Accès gratuit
Numéro
J. Soc. Biol.
Volume 202, Numéro 3, 2008
Page(s) 177 - 189
Section Biocarburants du futur
DOI https://doi.org/10.1051/jbio:2008020
Publié en ligne 4 novembre 2008
  • Aceves-Lara C.A., Latrille E., Buffiere P., Bernet N. & Steyer J.P., Experimental determination by Principal Component Analysis of pseudo-stoichiometric for anaerobic biohydrogen production. Chem. Eng. Process., 2008, sous presse. doi: 10.1016/j.cep.2007.12.007. [Google Scholar]
  • Adams M. & Mortenson L., The physical and catalytic properties of hydrogenase II of Clostridium pasteurianum. A comparison with hydrogenase I. J. Biol. Chem., 1984, 259, 7045–7055. [PubMed] [Google Scholar]
  • Ahring, B.K. & Westermann P., Kinetics of butyrate, acetate, and hydrogen metabolism in a thermophilic, anaerobic butyrate-degrading triculture. Appl. Environ. Microb., 1987, 53, 434–439. [Google Scholar]
  • Arrêté du 10 Juillet 2006, Arrêté fixant les conditions d'achat d'électricité produite par les installations qui valorisent le biogaz. Journal officiel de la république Française, 2006. [Google Scholar]
  • Barker H.A., Studies on the methane fermentation. VI. The influence of carbon dioxide concentration on the rate of carbon dioxide reduction by molecular hydrogen. Proc. Nat. Acad. Sc. USA, 1943, 29, 184–190. [Google Scholar]
  • Batstone D.J., Keller J., Angelidaki I., Kalyuzhnyi S., Pavlostathis S., Rozzi A., Sanders W., Siegrist H. & Vavilin V., The IWA anaerobic digestion model No 1 (ADM1). Water Sci. Technol., 2002, 45, 65–73. [Google Scholar]
  • Berry G.D. & Aceves S.M., The case for hydrogen in a carbon constrained world. J. Energ. Resour. Technol., 2005, 127, 189–194. [Google Scholar]
  • Bjørnar K., Sondre G. & Cato B., Bellona report No 6 - Hydrogen status of Muligheter. The Bellona Foundation, 2002, 52 pages. [Google Scholar]
  • Boe K., On-line monitoring and control of the biogas process, PhD. thesis, Lyngby, Denmark, Technical University of Denmark, 2006. [Google Scholar]
  • Braun R., Anaerobic digestion: A multi-faceted process for energy, environmental, management and rural development. Improvement of Crop Plants for Industrial End Uses, Springer Eds., 2007, 335–416. [Google Scholar]
  • Buschhorn H., Durre P. & Gottschalk G., Production and utilization of ethanol by homoacetogen Acetobacterium woodii, Appl. Environ. Microb., 1989, 55, 1835–1840. [Google Scholar]
  • Chang J.S., Lee K.S. & Lin P.J., Biohydrogen production with fixed-bed bioreactors. Int. J. Hydrogen Energy, 2002, 27, 1167–1174. [CrossRef] [Google Scholar]
  • Chen C.C. & Lin C.Y., Start-up of anaerobic hydrogen producing reactors seeded with sewage sludge. Acta Biotechnol., 2001, 21, 371–379. [CrossRef] [Google Scholar]
  • Chen C.C. & Lin C.Y., Using sucrose as a substrate in an anaerobic hydrogen-producing reactor. Adv. Environ Res., 2003, 7, 695–699. [Google Scholar]
  • Chen C.C., Lin C.Y. & Lin M.C., Acid–base enrichment enhances anaerobic hydrogen production process. Appl. Microbiol. Biotechnol., 2002, 58, 224–228. [CrossRef] [PubMed] [Google Scholar]
  • Chen W.M., Tseng Z.J., Lee K.S. & Chang J.S., Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. Int. J. Hydrogen Energy, 2005, 30, 1063–1070. [CrossRef] [Google Scholar]
  • Chen W.H., Chen S.Y., Kumar Khanal S. & Sung S., Kinetic study of biological hydrogen production by anaerobic fermentation. Int. J. Hydrogen Energy, 2006a, 31, 2170–2178. [CrossRef] [Google Scholar]
  • Chen X., Sun Y., Xiu Z., Li X. & Zhang D., Stoichiometric analysis of biological hydrogen production by fermentative bacteria. Int. J. Hydrogen Energy, 2006b, 31, 539–549. [CrossRef] [Google Scholar]
