Accès gratuit
Numéro
J. Soc. Biol.
Volume 203, Numéro 2, 2009
Angiogenèse : de la biologie à la thérapeutique
Page(s) 197 - 207
DOI https://doi.org/10.1051/jbio/2009024
Publié en ligne 16 juin 2009
  • Aicher A., Heeschen C., Mildner-Rihm C., Urbich C., Ihling C., Technau-Ihling K., Zeiher A.M., Dimmeler S., Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med, 2003, 9, 1370–1376. [CrossRef] [PubMed] [Google Scholar]
  • Asahara T., Murohara T., Sullivan A., Silver M., van der Zee R., Li T., Witzenbichler B., Schatteman G., Isner J.M., Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997, 275, 964–967. [CrossRef] [PubMed] [Google Scholar]
  • Asahara T., Takahashi T., Masuda H., Kalka C., Chen D., Iwaguro H., Inai Y., Silver M., Isner J.M., VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. Embo J, 1999, 18, 3964–3972. [CrossRef] [PubMed] [Google Scholar]
  • Blann A.D., Woywodt A., Bertolini F., Bull T.M., Buyon J.P., Clancy R.M., Haubitz M., Hebbel R.P., Lip G.Y., Mancuso P., Sampol J., Solovey A., Dignat-George F., Circulating endothelial cells. Biomarker of vascular disease. Thromb Haemost, 2005, 93, 228–235. [PubMed] [Google Scholar]
  • Bompais H., Chagraoui J., Canron X., Crisan M., Liu X.H., Anjo A., Tolla-Le Port C., Leboeuf M., Charbord P., Bikfalvi A., Uzan G., Human endothelial cells derived from circulating progenitors display specific functional properties compared with mature vessel wall endothelial cells. Blood, 2004, 103, 2577–2584. [CrossRef] [PubMed] [Google Scholar]
  • Bonello L., Basire A., Sabatier F., Paganelli F., Dignat-George F., Endothelial injury induced by coronary angioplasty triggers mobilization of endothelial progenitor cells in patients with stable coronary artery disease. J Thromb Haemost, 2006a, 4, 979–981. [CrossRef] [PubMed] [Google Scholar]
  • Bonello L., Sabatier F., Basire A., Paganelli F., Dignat-George F., The unbalance between circulating endothelial cells and progenitors in cardiovascular diseases: a mirror of disrupted endothelial integrity. Arch Mal Coeur Vaiss, 2006b, 99, 607–613. [PubMed] [Google Scholar]
  • Case J., Mead L.E., Bessler W.K., Prater D., White H.A., Saadatzadeh M.R., Bhavsar J.R., Yoder M.C., Haneline L.S., Ingram D.A., Human CD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Axp Hematol, 2007, 35, 1109–1118. [Google Scholar]
  • Caunt M., Hu L., Tang T., Brooks P.C., Ibrahim S., Karpatkin S., Growth-regulated oncogene is pivotal in thrombin-induced angiogenesis. Cancer Res, 2006, 66, 4125–4132. [CrossRef] [PubMed] [Google Scholar]
  • Caunt M., Huang Y.Q., Brooks P.C., Karpatkin S., Thrombin induces neoangiogenesis in the chick chorioallantoic membrane. J Thromb Haemost, 2003, 1, 2097–2102. [CrossRef] [PubMed] [Google Scholar]
  • Chavakis E., Aicher A., Heeschen C., Sasaki K., Kaiser R., El Makhfi N., Urbich C., Peters T., Scharffetter-Kochanek K., Zeiher A.M., Chavakis T., Dimmeler S., Role of beta2-integrins for homing and neovascularization capacity of endothelial progenitor cells. J Exp Med, 2005, 201, 63–72. [CrossRef] [PubMed] [Google Scholar]
  • Chavakis E., Hain A., Vinci M., Carmona G., Bianchi M.E., Vajkoczy P., Zeiher A.M., Chavakis T., Dimmeler S., High-mobility group box 1 activates integrin-dependent homing of endothelial progenitor cells. Circ Res, 2007, 100, 204–212. [Google Scholar]
