Accès gratuit
Numéro |
J. Soc. Biol.
Volume 203, Numéro 1, 2009
Neurocytologie moléculaire et neuroendocrinologie
|
|
---|---|---|
Page(s) | 49 - 63 | |
DOI | https://doi.org/10.1051/jbio:2009004 | |
Publié en ligne | 10 avril 2009 |
- Aida R., Moriya T., Araki M., Akiyama M., Wada K., Wada E., Shibata S. Gastrin-releasing peptide mediates photic entrainable signals to dorsal subsets of suprachiasmatic nucleus via induction of Period gene in mice. Mol Pharmacol, 2002, 61, 26–34. [CrossRef] [PubMed] [Google Scholar]
- Albrecht U. Orchestration of gene expression and physiology by the circadian clock. J Physiol Paris, 2006, 100, 243–251. [CrossRef] [PubMed] [Google Scholar]
- Albus H., Vansteensel M.J., Michel S., Block G.D., Meijer J.H. A GABAergic mechanism is necessary for coupling dissociable ventral and dorsal regional oscillators within the circadian clock. Curr Biol, 2005, 15, 886–893. [CrossRef] [PubMed] [Google Scholar]
- Antle M.C., Silver R. Orchestrating time: arrangements of the brain circadian clock. Trends Neurosci, 2005, 28, 145–151. [CrossRef] [PubMed] [Google Scholar]
- Aton S.J., Colwell C.S., Harmar A.J., Waschek J., Herzog E.D. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci, 2005, 8, 476–483. [PubMed] [Google Scholar]
- Balsalobre A., Brown S.A., Marcacci L., Tronche F., Kellendonk C., Reichardt H.M., Schütz G., Schibler U. Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts. Curr Biol, 2000, 10, 1291–1294. [CrossRef] [PubMed] [Google Scholar]
- Barassin S., Raison S., Saboureau M., Bienvenu C., Maitre M., Malan A., Pevet P. Circadian tryptophan hydroxylase levels and serotonin release in the suprachiasmatic nucleus of the rat. Eur J Neurosci, 2002, 15, 833–840. [CrossRef] [PubMed] [Google Scholar]
- Becquet D., Girardet C., Guillaumond F., François-Bellan A.M., Bosler O. Ultrastructural plasticity in the rat suprachiasmatic nucleus. Possible involvement in clock entrainment. Glia, 2008, 56, 294–305. [CrossRef] [PubMed] [Google Scholar]
- Bosler O. Ultrastructural relationships of serotonin and GABA terminals in the rat suprachiasmatic nucleus. Evidence for a close interconnection between the two afferent systems. J Neurocytol, 1989, 18, 105–113. [CrossRef] [PubMed] [Google Scholar]
- Bosler O., Beaudet A. VIP neurons as prime synaptic targets for serotonin afferents in rat suprachiasmatic nucleus: a combined radioautographic and immunocytochemical study. J Neurocytol, 1985, 14, 749–763. [CrossRef] [PubMed] [Google Scholar]
- Boulaich S., Daszuta A., Geffard M., Bosler O. Synaptic connectivity of serotonin graft efferents in the suprachiasmatic and supraoptic nuclei of the hypothalamus. Exp Brain Res, 1994, 101, 353–364. [CrossRef] [PubMed] [Google Scholar]
- Buijs R.M., Hou Y.X., Shinn S., Renaud L.P. Ultrastructural evidence for intra- and extranuclear projections of GABAergic neurons of the suprachiasmatic nucleus. J Comp Neurol, 1994, 340, 381–391. [CrossRef] [PubMed] [Google Scholar]
- Castel M., Morris J.F. Morphological heterogeneity of the GABAergic network in the suprachiasmatic nucleus, the brain's circadian pacemaker. J Anat, 2000, 196, 1–13. [CrossRef] [PubMed] [Google Scholar]