  • Cresson R., Carrère H., Delgenès J.P. & Bernet N., Biofilm formation during the start-up period of an anaerobic biofilm reactor - Impact of nutrient complementation. Biochem. Eng. J., 2006, 30, 55–62. [CrossRef] [Google Scholar]
  • Das D. & Veziroglu T.N., Hydrogen production by biological processes: a survey of literature. Int. J. Hydrogen Energy, 2001, 26, 13–28. [CrossRef] [Google Scholar]
  • Desai R.P., Nielsen L.K. & Papoutsakis E.T., Stoichiometric modeling of Clostridium acetobutylicum fermentations with non-linear constraints. J. Biotechnol., 1999, 71, 191–205. [CrossRef] [PubMed] [Google Scholar]
  • Illinois State Water Survey Division, Anaerobic Fermentations, State of Illinois, USA, 1939 [Google Scholar]
  • Elias A., Frederic S., Aceves-Lara C.A., Latrille E., Buffiere P., Bernet N., Delgenès J.P. & Steyer J.P., Analyse technico-économique comparative des filières biogaz et biohydrogène produits à partir de déchets. 11ème Congrès de la Société Française de Génie des Procédés, Saint-Etienne, 2007, 6 pages sur CDROM. [Google Scholar]
  • Fabiano B. & Perego P., Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. Int. J. Hydrogen Energy, 2002, 27, 149–156. [CrossRef] [Google Scholar]
  • Fang H.H. & Liu H., Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol., 2002, 82, 87–93. [Google Scholar]
  • Fang H.H.P., Liu H. & Zhang T., Characterization of a hydrogen-producing granular sludge. Biotechnol. Bioeng., 2002a, 78, 44–52. [CrossRef] [PubMed] [Google Scholar]
  • Fang H.H.P., Zhang T. & Liu H., Microbial diversity of a mesophilic hydrogen-producing sludge. Appl. Microbiol. Biotechnol., 2002b, 58, 112–118. [CrossRef] [PubMed] [Google Scholar]
  • Fukuzaki S., Nishio N., Shobayashi M. & Nagai S., Inhibition of the fermentation of propionate to methane by hydrogen, acetate and propionate. Appl. Environ. Microb., 1990a, 56, 719–723. [Google Scholar]
  • Fukuzaki S., Nishio N., Shobayashi M. & Nagai S., Inhibition of the fermentation of propionate to methane by hydrogen, acetate and propionate. Appl. Environ. Microb, 1990b, 56, 719–723. [Google Scholar]
  • Goodwin S. & Zeikus J., Physiological adaptations of anaerobic bacteria to low pH : Metabolic control of proton motive force in Sarcina ventriculi. J. Bacteriol., 1987, 169, 2150–2157. [PubMed] [Google Scholar]
  • Guwy A.J., Hawkes F.R., Hawkes D.L. & Rozzi A.G., Hydrogen production in a high rate fluidised bed anaerobic digester. Water Res., 1997, 31, 1291–1298. [CrossRef] [Google Scholar]
  • Hall E.R., Hulshoff L.W., Lettinga G., Malina J.F. & Pohland J.F.G., Design of anaerobic processes for the treatment of industrial and municipal wastes, Technomic Publishing Company, 1992. [Google Scholar]
  • Hallenbeck P.C., Fundamentals of the fermentative production of hydrogen. Water Sci. Technol., 2005, 52, 21–29. [Google Scholar]
  • Han S.K. & Shin H.S., Biohydrogen production by anaerobic fermentation of food waste. Int. J. Hydrogen Energy, 2004, 29, 569–577. [CrossRef] [Google Scholar]
  • Fuel Cell Handbook, fifth ed., EG&G Services Parsons, Inc., 2000. [Google Scholar]
  • Hawkes F., Dinsdale R., Hawkes D. & Hussy I., Sustainable fermentative hydrogen production: challenges for process optimisation. Int. J. Hydrogen Energy, 2002, 27, 1339–1347. [CrossRef] [Google Scholar]
  • Hetland J. & Mulder G., In search of a sustainable hydrogen economy: How a large-scale transition to hydrogen may affect the primary energy demand and greenhouse gas emissions. Int. J. Hydrogen Energy, 2007, 32, 736–747. [CrossRef] [Google Scholar]
