Accès gratuit
Numéro
J. Soc. Biol.
Volume 202, Numéro 2, 2008
Page(s) 143 - 160
DOI https://doi.org/10.1051/jbio:2008018
Publié en ligne 13 juin 2008
  • Abbott L.F. & Nelson S.B., Synaptic plasticity: taming the beast. Nat. Neurosci., 2000, 3 Suppl, 1178–1183. [Google Scholar]
  • Abidin I., Kohler T., Weiler E., Zoidl G., Eysel U.T., Lessmann V. & Mittmann T., Reduced presynaptic efficiency of excitatory synaptic transmission impairs LTP in the visual cortex of BDNF-heterozygous mice. Eur. J. Neurosci., 2006, 24, 3519-3531. [Google Scholar]
  • Abraham W.C. & Bear M.F., Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci., 1996, 19, 126–130. [Google Scholar]
  • Alkon D.L. & Nelson T.J., Specificity of molecular changes in neurons involved in memory storage. Faseb J., 1990, 4, 1567–1576. [Google Scholar]
  • Ascher P. & Nowak L., The role of divalent cations in the N-methyl-D-aspartate responses of mouse central neurones in culture. J. Physiol., 1988, 399, 247–266. [Google Scholar]
  • Babb T.L., Mikuni N., Najm I., Wylie C., Olive M., Dollar C. & MacLennan H., Pre- and postnatal expressions of NMDA receptors 1 and 2B subunit proteins in the normal rat cortex. Epilepsy Res., 2005, 64, 23–30. [Google Scholar]
  • Banke T.G., Bowie D., Lee H., Huganir R.L., Schousboe A. & Traynelis S.F. Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase. J. Neurosci., 2000, 20, 89–102. [Google Scholar]
  • Barria A., Muller D., Derkach V., Griffith L.C., Soderling T.R., Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science, 1997, 276, 2042–2045. [CrossRef] [PubMed] [Google Scholar]
  • Bear M.F. & Malenka R.C., Synaptic plasticity: LTP and LTD. Curr. Opin. Neurobiol., 1994, 4, 389–399. [Google Scholar]
  • Ben-Ari Y., Excitatory actions of gaba during development: the nature of the nurture. Nat. Rev. Neurosci., 2002, 3, 728–739. [Google Scholar]
  • Berberich S., Punnakkal P., Jensen V., Pawlak V., Seeburg P.H., Hvalby O. & Kohr G., Lack of NMDA receptor subtype selectivity for hippocampal long-term potentiation. J. Neurosci., 2005, 25, 6907–6910. [Google Scholar]
  • Bi G.Q. & Poo M.M., Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci., 1998, 18, 10464–10472. [Google Scholar]
  • Bliss T.V. & Gardner-Medwin A.R., Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. J Physiol., 1973, 232, 357–374. [Google Scholar]
  • Bliss T.V. & Lomo., Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol., 1973, 232, 331–356. [Google Scholar]
  • Bliss T.V. & Collingridge G.L., A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 1993, 361, 31–39. [CrossRef] [PubMed] [Google Scholar]
  • Blitzer R.D., Connor J.H., Brown G.P., Wong T., Shenolikar S., Iyengar R. & Landau E.M., Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. Science, 1998, 280, 1940–1942. [CrossRef] [PubMed] [Google Scholar]
  • Bon C.L. & Garthwaite J. On the role of nitric oxide in hippocampal long-term potentiation. J. Neurosci., 2003, 23, 1941–1948. [Google Scholar]
  • Borg-Graham L.J., Monier C. & Fregnac Y., Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature, 1998, 393, 369–373. [CrossRef] [PubMed] [Google Scholar]
  • Bradler J.E. & Barrioneuvo G., Long-term potentiation in hippocampal CA3 neurons: tetanized input regulates heterosynaptic efficacy. Synapse, 1989, 4, 132–142. [CrossRef] [PubMed] [Google Scholar]
  • Bredt D.S. & Nicoll R.A., AMPA receptor trafficking at excitatory synapses. Neuron, 2003, 40, 361–379. [CrossRef] [PubMed] [Google Scholar]
  • Bredt D.S. & Snyder S.H., Nitric oxide, a novel neuronal messenger. Neuron, 1992, 8, 3–11. [CrossRef] [PubMed] [Google Scholar]
  • Brown G.P., Blitzer R.D., Connor J.H., Wong T., Shenolikar S., Iyengar R. & Landau E.M., Long-term potentiation induced by theta frequency stimulation is regulated by a protein phosphatase-1-operated gate. J. Neurosci., 2000, 20, 7880–7887. [Google Scholar]
  • Burrone J. & Murthy V.N., Synaptic gain control and homeostasis. Curr. Opin. Neurobiol., 2003, 13, 560–567. [Google Scholar]
  • Burrone J., O'Byrne M. & Murthy V.N., Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons. Nature, 2002, 420, 414–418. [CrossRef] [PubMed] [Google Scholar]
  • Buzsaki G., Horvath Z., Urioste R., Hetke J. & Wise K. (1992) High-frequency network oscillation in the hippocampus. Science, 1992, 256, 1025–1027. [CrossRef] [PubMed] [Google Scholar]