- Dudley T.E., DiNardo L.A., Glass J.D. Endogenous regulation of serotonin release in the hamster suprachiasmatic nucleus. J Neurosci, 1998, 18, 5045–5052. [PubMed] [Google Scholar]
- François-Bellan A.-M., Bosler O. Convergent serotonin and GABA innervation of VIP neurons in the suprachiasmatic nucleus demonstrated by triple labeling in the rat, 1992, 10, 282–290. [Google Scholar]
- François-Bellan A.-M., Kachidian P., Dusticier G., Tonon M. C., Vaudry H., Bosler O. GABA neurons in the rat suprachiasmatic nucleus: involvement in chemospecific synaptic circuitry and evidence for GAD-peptide colocalization. J Neurocytol, 1990, 595, 149–153. [Google Scholar]
- Fuchs E., Flugge G., Czeh B. Remodeling of neuronal networks by stress. Front Biosci, 2006, 11, 2746–2758. [CrossRef] [PubMed] [Google Scholar]
- Garcia-Segura L.M., Luquin S., Parducz A., Naftolin F. Gonadal hormone regulation of glial fibrillary acidic protein immunoreactivity and glial ultrastructure in the rat neuroendocrine hypothalamus. Glia, 1994, 10, 59–69. [CrossRef] [PubMed] [Google Scholar]
- Garcia-Segura L.M., Naftolin F., Hutchison J.B., Azcoitia I., Chowen J.A. Role of astroglia in estrogen regulation of synaptic plasticity and brain repair. J Neurobiol, 1999, 40, 574–584. [CrossRef] [PubMed] [Google Scholar]
- Glass J.D., Chen L. Serotonergic modulation of astrocytic activity in the hamster suprachiasmatic nucleus. Neuroscience, 1999, 94, 1253–1259. [CrossRef] [PubMed] [Google Scholar]
- Glass J.D., Shen H., Fedorkova L., Chen L., Tomasiewicz H., Watanabe M. Polysialylated neural cell adhesion molecule modulates photic signaling in the mouse suprachiasmatic nucleus. Neurosci Lett, 2000, 280, 207–210. [CrossRef] [PubMed] [Google Scholar]
- Glass J.D., Watanabe M., Fedorkova L., Shen H., Ungers G., Rutishauser U. Dynamic regulation of polysialylated neural cell adhesion molecule in the suprachiasmatic nucleus. Neuroscience, 2003, 117, 203–211. [CrossRef] [PubMed] [Google Scholar]
- Guilding C., Piggins H.D. Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain? Eur J Neurosci, 2007, 25, 3195–3216. [Google Scholar]
- Guillaumond F., Becquet D., Blanchard M.P., Attia J., Moreno M., Bosler O., François-Bellan A.M. Nocturnal expression of phosphorylated-ERK1/2 in gastrin-releasing peptide neurons of the rat suprachiasmatic nucleus. J Neurochem, 2007, 101, 1224–1235. [CrossRef] [PubMed] [Google Scholar]
- Harmar A.J., Marston H.M., Shen S., Spratt C., West K.M., Sheward W.J., Morrison C.F., Dorin J.R., Piggins H.D., Reubi J.C., Kelly J.S., Maywood E.S., Hastings M.H. The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell, 2002, 109, 497–508. [CrossRef] [PubMed] [Google Scholar]
- Hastings M.H., Reddy A.B., Maywood E.S. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci, 2003, 4, 649–661. [Google Scholar]
- Hatton G.I. Dynamic neuronal-glial interactions: an overview 20 years later. Peptides, 2004, 25, 403–411. [CrossRef] [PubMed] [Google Scholar]
- Hawrylak N., Fleming J.C., Salm A.K. Dehydration and rehydration selectively and reversibly alter glial fibrillary acidic protein immunoreactivity in the rat supraoptic nucleus and subjacent glial limitans. Glia, 1998, 22, 260–271. [CrossRef] [PubMed] [Google Scholar]