  • Hussy I., Hawkes F.R., Dinsdale R. & Hawkes D.L., Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflora. Biotechnol. Bioeng., 2003, 84, 619–626. [CrossRef] [PubMed] [Google Scholar]
  • Hussy I., Hawkes F.R., Dinsdale R. & Hawkes D.L., Continuous fermentative hydrogen production from sucrose and sugarbeet. Int. J. Hydrogen Energy, 2005, 30, 471–483. [CrossRef] [Google Scholar]
  • Hwang M.H., Jang N.J., Hyun S.H. & Kim I.S., Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH. J. Biotechnol., 2004, 111, 297–309. [CrossRef] [PubMed] [Google Scholar]
  • Iyer P., Bruns M.A., Zhang H., Van Ginkel S. & Logan B.E., H2-Producing bacterial communities from a heat-treated soil inoculum. Appl Microbiol Biotechnol., 2004, 66, 166–173. [CrossRef] [PubMed] [Google Scholar]
  • Jain S. & Mattiasson B., Acclimatization of methanogenic consortia for low ph biomethanation process. Biotechnol. Lett., 1998, 20, 771–775. [CrossRef] [Google Scholar]
  • Karakashev D., Batstone D.J. & Angelidaki I., Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl Environ Microbiol., 2005, 71, 331–338. [CrossRef] [PubMed] [Google Scholar]
  • Kim D.H., Han S.K., Kim S.H. & Shin H.S., Effect of gas sparging on continuous fermentative hydrogen production. Int. J. Hydrogen Energy, 2006, 31, 2158–2169. [CrossRef] [Google Scholar]
  • Kim I.S., Hwang M.H., Jang N., Hyun S.H. & Lee S.T., Effect of low pH on the activity of hydrogen utilizing methanogen in bio-hydrogen process. Int. J. Hydrogen Energy, 2004, 29, 1133–1140. [Google Scholar]
  • Kraemer J.T., Effects of methanogenic effluent recycle on fermentative hydrogen production, Ph.D. thesis, University of Toronto, 2004. [Google Scholar]
  • Kraemer J.T. & Bagley D.M., Continuous fermentative hydrogen production using a two-phase reactor system with recycle. Environ. Sci. Biotech., 2005, 39, 3819–3825. [CrossRef] [Google Scholar]
  • Lay J.J., Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol. Bioeng., 2000, 68, 269–278. [CrossRef] [PubMed] [Google Scholar]
  • Lay J.J., Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol. Bioeng., 2001, 74, 280–287. [CrossRef] [PubMed] [Google Scholar]
  • Lay J.J., Lee Y.J. & Noike T., Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res, 1999, 33, 2579–2586. [Google Scholar]
  • Lee M.J. & Zinder S.H., Hydrogen partial pressure in a thermophilic acetate-oxydizing methanogenic coculture. Appl. Environ. Microb., 1988, 54, 1457–1461. [Google Scholar]
  • Lee Y.J., Miyahara T. & Noike T., Effect of pH on microbial hydrogen fermentation. J. Chem. Technol. Biot., 2002, 77, 694–698. [CrossRef] [Google Scholar]
  • Li C. & Fang H.H.P., Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit. Rev. Env. Sci. Tec., 2007, 37, 1–39. [Google Scholar]
  • Lin C.Y. & Chang R.C., Hydrogen production during the anaerobic acidogenic conversion of glucose. J. Chem. Technol. Biot., 1999, 74, 498–500. [CrossRef] [Google Scholar]
  • Lin C.Y. & Chang R.C., Fermentative hydrogen production at ambient temperature. Int. J. Hydrogen Energy, 2004, 29, 715–720. [CrossRef] [Google Scholar]
  • Lin C.Y. & Chen H.P., Sulfate effect on fermentative hydrogen production using anaerobic mixed microflora. Int. J. Hydrogen Energy, 2006, 2006, 31, 253–260. [Google Scholar]
  • Lin C.Y. & Lay C.H., Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. Int. J. Hydrogen Energy, 2004, 29, 41–45. [CrossRef] [Google Scholar]
  • Lin C.Y. & Lay C.H., A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge microflora. Int. J. Hydrogen Energy, 2005, 30, 285–292. [CrossRef] [Google Scholar]