  • Delorme B., Basire A., Gentile C., Sabatier F., Monsonis F., Desouches C., Blot-Chabaud M., Uzan G., Sampol J., Dignat-George F., Presence of endothelial progenitor cells, distinct from mature endothelial cells, within human CD146+ blood cells. Thromb Haemost, 2005, 94, 1270–1279. [PubMed] [Google Scholar]
  • Dernbach E., Urbich C., Brandes R.P., Hofmann W.K., Zeiher A.M., Dimmeler S., Antioxidative stress-associated genes in circulating progenitor cells: evidence for enhanced resistance against oxidative stress. Blood, 2004, 104, 3591–3597. [CrossRef] [PubMed] [Google Scholar]
  • Dimmeler S., Aicher A., Vasa M., Mildner-Rihm C., Adler K., Tiemann M., Rutten H., Fichtlscherer S., Martin H., Zeiher A.M., HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest, 2001, 108, 391–397. [PubMed] [Google Scholar]
  • Dupuy E., Habib A., Lebret M., Yang R., Lévy-Toledano S., Tobelem G., Thrombin induces angiogenesis and vascular endothelial growth factor expression in human endothelial cells: possible relevance to HIF-1alpha. J Thromb Haemost, 2003, 1, 1096–1102. [CrossRef] [PubMed] [Google Scholar]
  • Elsheikh E., Uzunel M., He Z., Holgersson J., Nowak G., Sumitran-Holgersson S., Only a specific subset of human peripheral-blood monocytes has endothelial-like functional capacity. Blood, 2005, 106, 2347–2355. [CrossRef] [PubMed] [Google Scholar]
  • Foubert P., Silvestre J.S., Souttou B., Barateau V., Martin C., Ebrahimian T.G., Leré-Déan C., Contreres J.O., Sulpice E., Levy B.I., Plouet J., Tobelem G., Le Ricousse-Roussanne S., PSGL-1-mediated activation of EphB4 increases the pro-angiogenic potential of endothelial progenitor cells. J Clin Invest, 2007, 117, 1527–1537. [CrossRef] [PubMed] [Google Scholar]
  • Galasso G., Schiekofer S., Sato K., Shibata R., Handy D.E., Ouchi N., Leopold J.A., Loscalzo J., Walsh K., Impaired angiogenesis in glutathione peroxidase-1-deficient mice is associated with endothelial progenitor cell dysfunction. Circ Res, 2006, 98, 254–261. [CrossRef] [PubMed] [Google Scholar]
  • Gulati R., Jevremovic D., Peterson T.E., Chatterjee S., Shah V., Vile R.G., Simari R.D., Diverse origin and function of cells with endothelial phenotype obtained from adult human blood. Circ Res, 2003, 93, 1023–1025. [CrossRef] [PubMed] [Google Scholar]
  • He T., Peterson T.E., Holmuhamedov E.L., Terzic A., Caplice N.M., Oberley L.W., Katusic Z.S., Human endothelial progenitor cells tolerate oxidative stress due to intrinsically high expression of manganese superoxide dismutase. Arterioscler Thromb Vasc Biol, 2004, 24, 2021–2027. [CrossRef] [PubMed] [Google Scholar]
  • He T., Peterson T.E., Katusic Z.S., Paracrine mitogenic effect of human endothelial progenitor cells: role of interleukin-8. Am J Heart Circ Physiol, 2005, 289, H968–H972. [CrossRef] [Google Scholar]
  • Hildbrand P., Cirulli V., Prinsen R.C., Smith K.A., Torbett B.E., Salomon D.R., Crisa L., The role of angiopoietins in the development of endothelial cells from cord blood CD34+ progenitors. Blood, 2004, 104, 2010–2019. [CrossRef] [PubMed] [Google Scholar]