  • Caillard O., Ben-Ari Y., Gaiarsa J.L., Long-term potentiation of GABAergic synaptic transmission in neonatal rat hippocampus. J. Physiol., 1999a, 518 (Pt 1), 109–119. [Google Scholar]
  • Caillard O., Ben-Ari Y., Gaiarsa J.L., Mechanisms of induction and expression of long-term depression at GABAergic synapses in the neonatal rat hippocampus. J. Neurosci., 1999b, 19, 7568–7577. [Google Scholar]
  • Carroll R.C., Lissin D.V., von Zastrow M., Nicoll R.A., Malenka R.C., Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nat. Neurosci., 1999, 2, 454–460. [Google Scholar]
  • Charpier S., Behrends J.C., Triller A., Faber D.S. & Korn H., “Latent" inhibitory connections become functional during activity-dependent plasticity. Proc Natl Acad Sci U.S.A., 1995, 92, 117–120. [Google Scholar]
  • Chattopadhyaya B., Di Cristo G., Higashiyama H., Knott G.W., Kuhlman S.J., Welker E. & Huang Z.J., Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period. J. Neurosci., 2004, 24, 9598–9611. [Google Scholar]
  • Chen P.E. & Wyllie D.J., Pharmacological insights obtained from structure-function studies of ionotropic glutamate receptors. Br. J. Pharmacol., 2006, 147, 839–853. [Google Scholar]
  • Chevaleyre V. & Castillo P.E., Heterosynaptic LTD of hippocampal GABAergic synapses: a novel role of endocannabinoids in regulating excitability. Neuron, 2003, 38, 461–472. [CrossRef] [PubMed] [Google Scholar]
  • Christie B.R., Magee J.C. & Johnston D., The role of dendritic action potentials and Ca2+ influx in the induction of homosynaptic long-term depression in hippocampal CA1 pyramidal neurons. Learn. Mem., 1996a, 3, 160–169. [Google Scholar]
  • Christie B.R., Magee J.C. & Johnston D., Dendritic calcium channels and hippocampal long-term depression. Hippocampus, 1996b, 6, 17–23. [CrossRef] [PubMed] [Google Scholar]
  • Collingridge G.L., Kehl S.J. & McLennan H., Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J. Physiol., 1983, 334, 33–46. [Google Scholar]
  • Cull-Candy S., Brickley S. & Farrant M., NMDA receptor subunits: diversity, development and disease. Curr. Opin. Neurobiol., 2001, 11, 327–335. [Google Scholar]
  • Cull-Candy S.G. & Leszkiewicz D.N., Role of distinct NMDA receptor subtypes at central synapses. Sci STKE, 2004, re16. [Google Scholar]
  • Daniel H., Levenes C. & Crepel F., Cellular mechanisms of cerebellar LTD. Trends Neurosci., 1998, 21, 401–407. [Google Scholar]
  • Daoudal G. & Debanne D., Long-term plasticity of intrinsic excitability: learning rules and mechanisms. Learn. Mem., 2003, 10, 456–465. [Google Scholar]
  • Davis G.W. & Goodman C.S., Synapse-specific control of synaptic efficacy at the terminals of a single neuron. Nature, 1998, 392, 82–86. [CrossRef] [PubMed] [Google Scholar]
  • Davis G.W. & Bezprozvanny I., Maintaining the stability of neural function: a homeostatic hypothesis. Annu. Rev. Physiol., 2001, 63, 847–869. [Google Scholar]
  • Davis G.W., Homeostatic control of neural activity: From Phenomenology to Molecular Design. Annu. Rev. Neurosci., 2006, 29, 307–323. [Google Scholar]
  • Daw M.I., Bortolotto Z.A., Saulle E., Zaman S., Collingridge G.L. & Isaac J.T., Phosphatidylinositol 3 kinase regulates synapse specificity of hippocampal long-term depression. Nat. Neurosci., 2002, 5, 835–836. [Google Scholar]
  • Daw N.W., Fox K., Sato H. &Czepita D., Critical period for monocular deprivation in the cat visual cortex. J. Neurophysiol., 1992, 67, 197–202. [Google Scholar]
  • De Gois S., Schafer M.K., Defamie N., Chen C., Ricci A., Weihe E., Varoqui H. & Erickson J.D., Homeostatic scaling of vesicular glutamate and GABA transporter expression in rat neocortical circuits. J. Neurosci., 2005, 25, 7121–7133. [Google Scholar]
  • Debanne D., Gahwiler B.H. & Thompson S.M., Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J. Physiol., 1998, 507 (Pt 1), 237–247. [Google Scholar]
  • Desai N.S., Rutherford L.C. & Turrigiano G.G. Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nat. Neurosci., 1999, 2, 515–520. [Google Scholar]
  • Desai N.S., Cudmore R.H., Nelson S.B. & Turrigiano G.G., Critical periods for experience-dependent synaptic scaling in visual cortex. Nat. Neurosci., 2002, 5, 783–789. [Google Scholar]
