Accès gratuit
J. Soc. Biol.
Volume 201, Numéro 4, 2007
Journée Claude Bernard Régulation de l'expression génétique par les ARN
Page(s) 367 - 376
Section Les micro ARN
Publié en ligne 5 mars 2008
  • Ambros, V. (2001). microRNAs: tiny regulators with great potential. Cell 107, 823-826. [CrossRef] [PubMed] [Google Scholar]
  • Bains, W., Ponte, P., Blau, H., and Kedes, L. (1984). Cardiac actin is the major actin gene product in skeletal muscle cell differentiation in vitro. Mol. Cell. Biol 4, 1449-1453. [PubMed] [Google Scholar]
  • Berezikov, E., Cuppen, E., and Plasterk, R.H. (2006). Approaches to microRNA discovery. Nat. Genet. 38 Suppl, S2-7. [Google Scholar]
  • Brennecke, J., Stark, A., Russell, R.B., and Cohen, S.M. (2005). Principles of microRNA-target recognition. PLoS Biol. 3, e85. [Google Scholar]
  • Bruno, I., and Wilkinson, M.F. (2006). P-bodies react to stress and nonsense. Cell 125, 1036-1038. [CrossRef] [PubMed] [Google Scholar]
  • Buckingham, M., Bajard, L., Chang, T., Daubas, P., Hadchouel, J., Meilhac, S., Montarras, D., Rocancourt, D., and Relaix, F. (2003). The formation of skeletal muscle: from somite to limb. J. Anat. 202, 59-68. [CrossRef] [PubMed] [Google Scholar]
  • Charge, S.B., and Rudnicki, M.A. (2004). Cellular and molecular regulation of muscle regeneration. Physiol. Rev. 84, 209-238. [CrossRef] [PubMed] [Google Scholar]
  • Chen, C.Z., Li, L., Lodish, H.F., and Bartel, D.P. (2004). MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83-86. [CrossRef] [PubMed] [Google Scholar]
  • Dinsmore, J., Ratliff, J., Deacon, T., Pakzaban, P., Jacoby, D., Galpern, W., and Isacson, O. (1996). Embryonic stem cells differentiated in vitro as a novel source of cells for transplantation. Cell Transplant. 5, 131-143. [CrossRef] [PubMed] [Google Scholar]
  • Giraldez, A.J., Mishima, Y., Rihel, J., Grocock, R.J., Van Dongen, S., Inoue, K., Enright, A.J., and Schier, A.F. (2006). Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75-79. [CrossRef] [PubMed] [Google Scholar]
  • Griffiths-Jones, S., Grocock, R.J., van Dongen, S., Bateman, A., and Enright, A.J. (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34, D140-144. [CrossRef] [PubMed] [Google Scholar]
  • Grun, D., Wang, Y.L., Langenberger, D., Gunsalus, K.C., and Rajewsky, N. (2005). microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput. Biol. 1, e13. [Google Scholar]
  • Kim, V.N., and Nam, J.W. (2006). Genomics of microRNA. Trends Genet. 22, 165-173. [CrossRef] [PubMed] [Google Scholar]
  • Kloosterman, W.P., Wienholds, E., de Bruijn, E., Kauppinen, S., and Plasterk, R.H. (2006). In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat. Methods 3, 27-29. [CrossRef] [PubMed] [Google Scholar]
  • Krek, A., Grun, D., Poy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMenamin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M., et al. (2005). Combinatorial microRNA target predictions. Nat. Genet. 37, 495-500. [Google Scholar]
  • Kurreck J, W.E., Gillen C, Erdmann VA. (2002). Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res. 30, 1911-1918. [CrossRef] [PubMed] [Google Scholar]
  • Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854. [CrossRef] [PubMed] [Google Scholar]
  • Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20. [CrossRef] [PubMed] [Google Scholar]
  • Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P., and Burge, C.B. (2003). Prediction of mammalian microRNA targets. Cell 115, 787-798. [CrossRef] [PubMed] [Google Scholar]
  • Murchison, E.P., and Hannon, G.J. (2004). miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr. Opin. Cell Biol. 16, 223-229. [CrossRef] [PubMed] [Google Scholar]
  • Naguibneva, I., Ameyar-Zazoua, M., Nonne, N., Polesskaya, A., Ait-Si-Ali, S., Groisman, R., Souidi, M., Pritchard, L.L., and Harel-Bellan, A. (2006a). An LNA-based loss-of-function assay for micro-RNAs. Biomed. Pharmacother. 60, 633-638. [CrossRef] [PubMed] [Google Scholar]
  • Naguibneva, I., Ameyar-Zazoua, M., Polesskaya, A., Ait-Si-Ali, S., Groisman, R., Souidi, M., Cuvellier, S., and Harel-Bellan, A. (2006b). The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat. Cell Biol. 8, 278-284. [CrossRef] [PubMed] [Google Scholar]
  • Petersen, C.P., Bordeleau, M.E., Pelletier, J., and Sharp, P.A. (2006). Short RNAs repress translation after initiation in mammalian cells. Mol. Cell 21, 533-542. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Pillai, R.S., Bhattacharyya, S.N., Artus, C.G., Zoller, T., Cougot, N., Basyuk, E., Bertrand, E., and Filipowicz, W. (2005). Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309, 1573-1576. [CrossRef] [PubMed] [Google Scholar]
  • Sempere, L.F., Freemantle, S., Pitha-Rowe, I., Moss, E., Dmitrovsky, E., and Ambros, V. (2004). Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol. 5, R13. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Tajbakhsh, S., Rocancourt, D., Cossu, G., and Buckingham, M. (1997). Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 89, 127-138. [CrossRef] [PubMed] [Google Scholar]
  • Valencia-Sanchez, M.A., Liu, J., Hannon, G.J., and Parker, R. (2006). Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 20, 515-524. [CrossRef] [PubMed] [Google Scholar]
  • Wienholds, E., Kloosterman, W.P., Miska, E., Alvarez-Saavedra, E., Berezikov, E., de Bruijn, E., Horvitz, H.R., Kauppinen, S., and Plasterk, R.H. (2005). MicroRNA expression in zebrafish embryonic development. Science 309, 310-311. [CrossRef] [PubMed] [Google Scholar]
  • Xie, X., Lu, J., Kulbokas, E.J., Golub, T.R., Mootha, V., Lindblad-Toh, K., Lander, E.S., and Kellis, M. (2005). Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals. Nature 434, 338-345. [CrossRef] [PubMed] [Google Scholar]
  • Yamamoto M, G.Y., Tamura K, Tanaka M, Kawakami A, Ide H, Kuroiwa A. (1998). Coordinated expression of Hoxa-11 and Hoxa-13 during limb muscle patterning. Development 125, 1325-1335. [PubMed] [Google Scholar]
  • Yamamoto, M., and Kuroiwa, A. (2003). Hoxa-11 and Hoxa-13 are involved in repression of MyoD during limb muscle development. Dev. Growth Differ. 45, 485-498. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.