- Inouye S.T., Shibata S. Neurochemical organization of circadian rhythm in the suprachiasmatic nucleus. Neurosci Res, 1994, 20, 109–130. [CrossRef] [PubMed] [Google Scholar]
- Jacomy H., Bosler O. Catecholaminergic innervation of the suprachiasmatic nucleus in the adult rat: ultrastructural relationships with neurons containing vasoactive intestinal peptide or vasopressin. Cell Tissue Res, 1995, 280, 87–96. [CrossRef] [PubMed] [Google Scholar]
- Jacomy H., Burlet A., Bosler O. Vasoactive intestinal peptide neurons as synaptic targets for vasopressin neurons in the suprachiasmatic nucleus. Double-label immunocytochemical demonstration in the rat. Neuroscience, 1999, 88, 859–870. [CrossRef] [PubMed] [Google Scholar]
- Kalsbeek A., Perreau-Lenz S., Buijs R.M. A network of (autonomic) clock outputs. Chronobiol Int, 2006, 23, 521–535. [CrossRef] [PubMed] [Google Scholar]
- Kawamoto K., Nagano M., Kanda F., Chihara K., Shigeyoshi Y., Okamura H. Two types of VIP neuronal components in rat suprachiasmatic nucleus. J Neurosci Res, 2003, 74, 852–857. [CrossRef] [PubMed] [Google Scholar]
- Kiss J., Halasz B., Csaki A., Liposits Z., Hrabovszky E. Vesicular glutamate transporter 2 protein and mRNA containing neurons in the hypothalamic suprachiasmatic nucleus of the rat. Brain Res Bull, 2007, 74, 397–405. [CrossRef] [PubMed] [Google Scholar]
- Ko C.H., Takahashi J.S. Molecular components of the mammalian circadian clock. Hum Mol Genet, 2006. 15 Spec No 2, R271–277. [Google Scholar]
- Lavialle M., Begue A., Papillon C., Vilaplana J. Modifications of retinal afferent activity induce changes in astroglial plasticity in the hamster circadian clock. Glia, 2001, 34, 88–100. [CrossRef] [PubMed] [Google Scholar]
- Lavialle M., Serviere J. Circadian fluctuations in GFAP distribution in the Syrian hamster suprachiasmatic nucleus. Neuroreport, 1993, 4, 1243–1246. [CrossRef] [PubMed] [Google Scholar]
- Liang F.Q., Walline R., Earnest D.J. Circadian rhythm of brain-derived neurotrophic factor in the rat suprachiasmatic nucleus. Neurosci Lett, 1998, 242, 89–92. [CrossRef] [PubMed] [Google Scholar]
- Liu C., Reppert S.M. GABA synchronizes clock cells within the suprachiasmatic circadian clock. Neuron, 2000, 25, 123–128. [CrossRef] [PubMed] [Google Scholar]
- Long M.A., Jutras M.J., Connors B.W., Burwell R.D. Electrical synapses coordinate activity in the suprachiasmatic nucleus. Nat Neurosci, 2005, 8, 61–66. [CrossRef] [PubMed] [Google Scholar]
- Malek Z.S., Sage D., Pevet P., Raison S. Daily rhythm of tryptophan hydroxylase-2 messenger ribonucleic acid within raphe neurons is induced by corticoid daily surge and modulated by enhanced locomotor activity. Endocrinology, 2007, 148, 5165–5172. [CrossRef] [PubMed] [Google Scholar]
- Maurel D., Sage D., Mekaouche M., Bosler O. Glucocorticoids up-regulate the expression of glial fibrillary acidic protein in the rat suprachiasmatic nucleus. Glia, 2000, 29, 212–221. [CrossRef] [PubMed] [Google Scholar]