  • Doetsch F. & Hen R., Young and excitable: the function of new neurons in the adult mammalian brain. Curr. Opin. Neurobiol., 2005, 15, 121–128. [Google Scholar]
  • Dudek S.M. & Bear M.F., Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc. Natl. Acad. Sci. U.S.A., 1992, 89, 4363–4367. [Google Scholar]
  • Dudek S.M. & Bear M.F. Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J. Neurosci., 1993, 13, 2910–2918. [Google Scholar]
  • Echegoyen J., Neu A., Graber K.D. & Soltesz I., Homeostatic plasticity studied using in vivo hippocampal activity-blockade: synaptic scaling, intrinsic plasticity and age-dependence. PLoS ONE, 2007, 2, e700. [Google Scholar]
  • Ehlers M.D., Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron, 2000, 28, 511–525. [CrossRef] [PubMed] [Google Scholar]
  • El-Husseini Ael D., Schnell E., Dakoji S., Sweeney N., Zhou Q., Prange O., Gauthier-Campbell C., Aguilera-Moreno A., Nicoll R.A. & Bredt D.S., Synaptic strength regulated by palmitate cycling on PSD-95. Cell, 2002, 108, 849–863. [CrossRef] [PubMed] [Google Scholar]
  • Erickson J.D., De Gois S., Varoqui H., Schafer M.K. & Weihe E. Activity-dependent regulation of vesicular glutamate and GABA transporters: a means to scale quantal size. Neurochem. Int., 2006, 48, 643–649. [Google Scholar]
  • Forrest D., Yuzaki M., Soares H.D., Ng L., Luk D.C., Sheng M., Stewart C.L., Morgan J.I., Connor J.A. & Curran T., Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death. Neuron, 1994, 13, 325–338. [CrossRef] [PubMed] [Google Scholar]
  • Furukawa H., Singh S.K., Mancusso R. & Gouaux E., Subunit arrangement and function in NMDA receptors. Nature, 2005, 438, 185–192. [CrossRef] [PubMed] [Google Scholar]
  • Gaiarsa J.L., Plasticity of GABAergic synapses in the neonatal rat hippocampus. J. Cell. Mol. Med., 2004, 8, 31–37. [CrossRef] [PubMed] [Google Scholar]
  • Gaiarsa J.L., Caillard O. & Ben-Ari Y., Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci., 2002, 25, 564–570. [Google Scholar]
  • Gomez-Lira G., Lamas M., Romo-Parra H. & Gutierrez R., Programmed and induced phenotype of the hippocampal granule cells. J. Neurosci., 2005, 25, 6939–6946. [Google Scholar]
  • Gubellini P., Ben-Ari Y. & Gaiarsa J.L., Activity- and age-dependent GABAergic synaptic plasticity in the developing rat hippocampus. Eur. J. Neurosci., 2001, 14, 1937–1946. [Google Scholar]
  • Haghikia A., Mergia E., Friebe A., Eysel U.T., Koesling D. & Mittmann T., Long-term potentiation in the visual cortex requires both nitric oxide receptor guanylyl cyclases. J. Neurosci., 2007, 27, 818–823. [Google Scholar]
  • Hashimoto T., Ishii T. & Ohmori H., Release of Ca2+ is the crucial step for the potentiation of IPSCs in the cultured cerebellar Purkinje cells of the rat. J. Physiol., 1996, 497 (Pt 3), 611–627. [Google Scholar]
  • Hayashi Y., Shi S.H., Esteban J.A., Piccini A., Poncer J.C. & Malinow R., Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science, 2000, 287, 2262–2267. [CrossRef] [PubMed] [Google Scholar]
  • Hebb D.O., The Organization of Behavior: A Neurophysiological Theory. John Wiley and Sons, 1949. [Google Scholar]
  • Higley M.J. & Contreras D., Balanced excitation and inhibition determine spike timing during frequency adaptation. J. Neurosci., 2006, 26, 448–457. [Google Scholar]
  • Hill E.L., Gallopin T., Ferezou I., Cauli B., Rossier J., Schweitzer P. & Lambolez B., Functional CB1 Receptors Are Broadly Expressed in Neocortical GABAergic and Glutamatergic Neurons. J. Neurophysiol., 2007, 97, 2580–2589. [Google Scholar]
  • Holmgren C.D. & Zilberter Y., Coincident spiking activity induces long-term changes in inhibition of neocortical pyramidal cells. J. Neurosci., 2001, 21, 8270–8277. [Google Scholar]
  • Hrabetova S. & Sacktor T.C., Bidirectional regulation of protein kinase M zeta in the maintenance of long-term potentiation and long-term depression. J. Neurosci., 1996, 16, 5324–5333. [Google Scholar]
  • Hrabetova S. & Sacktor T.C., Transient translocation of conventional protein kinase C isoforms and persistent downregulation of atypical protein kinase Mzeta in long-term depression. Brain Res. Mol. Brain Res., 2001, 95, 146–152. [Google Scholar]
  • Hu G.Y., Hvalby O., Walaas S.I., Albert K.A., Skjeflo P., Andersen P. & Greengard P., Protein kinase C injection into hippocampal pyramidal cells elicits features of long term potentiation. Nature, 1987, 328, 426–429. [CrossRef] [PubMed] [Google Scholar]