  • Lin P.Y., Whang L.M., Wu Y.R., Ren W.J., Hsiao C.J., Li S.L. & Chang J.S., Biological hydrogen production of the genus Clostridium: Metabolic study and mathematical model simulation. Int. J. Hydrogen Energy, 2007, 32, 1728–1735. [CrossRef] [Google Scholar]
  • Liu D.W., Liu D.P., Zeng R.J. & Angelidaki I., Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res., 2006, 40, 2230–2236. [Google Scholar]
  • Lusk P.D., Methane recovery from animal manures. the current opportunities casebook, National Renewable Energy Laboratory, 1998. [Google Scholar]
  • Maddy, J., Cherryman S., Hawkes F.R., Hawkes D.L., Dinsdale R.M., Guwy A.J., Premier G.C. & Cole S., HYDROGEN 2003 Report No 1 ERDF part-funded project entitled: A sustainable energy supply for Wales: Towards the hydrogen economy. University of Glamorgan, 2003. [Google Scholar]
  • Merkel W. & Krauth K., Mass transfer of carbon dioxide in anaerobic reactors under dynamic substrate loading conditions. Water Res., 1999, 33, 2011–2020. [CrossRef] [Google Scholar]
  • Meynell P., Methane: Planning a digester, Prism Press, 1976. [Google Scholar]
  • Mitchell W.J., Albasheri K.A. & Yazdanian M., Factors affecting utilization of carbohydrates by clostridia. FEMS Microbiol. Rev., 1995, 17, 317–329. [CrossRef] [Google Scholar]
  • Mizuno O., Dinsdale R., Hawkes F.R., Hawkes D.L. & Noike T., Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour. Technol., 2000, 73, 59–65. [CrossRef] [Google Scholar]
  • Moletta R., Winery and distillery wastewater treatment by anaerobic digestion. Water Sci. Technol., 2005, 51, 137–144. [PubMed] [Google Scholar]
  • Mu Y., Yu H.Q. & Wang G., A kinetic approach to anaerobic hydrogen-producing process. Water Res., 2007, 41, 1152–1160. [CrossRef] [PubMed] [Google Scholar]
  • Mu Y., Zheng X.J., Yu H.Q. & Zhu R.F., Biological hydrogen production by anaerobic sludge at various temperatures. Int. J. Hydrogen Energy, 2006, 31, 780–785. [CrossRef] [Google Scholar]
  • Murray, P.A. & Zinder S., Nutritional requirements of Methanosarcina sp. strain TM-1. Appl. Environ. Microb., 1985, 50, 49–55. [Google Scholar]
  • Nielsen A.T., Amandusson H., Bjorklund R., Dannetun H., Ejlertsson J., Ekedahl L.G., Lundström I. & Svensson B.H., Hydrogen production from organic waste. Int. J. Hydrogen Energy, 2001, 26, 547–550. [CrossRef] [Google Scholar]
  • Nishio N. & Nakashimada Y., Recent development of anaerobic digestion processes for energy recovery from wastes. J. Biosci. Bioeng., 2007, 103, 105–112. [CrossRef] [PubMed] [Google Scholar]
  • Oh S.E., Lyer P., Bruns M.A. & Logan B.E., Biological hydrogen production using a membrane bioreactor. Biotechnol. Bioeng., 2004, 87, 119–127. [CrossRef] [PubMed] [Google Scholar]
  • Orecchini F., The era of energy vectors. Int. J. Hydrogen Energy, 2001, 31, 1951–1954. [Google Scholar]
  • Pauss A., Andre G., Perrier M. & Guiot S.R., Liquid-to-gas mass transfer in anaerobic processes: Inevitable transfer limitations of methane and hydrogen in the biomethanation process. Appl. Environ. Microb., 1990, 56, 1636–1644. [Google Scholar]
  • Piera M., Martinez-Vaj J.M. & Montes M.J., Safety issues of nuclear production of hydrogen. Energ. Convers. Manage., 2006, 47, 2732–2739. [CrossRef] [Google Scholar]
  • Sauer U., Santangelo J.D., Treuner A., Buchholz M. & Durre P., Sigma factor and sporulation genes in Clostridium. FEMS Microbiol. Rev., 1995, 17, 331–340. [CrossRef] [PubMed] [Google Scholar]
  • Shin H.S., Younb J.H. & Kim S.H., Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int. J. Hydrogen Energy, 2004, 29, 1355–1363. [CrossRef] [Google Scholar]
