tang, J, Maximov, A, Shin, O.H., Dai, H., Rizo, J., and Südhof, T.C. (2006). A Complexin/Synaptotagmin-1 Switch Controls Fast Synaptic Vesicle Exocytosis. Cell, 126, 1175-1187. [CrossRef] [PubMed]
  • Trimble, W.S., Cowan, D.M., Scheller, R.H. (1988) VAMP-1: a synaptic vesicle-associated integral membrane protein. Proc Natl Acad Sci USA, 85, 4538-4542. [CrossRef]
  • tom Dieck S., Sanmartí-Vila, L., Langnaese, K., Richter, K., Kindler, S., Soyke, A., Wex, H., Smalla, K.H., Kämpf, U., Fränzer, J.T., Stumm, M, Garner, C.C., and Gundelfinger, E.D. (1998). Bassoon, a novel zinc-finger CAG/glutamine-repeat protein selectively localized at the active zone of presynaptic nerve terminals. J Cell Biol, 142, 499-509. [CrossRef] [PubMed]
  • Tobaben, S., Thakur, P., Fernández-Chacón, R., Südhof, T.C., Rettig, J., and Stahl, B. (2001). A trimeric protein complex functions as a synaptic chaperone machine. Neuron, 31, 987-999. [CrossRef] [PubMed]
  • Touchot, N., Chardin, P., and Tavitian, A. (1987). Four additional members of the ras gene superfamily isolated by an oligonucleotide strategy: molecular cloning of YPT-related cDNAs from a rat brain library. Proc Natl Acad Sci USA, 84, 8210-8214. [CrossRef]
  • Tsetsenis, T., Younts, T.J., Chiu, C.Q., Kaeser, P.S., Castillo, P.E., and Südhof, T.C. (2011). Rab3B protein is required for long-term depression of hippocampal inhibitory synapses and for normal reversal learning. Proc Natl Acad Sci USA, 108, 14300–14305. [CrossRef]
  • Ubach, J., Zhang, X., Shao, X., Südhof, T.C., and Rizo, J. (1998) Ca2+ binding to synaptotagmin: how many Ca2+ ions bind to the tip of a C2-domain? EMBO J., 17, 3921-3930. [CrossRef] [PubMed]
  • Ubach, J., Lao, Y., Fernandez, I., Arac, D., Südhof, T.C., and Rizo, J. (2001) The C2B domain of synaptotagmin I is a Ca2+-binding module. Biochemistry, 40, 5854-5860. [CrossRef] [PubMed]
  • Varoqueaux, F., Sigler, A., Rhee, J.S., Brose, N., Enk, C., Reim, K., and Rosenmund, C. (2002). Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. Proc Natl Acad Sci USA, 99, 9037-9042. [CrossRef]
  • Verhage, M., Maia, A.S., Plomp, J.J., Brussaard, A.B., Heeroma, J.H., Vermeer, H., Toonen, R.F., Hammer, R.E., van den Berg, T.K., Missler, M., Geuze, H.J., and Südhof, T.C. (2000). Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science, 287, 864-869. [CrossRef] [PubMed]
  • Voets, T., Moser, T., Lund, P.E., Chow, R.H., Geppert, M., Südhof, T.C., and Neher, E. (2001). Intracellular calcium dependence of large dense-core vesicle exocytosis in the absence of synaptotagmin I. Proc Natl Acad Sci USA, 98, 11680-11685. [CrossRef]
  • von Mollard, G.F., Mignery, G.A., Baumert, M., Perin, M.S., Hanson, T.J., Burger, P.M., Jahn, R., and Südhof, T.C. (1990). Rab3 is a small GTP-binding protein exclusively localized to synaptic vesicles. Proc Natl Acad Sci USA, 87, 1988-1992. [CrossRef]
  • von Mollard, G.F., Südhof, T.C., and Jahn, R. (1991). A small GTP-binding protein (rab3A) dissociates from synaptic vesicles during exocytosis. Nature, 349, 79-81. [CrossRef] [PubMed]
  • Wang, X., Kibschull, M., Laue, M.M., Lichte, B., Petrasch-Parwez, E., and Kilimann, M.W. (1999). Aczonin, a 550-kD putative scaffolding protein of presynaptic active zones, shares homology regions with Rim and Bassoon and binds profilin. J Cell Biol, 147, 151-162. [CrossRef] [PubMed]
  • Wang, Y., Okamoto, M., Schmitz, F., Hofmann, K., and Südhof, T.C. (1997). RIM: A putative Rab3-effector in regulating synaptic vesicle fusion. Nature, 388, 593-598. [CrossRef] [PubMed]