  • Huang Z.J., Kirkwood A., Pizzorusso T., Porciatti V., Morales B., Bear M.F., Maffei L. & Tonegawa S., BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell, 1999, 98, 739–755. [CrossRef] [PubMed] [Google Scholar]
  • Hubel D.H. & Wiesel T.N., The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol., 1970, 206, 419–436. [Google Scholar]
  • Jaffrey S.R. & Snyder S.H., Nitric oxide: a neural messenger. Annu. Rev. Cell Dev. Biol., 1995, 11, 417–440. [CrossRef] [PubMed] [Google Scholar]
  • Jedlicka P. & Backus K.H., Inhibitory transmission, activity-dependent ionic changes and neuronal network oscillations. Physiol. Res., 2006, 55, 139–149. [Google Scholar]
  • Johnston D., Christie B.R., Frick A., Gray R., Hoffman D.A., Schexnayder L.K., Watanabe S. & Yuan L.L., Active dendrites, potassium channels and synaptic plasticity. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2003, 358, 667–674. [Google Scholar]
  • Kameyama K., Lee H.K., Bear M.F. & Huganir R.L., Involvement of a postsynaptic protein kinase A substrate in the expression of homosynaptic long-term depression. Neuron, 1998, 21, 1163–1175. [CrossRef] [PubMed] [Google Scholar]
  • Kandel E.R., Genes, synapses, and long-term memory. J. Cell. Physiol., 1997, 173, 124–125. [Google Scholar]
  • Kandler K., Katz L.C. & Kauer J.A., Focal photolysis of caged glutamate produces long-term depression of hippocampal glutamate receptors. Nat. Neurosci., 1998, 1, 119–123. [Google Scholar]
  • Kano M., Fukunaga K. & Konnerth A., Ca(2+)-induced rebound potentiation of gamma-aminobutyric acid-mediated currents requires activation of Ca2+/calmodulin-dependent kinase II. Proc. Natl. Acad. Sci. U.S.A., 1996, 93, 13351–13356. [Google Scholar]
  • Kano M., Rexhausen U., Dreessen J. & Konnerth A., Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells. Nature, 1992, 356, 601–604. [CrossRef] [PubMed] [Google Scholar]
  • Katz L.C. & Shatz C.J., Synaptic activity and the construction of cortical circuits. Science, 1996, 274, 1133–1138. [CrossRef] [PubMed] [Google Scholar]
  • Kew J.N., Richards J.G., Mutel V. & Kemp J.A., Developmental changes in NMDA receptor glycine affinity and ifenprodil sensitivity reveal three distinct populations of NMDA receptors in individual rat cortical neurons. J. Neurosci., 1998, 18, 1935–1943. [Google Scholar]
  • Kilman V., van Rossum M.C. & Turrigiano G.G., Activity deprivation reduces miniature IPSC amplitude by decreasing the number of postsynaptic GABA(A) receptors clustered at neocortical synapses. J. Neurosci., 2002, 22, 1328–1337. [Google Scholar]
  • Kirkwood A., Dudek S.M., Gold J.T., Aizenman C.D. & Bear M.F., Common forms of synaptic plasticity in the hippocampus and neocortex in vitro. Science, 1993, 260, 1518–1521. [CrossRef] [PubMed] [Google Scholar]
  • Kirkwood A. & Bear M.F., Hebbian synapses in visual cortex. J. Neurosci., 1994, 14, 1634–1645. [Google Scholar]
  • Kittler J.T., Delmas P., Jovanovic J.N., Brown D.A., Smart T.G. & Moss S.J., Constitutive endocytosis of GABAA receptors by an association with the adaptin AP2 complex modulates inhibitory synaptic currents in hippocampal neurons. J. Neurosci., 2000, 20, 7972–7977. [Google Scholar]
  • Ko G.Y. & Kelly P.T., Nitric oxide acts as a postsynaptic signaling molecule in calcium/calmodulin-induced synaptic potentiation in hippocampal CA1 pyramidal neurons. J. Neurosci., 1999, 19, 6784–6794. [Google Scholar]
  • Komatsu Y., GABAB receptors, monoamine receptors, and postsynaptic inositol trisphosphate-induced Ca2+ release are involved in the induction of long-term potentiation at visual cortical inhibitory synapses. J. Neurosci., 1996, 16, 6342–6352. [Google Scholar]
  • Komatsu Y. & Iwakiri M. Long-term modification of inhibitory synaptic transmission in developing visual cortex. Neuroreport, 1993, 4, 907–910. [CrossRef] [PubMed] [Google Scholar]
  • Korn H., Oda Y. & Faber D.S., Long-term potentiation of inhibitory circuits and synapses in the central nervous system. Proc Natl Acad Sci U.S.A., 1992, 89, 440–443. [Google Scholar]
  • Kotak V.C. & Sanes D.H., Long-lasting inhibitory synaptic depression is age- and calcium-dependent. J. Neurosci., 2000, 20, 5820–5826. [Google Scholar]