  • Tanisho S. & Ishiwata Y., Continuous hydrogen production from molasses by fermentation using urethane foam as a support of flocks. Int. J. Hydrogen Energy, 1995, 20, 541–545. [CrossRef] [Google Scholar]
  • Tanisho S., Kuromoto M. & Kadokura N., Effect of CO2 removal on hydrogen production by fermentation. Int. J. Hydrogen Energy, 1998, 23, 559–563. [CrossRef] [Google Scholar]
  • Ueno Y., Kawai T., Sato S., Otsuka S. & Morimoto M., Biological production of hydrogen from cellulose by natural anaerobic microflora. J. Ferment. Bioeng., 1995, 79, 395–397. [CrossRef] [Google Scholar]
  • Ueno Y., Otsuka S. & Morimoto M., Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. J. Ferment. Bioeng., 1996, 82, 194–197. [CrossRef] [Google Scholar]
  • Van Ginkel S. & Sung S., Biohydrogen production as a function of pH and substrate concentration. Env. Sci. Tech., 2001, 35, 4726–4730. [Google Scholar]
  • Van Ginkel S.W. & Logan B., Increased biological hydrogen production with reduced organic loading. Water Res., 2005, 39, 3819–3826. [CrossRef] [PubMed] [Google Scholar]
  • Van Lier J.B., Rebac S. & Lettinga G., High-rate anaerobic wastewater treatment under psychrophilic and thermophilic conditions. Water Sci. Technol., 1997, 35, 199–206. [CrossRef] [Google Scholar]
  • Vavilin V.A., Rytow S.V. & Lokshina L.Y., Modelling hydrogen partial pressure change as a result of competition between the butyric and propionic groups of acidogenic bacteria. Bioresour. Technol., 1995, 54, 171–177. [CrossRef] [Google Scholar]
  • Wu K.J. & Chang J.S., Batch and continuous fermentative production of hydrogen with anaerobic sludge entrapped in a composite polymeric matrix. Process Biochem., 2007, 42, 279–284. [CrossRef] [Google Scholar]
  • Yokoi H., Maki R., Hirose J. & Hayash S., Microbial production of hydrogen from starch-manufacturing wastes. Biomass and Bioenerg., 2002, 22, 389–395. [CrossRef] [Google Scholar]
  • Yokoi H., Mori S., Hirose J., Hayashi S. & Takasaki Y., H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19. Biotechnol. Lett., 1998a, 20, 895–899. [CrossRef] [Google Scholar]
  • Yokoi H., Tokushige T., Hirose J., Hayashi S. & Takasaki Y., H2 production from starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes. Biotechnol. Lett., 1998b, 20, 143–147. [CrossRef] [Google Scholar]
  • Yokoi H., Saitsu A., Uchida H., Hirose J., Hayashi S. & Takasaki Y., Microbial hydrogen production from sweet potato starch residue. J. Biosci. Bioeng., 2001, 91, 58–63. [PubMed] [Google Scholar]
  • Yu H., Zhu Z., Hu W. & Zhang H., Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int. J. Hydrogen Energy, 2002, 27, 1359–1365. [CrossRef] [Google Scholar]
  • Zhang Y., Liu G. & Shen J., Hydrogen production in batch culture of mixed bacteria with sucrose under different iron concentrations. Int. J. Hydrogen Energy, 2005, 30, 855–860. [CrossRef] [Google Scholar]
  • Zhang Y. & Shen J., Effect of temperature and iron concentration on the growth and hydrogen production of mixed bacteria. Int. J. Hydrogen Energy, 2006, 31, 441–446. [CrossRef] [Google Scholar]
  • Zhang H., Bruns M.A. & Logan B.E., Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor. Water Res., 2006a, 40, 728–734. [Google Scholar]
  • Zhang Z.P., Show K.Y., Tay J.H., Liang D.T., Lee D.J. & Jiang W.J., Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community. Process Biochem., 2006b, 41, 2118–2123. [CrossRef] [Google Scholar]
  • Zheng X.J. & Yu H.Q., Inhibitory effects of butyrate on biological hydrogen production with mixed anaerobic cultures. J. Environ. Manag., 2005, 74, 65–70. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.