  • Huang Y.Q., Li J.J., Hu L., Lee M., Karpatkin S., Thrombin induces increased expression and secretion of angiopoietin-2 from human umbilical vein endothelial cells. Blood, 2002, 99, 1646–1650. [CrossRef] [PubMed] [Google Scholar]
  • Hur J., Yoon C.H., Kim H.S., Choi J.H., Kang H.J., Hwang K.K., Oh B.H., Lee M.M., Park Y.B., Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol, 2004, 24, 288–293. [CrossRef] [PubMed] [Google Scholar]
  • Ingram D.A., Caplice N.M., Yoder M.C., Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood, 2005a, 106, 1525–1531. [CrossRef] [PubMed] [Google Scholar]
  • Ingram D.A., Mead L.E., Moore D.B., Woodard W., Fenoglio A., Yoder M.C., Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood, 2005b, 105, 2783–2786. [CrossRef] [PubMed] [Google Scholar]
  • Ingram D.A., Mead L.E., Tanaka H., Meade V., Fenoglio A., Mortell K., Pollok K., Ferkowicz M.J., Gilley D., Yoder M.C., Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood, 2004, 104, 2752–2760. [CrossRef] [PubMed] [Google Scholar]
  • Iwakura A., Shastry S., Luedemann C., Hamada H., Kawamoto A., Kishore R., Zhu Y., Qin G., Silver M., Thorne T., Eaton L., Masuda H., Asahara T., Losordo D.W., Estradiol enhances recovery after myocardial infarction by augmenting incorporation of bone marrow-derived endothelial progenitor cells into sites of ischemia-induced neovascularization via endothelial nitric oxide synthase-mediated activation of matrix metalloproteinase-9. Circulation, 2006, 113, 1605–1614. [CrossRef] [PubMed] [Google Scholar]
  • Jin H., Aiyer A., Su J., Borgstrom P., Stupack D., Friedlander M., Varner J., A homing mechanism for bone marrow-derived progenitor cell recruitment to the neovasculature. Clin Invest, 2006, 116, 652–662. [CrossRef] [Google Scholar]
  • Jujo K., Ii M., Losordo D.W., Endothelial progenitor cells in neovascularization of infarcted myocardium. J Mol Cell Cardiol, 2008, 45, 530–544. [CrossRef] [PubMed] [Google Scholar]
  • Kennedy M., D'Souza S.L., Lynch-Kattman M., Schwantz S., Keller G., Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood, 2007, 109, 2679–2687. [PubMed] [Google Scholar]
  • Landmesser U., Engberding N., Bahlmann F.H., Schaefer A., Wiencke A., Heineke A., Spiekermann S., Hilfiker-Kleiner D., Templin C., Kotlarz D., Mueller M., Fuchs M., Hornig B., Haller H., Drexler H., Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase. Circulation, 2004, 110, 1933–1939. [CrossRef] [PubMed] [Google Scholar]
  • Laufs U., Wassmann S., Czech T., Munzel T., Eisenhauer M., Bohm M., Nickenig G., Physical inactivity increases oxidative stress, endothelial dysfunction, and atherosclerosis. Arterioscler Thromb Vasc Biol, 2005, 25, 809–814. [CrossRef] [PubMed] [Google Scholar]
  • Lum H., Malik A.B., Regulation of vascular endothelial barrier function. Am J Physiol, 1994, 267, L223–L241. [PubMed] [Google Scholar]
  • Martin-Rendon E., Brunskill S.J., Hyde C.J., Stanworth S.J., Mathur A., Watt S.M., Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur Heart J, 2008, 29, 1807–1818. [CrossRef] [PubMed] [Google Scholar]
  • Mirshahi F., Pourtau J., Li H., Muraine M., Trochon V., Legrand E., Vannier J., Soria J., Vasse M., Soria C., SDF-1 activity on microvascular endothelial cells: consequences on angiogenesis in in vitro and in vivo models. Thromb Res, 2000, 99, 587–594. [CrossRef] [PubMed] [Google Scholar]