  • Krasteniakov N.V., Martina M. & Bergeron R., Role of the glycine site of the N-methyl-D-aspartate receptor in synaptic plasticity induced by pairing. Eur. J. Neurosci., 2005, 21, 2782–2792. [Google Scholar]
  • Kullmann D.M. & Lamsa KP., Long-term synaptic plasticity in hippocampal interneurons. Nat. Rev. Neurosci., 2007, 9, 687–99. [Google Scholar]
  • Kullmann D.M. & Nicoll R.A., Long-term potentiation is associated with increases in quantal content and quantal amplitude. Nature, 1992, 357, 240–244. [CrossRef] [PubMed] [Google Scholar]
  • Larkman A.U. & Jack J.J., Synaptic plasticity: hippocampal LTP. Curr. Opin. Neurobiol., 1995, 5, 324–334. [Google Scholar]
  • Larkum M.E., Zhu J.J. & Sakmann B. Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons. J. Physiol., 2001, 533, 447–466. [Google Scholar]
  • Le Roux N., Amar M., Baux G. & Fossier P., Homeostatic control of the excitation-inhibition balance in cortical layer 5 pyramidal neurons. Eur. J. Neurosci., 2006, 24, 3507–3518. [Google Scholar]
  • Le Roux N., Amar M., Moreau A. & Fossier P., Involvement of NR2A or NR2B-containing NMDA receptors in the potentiation of cortical layer 5 pyramidal neurons inputs depends on the developmental stage. Eur. J. Neurosci., 2007, 26, 289–301. [Google Scholar]
  • Lee H.K., Barbarosie M., Kameyama K., Bear M.F. & Huganir R.L., Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature, 2000, 405, 955–959. [CrossRef] [PubMed] [Google Scholar]
  • Lee H.K., Takamiya K., Han J.S., Man H., Kim C.H., Rumbaugh G., Yu S., Ding L., He C., Petralia R.S., Wenthold R.J., Gallagher M. & Huganir R.L., Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell, 2003, 112, 631–643. [CrossRef] [PubMed] [Google Scholar]
  • Lee S.H., Liu L., Wang Y.T., Sheng M., Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD. Neuron, 2002, 36, 661–674. [CrossRef] [PubMed] [Google Scholar]
  • Leslie K.R., Nelson S.B. & Turrigiano G.G., Postsynaptic depolarization scales quantal amplitude in cortical pyramidal neurons. J. Neurosci., 2001, 21, RC170. [Google Scholar]
  • Liao D., Hessler N.A. & Malinow R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature, 1995, 375, 400–404. [Google Scholar]
  • Linden D.J. & Routtenberg A., The role of protein kinase C in long-term potentiation: a testable model. Brain Res. Brain Res. Rev., 1989, 14, 279–296. [Google Scholar]
  • Lisman J., Malenka R.C., Nicoll R.A. & Malinow R. Learning mechanisms: the case for CaM-KII. Science, 1997, 276, 2001–2002. [CrossRef] [PubMed] [Google Scholar]
  • Lisman J., Schulman H. & Cline H., The molecular basis of CaMKII function in synaptic and behavioural memory. Nat. Rev. Neurosci., 2002, 3, 175–190. [Google Scholar]
  • Lissin D.V., Gomperts S.N., Carroll R.C., Christine C.W., Kalman D., Kitamura M., Hardy S., Nicoll R.A., Malenka R.C. & von Zastrow M., Activity differentially regulates the surface expression of synaptic AMPA and NMDA glutamate receptors. Proc. Natl. Acad. Sci. U.S.A., 1998, 95, 7097–7102. [Google Scholar]
  • Liu S., Wang J., Zhu D., Fu Y., Lukowiak K. & Lu Y.M., Generation of functional inhibitory neurons in the adult rat hippocampus. J. Neurosci., 2003, 23, 732–736. [Google Scholar]
  • Liu X.B., Murray K.D. & Jones E.G., Switching of NMDA receptor 2A and 2B subunits at thalamic and cortical synapses during early postnatal development. J. Neurosci., 2004a, 24, 8885–8895. [Google Scholar]
  • Liu L., Wong T.P., Pozza M.F., Lingenhoehl K., Wang Y., Sheng M., Auberson Y.P., Wang Y.T., Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science, 2004b, 304, 1021–1024. [CrossRef] [PubMed] [Google Scholar]
  • Lledo P.M., Hjelmstad G.O., Mukherji S., Soderling T.R., Malenka R.C. & Nicoll R.A. Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proc. Natl. Acad. Sci. U.S.A., 1995, 92, 11175–11179. [Google Scholar]
  • Lledo P.M., Zhang X., Sudhof T.C., Malenka R.C. & Nicoll R.A., Postsynaptic membrane fusion and long-term potentiation. Science, 1998, 279, 399–403. [CrossRef] [PubMed] [Google Scholar]
  • Lynch G., Larson J., Kelso S., Barrionuevo G. & Schottler F., Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature, 1983, 305, 719–721. [CrossRef] [PubMed] [Google Scholar]
  • Lynch M.A., Long-term potentiation and memory. Physiol. Rev., 2004, 84, 87–136. [Google Scholar]
  • MacDermott A.B., Mayer M.L., Westbrook G.L., Smith S.J. & Barker J.L., NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature, 1986, 321, 519–522. [CrossRef] [PubMed] [Google Scholar]