  • Wang, Y., Sugita, S., and Südhof, T.C. (2000). The RIM/NIM family of neuronal SH3-domain proteins: interactions with Rab3 and a new class of neuronal SH3-domain proteins. J Biol Chem, 275, 20033-20044. [CrossRef] [PubMed]
  • Wang, Y., Liu, X., Biederer, T., and Südhof, T.C. (2002). A family of RIM-binding proteins regulated by alternative splicing: Implications for the genesis of synaptic active zones. Proc Natl Acad Sci USA, 99, 14464-14469. [CrossRef]
  • Weber, T., Zemelman, B.V., McNew, J.A., Westermann, B., Gmachl, M, Parlati, F., Söllner, T.H., and Rothman, J.E. (1998). SNAREpins: minimal machinery for membrane fusion. Cell, 92, 759-772. [CrossRef] [PubMed]
  • Wen, H., Linhoff, M.W., McGinley, M.J., Li, G.L., Corson, G.M., Mandel, G., and Brehm, P. (2010). Distinct roles for two synaptotagmin isoforms in synchronous and asynchronous transmitter release at zebrafish neuromuscular junction. Proc Natl Acad Sci USA, 107, 13906-13911. [CrossRef]
  • Whittaker, V.P., and Sheridan, M.N. (1965). The morphology and acetylcholine content of isolated cerebral cortical synaptic vesicles. J Neurochem, 12, 363-372. [CrossRef] [PubMed]
  • Wilson, D.W., Wilcox, C.A., Flynn, G.C., Chen, E., Kuang, W.J., Henzel, W.J., Block, M.R., Ullrich, A., and Rothman, J.E. (1989). A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature, 339, 355-359. [CrossRef] [PubMed]
  • Xu, J., Mashimo, T., and Südhof, T.C. (2007). Synaptotagmin-1, -2, and -9: Ca2+-sensors for fast release that specify distinct presynaptic properties in subsets of neurons. Neuron, 54, 801-812. [CrossRef] [PubMed]
  • Xu, J., Pang, Z.P., Shin, O.H., and Südhof, T.C. (2009). Synaptotagmin-1 functions as a Ca2+ sensor for spontaneous release. Nature Neurosci, 12, 759-766. [CrossRef]
  • Xu, W., Morishita, W., Buckmaster, P.S., Pang, Z.P., Malenka, R.C., and Südhof, T.C. (2012). Distinct Neuronal Coding Schemes in Memory Revealed by Selective Erasure of Fast Synchronous Synaptic Transmission. Neuron, 73, 990-1001. [CrossRef] [PubMed]
  • Xue, M., Reim, K., Chen, X., Chao, H.T., Deng, H., Rizo, J., Brose, N., and Rosenmund, C. (2007). Distinct domains of complexin I differentially regulate neurotransmitter release. Nat Struct Mol Biol, 14, 949-958. [CrossRef] [PubMed]
  • Yamaguchi, T., Dulubova, I., Min, S.W., Chen, X., Rizo, J., and Südhof, T.C. (2002). Sly1 binds to Golgi and ER syntaxins via a conserved N-terminal peptide motif. Developmental Cell, 2, 295-305. [CrossRef] [PubMed]
  • Yang, X., Kaeser-Woo, Y.J., Pang, Z.P., Xu, W., and Südhof, T.C. (2010). Complexin Clamps Asynchronous Release by Blocking a Secondary Ca2+-Sensor via its Accessory a-Helix. Neuron, 68, 907-920. [CrossRef] [PubMed]
  • Yang, X., Cao, P., and Südhof, T.C. (2013). Deconstructing complexin function in activating and clamping Ca2+-triggered exocytosis by comparing knockout and knockdown phenotypes. Proc Natl Acad Sci USA, 110, 20777-20782. [CrossRef]
  • Zhen, M., and Jin, Y. (1999). The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans. Nature, 401, 371-375. [PubMed]
  • Zhou, P., Pang, Z.P., Yang, X., Zhang, Y., Rosenmund, C., Bacaj, T., and Südhof, T.C. (2013a). Syntaxin-1 N-Peptide and Habc-Domain Perform Distinct Essential Functions in Synaptic Vesicle Fusion. EMBO J, 32, 159–171. [CrossRef] [PubMed]
  • Zhou, P., Bacaj, T., Yang, X., Pang, Z.P., and Südhof, T.C. (2013b). Lipid-Anchored SNARE Lacking Transmembrane Regions Support Membrane Fusion During Neurotransmitter Release. Neuron, 80, 470-483. [CrossRef] [PubMed]
  • Zimmermann, H., and Whittaker, V.P. (1997). Morphological and biochemical heterogeneity of cholinergic synaptic vesicles. Nature, 267, 633-635. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.