- Maywood E.S., O'Neill J.S., Chesham J.E., Hastings M.H. Minireview: The circadian clockwork of the suprachiasmatic nuclei-analysis of a cellular oscillator that drives endocrine rhythms. Endocrinology, 2007, 148, 5624–5634. [CrossRef] [PubMed] [Google Scholar]
- Maywood E.S., Reddy A.B., Wong G.K., O'Neill J.S., O'Brien J.A., McMahon D.G., Harmar A.J., Okamura H., Hastings M.H. Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling. Curr Biol, 2006, 16, 599–605. [CrossRef] [PubMed] [Google Scholar]
- McArthur A.J., Coogan A.N., Ajpru S., Sugden D., Biello S.M., Piggins H.D. Gastrin-releasing peptide phase-shifts suprachiasmatic nuclei neuronal rhythms in vitro. J Neurosci, 2000, 20, 5496–5502. [PubMed] [Google Scholar]
- McEwen B.S. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev, 2007, 87, 873–904. [CrossRef] [PubMed] [Google Scholar]
- Michel S., Colwell C.S. Cellular communication and coupling within the suprachiasmatic nucleus. Chronobiol Int, 2001, 18, 579–600. [CrossRef] [PubMed] [Google Scholar]
- Moore R.Y., Speh J.C. GABA is the principal neurotransmitter of the circadian system. Neurosci Lett, 1993, 150, 112–116. [CrossRef] [PubMed] [Google Scholar]
- Moore R.Y., Speh J.C., Leak R.K. Suprachiasmatic nucleus organization. Cell Tissue Res, 2002, 309, 89–98. [CrossRef] [PubMed] [Google Scholar]
- Morin L.P., Johnson R.F., Moore N.Y. Two brain nuclei controlling circadian rhythms are identified by GFAP immunoreactivity in hamsters and rats, 1999. Neurosci Lett, 1989, 99, 55–60. [CrossRef] [PubMed] [Google Scholar]
- Morin L.P. SCN organization reconsidered. J Biol Rythms, 2007, 22, 3–13. [CrossRef] [Google Scholar]
- Morin L.P., Allen C.N. The circadian visual system, 2005. Brain Res Rev, 2006, 51, 1–60. [CrossRef] [PubMed] [Google Scholar]
- Morin L.P., Shivers K.Y., Blanchard J.H., Muscat L. Complex organization of mouse and rat suprachiasmatic nucleus. Neuroscience, 2006, 137, 1285–1297. [CrossRef] [PubMed] [Google Scholar]
- Moriya T., Yoshinobu Y., Kouzu Y., Katoh A., Gomi H., Ikeda M., Yoshioka T., Itohara S., Shibata S. Involvement of glial fibrillary acidic protein (GFAP) expressed in astroglial cells in circadian rhythm under constant lighting conditions in mice. J Neurosci Res, 2000, 60, 212–218. [CrossRef] [PubMed] [Google Scholar]
- Nakamura W., Honma S., Shirakawa T., Honma K. Regional pacemakers composed of multiple oscillator neurons in the rat suprachiasmatic nucleus. Eur J Neurosci, 2001, 14, 666–674. [CrossRef] [PubMed] [Google Scholar]
- Okamura H., Berod A., Julien J.F., Geffard M., Kitahama K., Mallet J., Bobillier P. Demonstration of GABAergic cell bodies in the suprachiasmatic nucleus: in situ hybridization of glutamic acid decarboxylase (GAD) mRNA and immunocytochemistry of GAD and GABA. Neurosci Lett, 1989, 102, 131–136. [CrossRef] [PubMed] [Google Scholar]
- Piggins H.D., Antle M.C., Rusak B. Neuropeptides phase shift the mammalian circadian pacemaker. J Neurosci, 1995, 15, 5612–5622. [PubMed] [Google Scholar]
- Piggins H.D., Cutler D.J. The roles of vasoactive intestinal polypeptide in the mammalian circadian clock. J. Endocrinol, 2003, 177, 7–15. [CrossRef] [PubMed] [Google Scholar]