  • Maffei A., Nelson S.B. & Turrigiano G.G., Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation. Nat. Neurosci., 2004, 7, 1353–1359. [Google Scholar]
  • Maffei A., Nataraj K., Nelson S.B. & Turrigiano G.G., Potentiation of cortical inhibition by visual deprivation. Nature, 2006, 443, 81–84. [CrossRef] [PubMed] [Google Scholar]
  • Magee J.C. & Johnston D., A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science, 1997, 275, 209–213. [CrossRef] [PubMed] [Google Scholar]
  • Malenka R.C. & Nicoll R.A., Long-term potentiation–a decade of progress? Science, 1999, 285, 1870–1874. [Google Scholar]
  • Malenka R.C. & Bear M.F., LTP and LTD: an embarrassment of riches. Neuron, 2004, 44, 5–21. [CrossRef] [PubMed] [Google Scholar]
  • Maletic-Savatic M., Koothan T. & Malinow R., Calcium-evoked dendritic exocytosis in cultured hippocampal neurons. Part II: mediation by calcium/calmodulin-dependent protein kinase II. J. Neurosci., 1998, 18, 6814–6821. [Google Scholar]
  • Malinow R. & Miller J.P., Postsynaptic hyperpolarization during conditioning reversibly blocks induction of long-term potentiation. Nature, 1986, 320, 529–530. [CrossRef] [PubMed] [Google Scholar]
  • Malinow R., Mainen Z.F. & Hayashi Y., LTP mechanisms: from silence to four-lane traffic. Curr. Opin. Neurobiol., 2000, 10, 352–357. [Google Scholar]
  • Malinow R. & Malenka R.C., AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci., 2002, 25, 103–126. [Google Scholar]
  • Marder E., Prinz A.A., Modeling stability in neuron and network function: the role of activity in homeostasis. Bioessays, 2002, 24, 1145–1154. [CrossRef] [PubMed] [Google Scholar]
  • Markram H., Lubke J., Frotscher M. & Sakmann B., Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 1997, 275, 213–215. [CrossRef] [PubMed] [Google Scholar]
  • Massey P.V., Johnson B.E., Moult P.R., Auberson Y.P., Brown M.W., Molnar E., Collingridge G.L. & Bashir Z.I., Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J. Neurosci., 2004, 24, 7821–7828. [Google Scholar]
  • Matsuda K., Kamiya Y., Matsuda S., Yuzaki M., Cloning and characterization of a novel NMDA receptor subunit NR3B: a dominant subunit that reduces calcium permeability. Brain Res. Mol. Brain Res., 2002, 100, 43–52. [Google Scholar]
  • Matsuzaki M., Honkura N., Ellis-Davies G.C. & Kasai H., Structural basis of long-term potentiation in single dendritic spines. Nature, 2004, 429, 761–766. [CrossRef] [PubMed] [Google Scholar]
  • McBain C.J. & Fisahn A ., Interneurons unbound. Nat. Rev. Neurosci., 2001, 2, 11–23. [Google Scholar]
  • McLean H.A., Caillard O., Ben-Ari Y. & Gaiarsa J.L., Bidirectional plasticity expressed by GABAergic synapses in the neonatal rat hippocampus. J. Physiol., 1996, 496 (Pt 2), 471–477. [Google Scholar]
  • Meltzer L.A., Yabaluri R., Deisseroth K., A role for circuit homeostasis in adult neurogenesis. Trends Neurosci., 2005, 28, 653–660. [Google Scholar]
  • Mendoza E., Galarraga E., Tapia D., Laville A., Hernandez-Echeagaray E. & Bargas J., Differential induction of long term synaptic plasticity in inhibitory synapses of the hippocampus. Synapse, 2006, 60, 533–542. [CrossRef] [PubMed] [Google Scholar]
  • Monier C., Chavane F., Baudot P., Graham L.J. & Fregnac Y., Orientation and direction selectivity of synaptic inputs in visual cortical neurons: a diversity of combinations produces spike tuning. Neuron, 2003, 37, 663–680. [CrossRef] [PubMed] [Google Scholar]
  • Monyer H., Burnashev N., Laurie D.J., Sakmann B. & Seeburg P.H., Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron, 1994, 12, 529–540. [CrossRef] [PubMed] [Google Scholar]
  • Morales B., Choi S.Y. & Kirkwood A., Dark rearing alters the development of GABAergic transmission in visual cortex. J. Neurosci., 2002, 22, 8084–8090. [Google Scholar]
  • Morishita W., Connor J.H., Xia H., Quinlan E.M., Shenolikar S. & Malenka R.C., Regulation of synaptic strength by protein phosphatase 1. Neuron, 2001, 32, 1133–1148. [CrossRef] [PubMed] [Google Scholar]
  • Morishita W. & Sastry B.R., Postsynaptic mechanisms underlying long-term depression of GABAergic transmission in neurons of the deep cerebellar nuclei. J. Neurophysiol., 1996, 76, 59–68. [Google Scholar]