  • Murasawa S., Llevadot J., Silver M., Isner J.M., Losordo D.W., Asahara T., Constitutive human telomerase reverse transcriptase expression enhances regenerative properties of endothelial progenitor cells. Circulation, 2002, 106, 1133–1139. [CrossRef] [PubMed] [Google Scholar]
  • Murohara T., Ikeda H., Duan J., Shintani S., Sasaki K., Eguchi H., Onitsuka I., Matsui K., Imaizumi T., Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest 2000, 105, 1527–1536. [Google Scholar]
  • Oh I.Y., Yoon C.H., Hur J., Kim J.H., Kim T.Y., Lee C.S., Park K.W., Chae I.H., Oh B.H., Park Y.B., Kim H.S., Involvement of E-selectin in recruitment of endothelial progenitor cells and angiogenesis in ischemic muscle. Blood, 2007, 110, 3891–3899. [Google Scholar]
  • Peichev M., Naiyer A.J., Pereira D., Zhu Z., Lane W.J., Williams M., Oz M.C., Hicklin D.J., Witte L., Moore M.A., Rafii, S., Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood, 2000, 95, 952–958. [PubMed] [Google Scholar]
  • Peled A., Grabovsky V., Habler L., Sandbank J., Arenzana-Seisdedos F., Petit I., Ben-Hur H., Lapidot T., Alon R., The chemokine SDF-1 stimulates integrin-mediated arrest of CD34(+) cells on vascular endothelium under shear flow. J Clin Invest, 1999, 104, 1199–1211. [CrossRef] [PubMed] [Google Scholar]
  • Pelosi E., Valtieri M., Coppola S., Botta R., Gabbianelli M., Lulli V., Marziali G., Masella B., Muller R., Sgadari C., Testa U., Bonanno G., Peschle C., Identification of the hemangioblast in postnatal life. Blood, 2002, 100, 3203–3208. [CrossRef] [PubMed] [Google Scholar]
  • Planat-Benard V., Silvestre J.S., Cousin B., André M., Nibbelink M., Tamarat R., Clergue M., Manneville C., Saillan-Barreau C., Duriez M., Tedgui A., Levy B., Penicaud L., Casteilla L., Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation, 2004, 109, 656–663. [CrossRef] [PubMed] [Google Scholar]
  • Quirici N., Soligo D., Caneva L., Servida F., Bossolasco P., Deliliers G.L., Differentiation and expansion of endothelial cells from human bone marrow CD133(+) cells. Brit J Haematol, 2001, 115, 186–194. [CrossRef] [Google Scholar]
  • Reyes M., Dudek A., Jahagirdar B., Koodie L., Marker P.H., Verfaillie C.M., Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest, 2002, 109, 337–346. [PubMed] [Google Scholar]
  • Romagnani P., Annunziato F., Liotta F., Lazzeri E., Mazzinghi B., Frosali F., Cosmi L., Maggi L., Lasagni L., Scheffold A., Kruger M., Dimmeler S., Marra F., Gensini G., Maggi E., Romagnani S., CD14+CD34low cells with stem cell phenotypic and functional features are the major source of circulating endothelial progenitors. Cir Res, 2005, 97, 314–322. [CrossRef] [Google Scholar]
  • Sasaki K., Heeschen C., Aicher A., Ziebart T., Honold J., Urbich C., Rossig L., Koehl U., Koyanagi M., Mohamed A., Brandes R.P., Martin H., Zeiher A.M., Dimmeler S., Ex vivo pretreatment of bone marrow mononuclear cells with endothelial NO synthase enhancer AVE9488 enhances their functional activity for cell therapy. Pro Natl Acad Sc USA, 2006, 103, 14537–14541. [CrossRef] [Google Scholar]