- Piggins H.D., Loudon A. Circadian biology: clocks within clocks. Curr Biol, 2005, 15, R455–457. [CrossRef] [PubMed] [Google Scholar]
- Prosser R.A., Edgar D.M., Heller H.C., Miller J.D. A possible glial role in the mammalian circadian clock. Brain Res, 1994, 643, 296–301. [CrossRef] [PubMed] [Google Scholar]
- Romijn H.J., Sluiter A.A., Pool C.W., Wortel J., Buijs R.M. Differences in colocalization between Fos and PHI, GRP, VIP and VP in neurons of the rat suprachiasmatic nucleus after a light stimulus during the phase delay versus the phase advance period of the night. J Comp Neurol, 1996, 372, 1–8. [CrossRef] [PubMed] [Google Scholar]
- Romijn H.J., Sluiter A.A., Pool C.W., Wortel J., Buijs R.M. Evidence from confocal fluorescence microscopy for a dense, reciprocal innervation between AVP-, somatostatin-, VIP/PHI-, GRP-, and VIP/PHI/GRP-immunoreactive neurons in the rat suprachiasmatic nucleus. Eur J Neurosci, 1997, 9, 2613–2623. [CrossRef] [PubMed] [Google Scholar]
- Rutishauser U. Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci, 2008, 9, 26–35. [CrossRef] [PubMed] [Google Scholar]
- Sage D., Ganem J., Guillaumond F., Laforge-Anglade G., François-Bellan A.M., Bosler O., Becquet D. Influence of the corticosterone rhythm on photic entrainment of locomotor activity in rats. J Biol Rhythms, 2004, 19, 144–156. [CrossRef] [PubMed] [Google Scholar]
- Serviere J., Lavialle M. Astrocytes in the mammalian circadian clock: putative roles. Prog Brain Res, 1996, 111, 57–73. [CrossRef] [PubMed] [Google Scholar]
- Shen H., Watanabe M., Tomasiewicz H., Rutishauser U., Magnuson T., Glass J.D. Role of neural cell adhesion molecule and polysialic acid in mouse circadian clock function. J Neurosci, 1997, 17, 5221–5229. [PubMed] [Google Scholar]
- Shirakawa T., Honma S., Honma K. Multiple oscillators in the suprachiasmatic nucleus. Chronobiol Int, 2001, 18, 371–387. [CrossRef] [PubMed] [Google Scholar]
- Slezak M., Pfrieger F.W., Soltys Z. Synaptic plasticity, astrocytes and morphological homeostasis. J Physiol Paris, 2006, 99, 84–91. [CrossRef] [PubMed] [Google Scholar]
- Theodosis D.T., Oxytocin-secreting neurons: A physiological model of morphological neuronal and glial plasticity in the adult hypothalamus. Front Neuroendocrinol, 2002, 23, 101–135. [CrossRef] [PubMed] [Google Scholar]
- Van den Pol A.N. The hypothalamic suprachiasmatic nucleus of rat: intrinsic anatomy. J Comp Neurol, 1980, 191, 661–702. [CrossRef] [PubMed] [Google Scholar]
- Van den Pol A.N., Tsujimoto K.L. Neurotransmitters of the hypothalamic suprachiasmatic nucleus: immunocytochemical analysis of 25 neuronal antigens. Neuroscience, 1985, 15, 1049–1086. [CrossRef] [PubMed] [Google Scholar]
- Yamaguchi S., Isejima H., Matsuo T., Okura R., Yagita K., Kobayashi M., Okamura H. Synchronization of cellular clocks in the suprachiasmatic nucleus. Science, 2003, 302, 1408–1412. [CrossRef] [PubMed] [Google Scholar]
- Yannielli P., Harrington M.E. Let there be “more" light: enhancement of light actions on the circadian system through non-photic pathways. Prog Neurobiol, 2004, 74, 59–76. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.