  • Moulder K.L., Meeks J.P. & Mennerick S., Homeostatic regulation of glutamate release in response to depolarization. Mol. Neurobiol., 2006, 33, 133–153. [Google Scholar]
  • Mulkey R.M., Endo S., Shenolikar S., Malenka R.C., Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature, 1994, 369, 486–488. [CrossRef] [PubMed] [Google Scholar]
  • Mulkey R.M. & Malenka R.C., Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron, 1992, 9, 967–975. [CrossRef] [PubMed] [Google Scholar]
  • Nicoll R.A. & Malenka R.C., Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature, 1995, 377, 115–118. [CrossRef] [PubMed] [Google Scholar]
  • Nishimune A., Isaac J.T., Molnar E., Noel J., Nash S.R., Tagaya M., Collingridge G.L., Nakanishi S. & Henley J.M., NSF binding to GluR2 regulates synaptic transmission. Neuron, 1998, 21, 87–97. [CrossRef] [PubMed] [Google Scholar]
  • Nishiyama M., Hong K., Mikoshiba K., Poo M.M. & Kato K., Calcium stores regulate the polarity and input specificity of synaptic modification. Nature, 2000, 408, 584–588. [CrossRef] [PubMed] [Google Scholar]
  • Nusser Z., Lujan R., Laube G., Roberts J.D., Molnar E. & Somogyi P., Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron, 1998a, 21, 545–559. [CrossRef] [PubMed] [Google Scholar]
  • Nusser Z., Hajos N., Somogyi P. & Mody I., Increased number of synaptic GABA(A) receptors underlies potentiation at hippocampal inhibitory synapses. Nature, 1998b, 395, 172–177. [CrossRef] [PubMed] [Google Scholar]
  • O'Brien R.J., Kamboj S., Ehlers M.D., Rosen K.R., Fischbach G.D. & Huganir R.L., Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron, 1998, 21, 1067–1078. [CrossRef] [PubMed] [Google Scholar]
  • Oda Y., Charpier S., Murayama Y., Suma C. & Korn H. Long-term potentiation of glycinergic inhibitory synaptic transmission. J. Neurophysiol., 1995, 74, 1056–1074. [Google Scholar]
  • Oliet S.H., Malenka R.C. & Nicoll R.A., Two distinct forms of long-term depression coexist in CA1 hippocampal pyramidal cells. Neuron, 1997, 18, 969–982. [CrossRef] [PubMed] [Google Scholar]
  • Ouardouz M. & Sastry B.R., Mechanisms underlying LTP of inhibitory synaptic transmission in the deep cerebellar nuclei. J. Neurophysiol., 2000, 84, 1414–1421. [Google Scholar]
  • Patenaude C., Chapman C.A., Bertrand S., Congar P. & Lacaille J.C., GABAB receptor- and metabotropic glutamate receptor-dependent cooperative long-term potentiation of rat hippocampal GABAA synaptic transmission. J. Physiol., 2003, 553, 155–167. [Google Scholar]
  • Philpot B.D., Cho K.K. & Bear M.F., Obligatory Role of NR2A for Metaplasticity in Visual Cortex. Neuron, 2007, 53, 495–502. [CrossRef] [PubMed] [Google Scholar]
  • Poo M.M., Neurotrophins as synaptic modulators. Nat. Rev. Neurosci., 2001, 2, 24–32. [Google Scholar]
  • Rao A. & Craig A.M., Activity regulates the synaptic localization of the NMDA receptor in hippocampal neurons. Neuron, 1997, 19, 801–812. [CrossRef] [PubMed] [Google Scholar]
  • Rutherford L.C., Nelson S.B. & Turrigiano G.G., BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses. Neuron, 1998, 21, 521–530. [CrossRef] [PubMed] [Google Scholar]
  • Sanes J.R. & Lichtman J.W., Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci., 1999, 22, 389–442. [Google Scholar]
  • Scharfman H.E., Sollas A.L., Berger R.E. & Goodman J.H., Electrophysiological evidence of monosynaptic excitatory transmission between granule cells after seizure-induced mossy fiber sprouting. J. Neurophysiol., 2003, 90, 2536–2547. [Google Scholar]
  • Schnell E., Sizemore M., Karimzadegan S., Chen L., Bredt D.S. & Nicoll R.A., Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number. Proc. Natl. Acad. Sci. U.S.A., 2002, 99, 13902–13907. [Google Scholar]
  • Sheng M., Molecular organization of the postsynaptic specialization. Proc. Natl. Acad. Sci. U.S.A., 2001, 98, 7058–7061. [Google Scholar]
  • Sheng M. & Hyoung Lee S., AMPA receptor trafficking and synaptic plasticity: major unanswered questions. Neurosci. Res., 2003, 46, 127–134. [Google Scholar]
  • Sheng M. & Kim M.J., Postsynaptic signaling and plasticity mechanisms. Science, 2002, 298, 776–780. [CrossRef] [PubMed] [Google Scholar]
  • Shi S., Hayashi Y., Esteban J.A. & Malinow R., Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell, 2001, 105, 331–343. [CrossRef] [PubMed] [Google Scholar]