  • Sharpe E.E., 3rd, Teleron A.A., Li B., Price J., Sands M.S., Alford K., Young P.P., The origin and in vivo significance of murine and human culture-expanded endothelial progenitor cells. Am J Path, 2006, 168, 1710–1721. [CrossRef] [Google Scholar]
  • Sieveking D.P., Buckle A., Celermajer D.S., Ng M.K., Strikingly different angiogenic properties of endothelial progenitor cell subpopulations: insights from a novel human angiogenesis assay. J Am Col Cardiol, 2008, 51, 660–668. [CrossRef] [Google Scholar]
  • Smadja D.M., Bièche I., Uzan G., Bompais H., Muller L., Boisson-Vidal C., Vidaud M., Aiach M., Gaussem P., PAR-1 activation on human late endothelial progenitor cells enhances angiogenesis in vitro with upregulation of the SDF-1/CXCR4 system. 2005, 25, 2321–2327. [Google Scholar]
  • Smadja D.M., Bièche I., Emmerich J., Aiach M., Gaussem P., PAR-1 activation has different effects on the angiogenic activity of endothelial progenitor cells derived from human adult and cord blood. J Thromb Haemost, 2006a, 4, 2729–2731. [CrossRef] [PubMed] [Google Scholar]
  • Smadja D.M., Laurendeau I., Avignon C., Vidaud M., Aiach M., Gaussem P., The angiopoietin pathway is modulated by PAR-1 activation on human endothelial progenitor cells. J Thromb Haemost, 2006b, 4, 2051–2058. [CrossRef] [PubMed] [Google Scholar]
  • Smadja D.M., Bièche I., Helley D., Laurendeau I., Simonin G., Muller L., Aiach M., Gaussem P., Increased VEGFR2 expression during human late endothelial progenitor cells expansion enhances in vitro angiogenesis with up-regulation of integrin alpha(6). J Cell Mol Med, 2007a, 11, 1149–1161. [CrossRef] [PubMed] [Google Scholar]
  • Smadja D.M., Cornet A., Emmerich J., Aiach M., Gaussem P., Endothelial progenitor cells: Characterization, in vitro expansion, and prospects for autologous cell therapy. Cell Biol Toxicol, 2007b, 23, 223–239. [CrossRef] [PubMed] [Google Scholar]
  • Smadja D.M., Basire A., Amelot A., Conte A., Bièche I., Le Bonniec B.F., Aiach M., Gaussem P., Thrombin bound to a fibrin clot confers angiogenic and haemostatic properties on endothelial progenitor cells. J Cell Mol Med, 2008a, 12, 975–986. [CrossRef] [PubMed] [Google Scholar]
  • Smadja D.M., Bièche I., Silvestre J.S., Germain S., Cornet A., Laurendeau I., Duong-Van-Huyen J.P., Emmerich J., Vidaud M., Aiach M., Gaussem P., Bone morphogenetic proteins 2 and 4 are selectively expressed by late outgrowth endothelial progenitor cells and promote neoangiogenesis. Arterioscler Thromb Vasc Biol, 2008b, 28, 2137–2143. [CrossRef] [PubMed] [Google Scholar]
  • Smadja D.M., Bièche I., Susen S., Mauge L., Laurendeau I., d'Audigier C., Grelac F., Emmerich J., Aiach M., Gaussem P., Interleukin 8 is differently expressed and modulated by PAR-1 activation in early and late endothelial progenitor cells. J Cell Mol Med, 2008c, in press. [Google Scholar]
  • Tateishi-Yuyama E., Matsubara H., Murohara T., Ikeda U., Shintani S., Masaki H., Amano K., Kishimoto Y., Yoshimoto K., Akashi H., Shimada K., Iwasaka T., Imaizumi T., Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet, 2002, 360, 427–435. [CrossRef] [PubMed] [Google Scholar]