  • Shu Y., Hasenstaub A. & McCormick D.A., Turning on and off recurrent balanced cortical activity. Nature, 2003, 423, 288–293. [CrossRef] [PubMed] [Google Scholar]
  • Sjostrom P.J., Turrigiano G.G. & Nelson S.B., Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron, 2001, 32, 1149–1164. [CrossRef] [PubMed] [Google Scholar]
  • Soderling T.R. & Derkach V.A., Postsynaptic protein phosphorylation and LTP. Trends Neurosci., 2000, 23, 75–80. [Google Scholar]
  • Song I. & Huganir R.L., Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci., 2002, 25, 578–588. [Google Scholar]
  • Steele P.M. & Mauk M.D., Inhibitory control of LTP and LTD: stability of synapse strength. J. Neurophysiol., 1999, 81, 1559–1566. [Google Scholar]
  • Sudhof T.C., The synaptic cleft and synaptic cell adhesion. In Synapses, W.M.Cowan, T.C. Sudhof, and C.F. Stevens, eds. (Baltimore, MD: Johns Hopkins University Press), 2001, 275–313. [Google Scholar]
  • Sweatt J.D., Mitogen-activated protein kinases in synaptic plasticity and memory. Curr. Opin. Neurobiol., 2004, 14, 311–317. [Google Scholar]
  • Tang Y.P., Shimizu E., Dube G.R., Rampon C., Kerchner G.A., Zhuo M., Liu G. & Tsien J.Z., Genetic enhancement of learning and memory in mice. Nature, 1999, 401, 63–69. [CrossRef] [PubMed] [Google Scholar]
  • Thomas G.M. & Huganir R.L., MAPK cascade signalling and synaptic plasticity. Nat. Rev. Neurosci., 2004, 5, 173–183. [Google Scholar]
  • Turrigiano G.G., Leslie K.R., Desai N.S., Rutherford L.C. & Nelson S.B., Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature, 1998, 391, 892–896. [CrossRef] [PubMed] [Google Scholar]
  • Turrigiano G.G. & Nelson S.B., Hebb and homeostasis in neuronal plasticity. Curr. Opin. Neurobiol., 2000, 10, 358–364. [Google Scholar]
  • Turrigiano G.G. & Nelson S.B., Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci., 2004, 5, 97–107. [Google Scholar]
  • Wang J.H. & Stelzer A., Shared calcium signaling pathways in the induction of long-term potentiation and synaptic disinhibition in CA1 pyramidal cell dendrites. J. Neurophysiol., 1996, 75, 1687–1702. [Google Scholar]
  • Wehr M.& Zador A.M., Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature, 2003, 426, 442–446. [Google Scholar]
  • Williams J.H., Errington M.L., Lynch M.A. & Bliss T.V., Arachidonic acid induces a long-term activity-dependent enhancement of synaptic transmission in the hippocampus. Nature, 1989, 341, 739–742. [CrossRef] [PubMed] [Google Scholar]
  • Woodin M.A., Ganguly K. & Poo M.M., Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl- transporter activity. Neuron, 2003, 39, 807–820. [CrossRef] [PubMed] [Google Scholar]
  • Yang S.N., Tang Y.G. & Zucker R.S., Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. J. Neurophysiol., 1999, 81, 781–787. [Google Scholar]
  • Yasuda H., Barth A.L., Stellwagen D. & Malenka R.C., A developmental switch in the signaling cascades for LTP induction. Nat. Neurosci., 2003, 6, 15–16. [Google Scholar]
  • Yoshimura Y., Ohmura T. & Komatsu Y., Two forms of synaptic plasticity with distinct dependence on age, experience, and NMDA receptor subtype in rat visual cortex. J. Neurosci., 2003, 23, 6557–6566. [Google Scholar]
  • Yuste R. & Bonhoeffer T., Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu. Rev. Neurosci., 2001, 24, 1071–1089. [Google Scholar]
  • Yuste R. & Denk W., Dendritic spines as basic functional units of neuronal integration. Nature, 1995, 375, 682–684. [CrossRef] [PubMed] [Google Scholar]
  • Zakharenko S.S., Patterson S.L., Dragatsis I., Zeitlin S.O., Siegelbaum S.A., Kandel E.R. & Morozov A., Presynaptic BDNF required for a presynaptic but not postsynaptic component of LTP at hippocampal CA1-CA3 synapses. Neuron, 2003, 39, 975–990. [CrossRef] [PubMed] [Google Scholar]
  • Zhang M. & Linden D.J., The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nat. Rev. Neurosci., 2003, 4, 885–900. [Google Scholar]
  • Zhao M.G., Toyoda H., Lee Y.S., Wu L.J., Ko S.W., Zhang X.H., Jia Y., Shum F., Xu H., Li B.M., Kaang B.K. & Zhuo M., Roles of NMDA NR2B subtype receptor in prefrontal long-term potentiation and contextual fear memory. Neuron, 2005, 47, 859–872. [CrossRef] [PubMed] [Google Scholar]
  • Zucker R.S. & Regehr W.G., Short-term synaptic plasticity. Annu. Rev. Physiol., 2002, 64, 355–405. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.