  • Timmermans F., Van Hauwermeiren F., De Smedt M., Raedt R., Plasschaert F., De Buyzere M.L., Gillebert T.C., Plum J., Vandekerckhove B., Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors. Arterioscler Thromb Vasc Biol, 2007, 27, 1572–1579. [CrossRef] [PubMed] [Google Scholar]
  • Tsopanoglou N.E., Maragoudakis M.E., On the mechanism of thrombin-induced angiogenesis. Potentiation of vascular endothelial growth factor activity on endothelial cells by up-regulation of its receptors. J Biol Chem, 1999, 274, 23969–23976. [CrossRef] [PubMed] [Google Scholar]
  • Urbich C., Dimmeler S., Endothelial progenitor cells: characterization and role in vascular biology. Circ Res, 2004, 95, 343–353. [CrossRef] [PubMed] [Google Scholar]
  • Urbich C., Aicher A., Heeschen C., Dernbach E., Hofmann W.K., Zeiher A.M., Dimmeler S., Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J Mol Cell Cardiol, 2005a, 39, 733–742. [CrossRef] [PubMed] [Google Scholar]
  • Urbich C., Heeschen C., Aicher A., Sasaki K., Bruhl T., Farhadi M.R., Vajkoczy P., Hofmann W.K., Peters C., Pennacchio L.A., Abolmaali N.D., Chavakis E., Reinheckel T., Zeiher A.M., Dimmeler S., Cathepsin L is required for endothelial progenitor cell-induced neovascularization. Nat Med, 2005b, 11, 206–213. [CrossRef] [PubMed] [Google Scholar]
  • Van Huyen J.P., Smadja D.M., Bruneval P., Gaussem P., Dal-Cortivo L., Julia P., Fiessinger J.N., Cavazzana-Calvo M., Aiach M., Emmerich J., Bone marrow-derived mononuclear cell therapy induces distal angiogenesis after local injection in critical leg ischemia. Mod Pathol, 2008, 21, 837–846. [CrossRef] [PubMed] [Google Scholar]
  • Vasa M., Fichtlscherer S., Adler K., Aicher A., Martin H., Zeiher A.M., Dimmeler S., Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation, 2001, 103, 2885–2890. [CrossRef] [PubMed] [Google Scholar]
  • Wu Y., Ip J.E., Huang J., Zhang L., Matsushita K., Liew C.C., Pratt R.E., Dzau V.J., Essential role of ICAM-1/CD18 in mediating EPC recruitment, angiogenesis, and repair to the infarcted myocardium. Circ Res, 2006, 99, 315–322. [CrossRef] [PubMed] [Google Scholar]
  • Yamaguchi J., Kusano K.F., Masuo O., Kawamoto A., Silver M., Murasawa S., Bosch-Marce M., Masuda H., Losordo D.W., Isner J.M., Asahara T., Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation, 2003, 107, 1322–1328. [CrossRef] [PubMed] [Google Scholar]
  • Yoon C.H., Hur J., Park K.W., Kim J.H., Lee C.S., Oh I.Y., Kim T.Y., Cho H.J., Kang H.J., Chae I.H., Yang H.K., Oh B.H., Park Y.B., Kim H.S., Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases. Circulation, 2005, 112, 1618–1617. [CrossRef] [PubMed] [Google Scholar]
  • Zemani F., Benisvy D., Galy-Fauroux I., Lokajczyk A., Colliec-Jouault S., Uzan G., Fischer A.M., Boisson-Vidal C., Low-molecular-weight fucoidan enhances the pro-angiogenic phenotype of endothelial progenitor cells. Biochem Pharmacol, 2005, 70, 1167–1175. [CrossRef] [PubMed] [Google Scholar]
  • Zemani F., Silvestre J.S., Fauvel-Lafeve F., Bruel A., Vilar J., Bièche I., Laurendeau I., Galy-Fauroux I., Fischer A.M., Boisson-Vidal C., Ex vivo priming of endothelial progenitor cells with SDF-1 before transplantation could increase their pro-angiogenic potential. Arterioscler Thromb Vasc Biol, 2008, 28, 644–650. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.