Accès gratuit
Numéro |
J. Soc. Biol.
Volume 203, Numéro 3, 2009
Claude Bernard et la Société de Biologie
|
|
---|---|---|
Page(s) | 249 - 269 | |
DOI | https://doi.org/10.1051/jbio:2009030 | |
Publié en ligne | 16 octobre 2009 |
- Adams G.P., Weiner L.M., Monoclonal antibody therapy of cancer. Nat Biotechnol, 2005, 23, 1141-1157. [CrossRef] [Google Scholar]
- Anders H.J., Vielhauer V., Identifying and validating novel targets with in vivo disease models: Guidelines for study design. Drug Discov Today, 2007, 12, 446-451. [CrossRef] [PubMed] [Google Scholar]
- Andrews A.L., Holloway J.W., Holgate S.T., Davies D.E., IL-4 receptor is an important modulator of IL-4 and IL-13 receptor binding: implications for the development of therapeutic targets. J Immunol, 2006, 176, 7456-7461. [PubMed] [Google Scholar]
- Annis D.A., Nickbarg E., Yang X., Ziebell M.R., Whitehurst C.E., Affinity selection-mass spectrometry screening techniques for small molecule drug discovery. Curr Opin Chem Biol, 2007, 11, 518-526. [CrossRef] [PubMed] [Google Scholar]
- Austen M., Dohrmann C., Phenotype-first screening for the identification of novel drug targets. Drug Discov Today, 2005, 10, 275-282. [CrossRef] [PubMed] [Google Scholar]
- Borsook D., Becerra L., Hargreaves R., A role for fMRI in optimizing CNS drug development. Nat Rev Drug Discov, 2006, 1-14. [Google Scholar]
- Boussery K., Belpaire F.M., Van de Voorde J., Physiological aspects determining the Pharmacokinetic properties of drugs. In "The practice of Medicinal Chemistry", Wermuth C. (Ed.). Academic Press, 2008, pp. 637-654. [Google Scholar]
- Brown D., Unfinished business: target-based drug discovery. Drug Discov Today, 2007, 12, 1007-101. [CrossRef] [PubMed] [Google Scholar]
- Butcher E.C., Can cell systems biology rescue drug discovery? Nat Rev, 2005, 4, 461-467. [Google Scholar]
- Butler D., Crossing the valley of death. Nature, 2008, 453, 840-842. [CrossRef] [PubMed] [Google Scholar]
- Carter P., Potent antibody therapeutics by design. Nat Rev Immunol, 2006, 6, 343-357. [CrossRef] [PubMed] [Google Scholar]
- Drews J., Ryser S., The role of innovation in drug development. Nat Biotechnol, 1997, 15, 1318-1319. [CrossRef] [PubMed] [Google Scholar]
- Frantz S., Playing dirty. Nature, 2005, 437, 942-943. [CrossRef] [PubMed] [Google Scholar]
- Gorter J.A., van Vliet E.A., Aronica E., Breit T., Rauwerda H., Lopes da Silva F., Wadman W.J., Potential new antiepileptogenic targets indicated by microarray analysis in a rat model for temporal lobe epilepsy. J Neurosci, 2006, 26, 11083-11110. [CrossRef] [PubMed] [Google Scholar]
- Halioua E., Evolution of biopharmaceutical and CMO market. IBC Biopharma contract manufacturing and partnering symposium, 2005. [Google Scholar]
- Hardy J., Selkoe D.J., The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science, 2002, 297, 353-356. [CrossRef] [PubMed] [Google Scholar]
- Hartman I., Insulin analogs: impact on treatment success, satisfaction, quality of life, and adherence. Clin Med Res, 2008, 6, 54-67. [CrossRef] [PubMed] [Google Scholar]
- Hayden E.C., Personalized cancer therapy gets closer. Nature, 2009, 458, 131-132. [CrossRef] [PubMed] [Google Scholar]
- He X.P., Minichiello L., Klein R., McNamara J.O., Immunohistochemical evidence of seizure-induced activation of trkB receptors in the mossy fiber pathway of adult mouse hippocampus. J Neurosci, 2002, 22, 7502-7508. [PubMed] [Google Scholar]
- He X.P., Kotloski R., Nef S., Luikart B., Parada L.F., McNamara J.O., Conditional deletion of trkB but not BDNF prevents epileptogenesis in the kindling model. Neuron, 2004, 43, 31-42. [CrossRef] [PubMed] [Google Scholar]
- Hillish A., Pineda L.F., Hilgenfeld R., Utility of homology models in the drug discovery process. Drug Discov Today, 2004, 9, 659-669. [CrossRef] [PubMed] [Google Scholar]
- Hoogenboom H.R., Selecting and screening recombinant antibody libraries. Nature Biotechnol, 2005, 23, 1105-1116. [CrossRef] [Google Scholar]
- Hopkins A., Groom C., The druggable genome. Nat Rev Drug Discov, 2002, 1, 727-730. [CrossRef] [PubMed] [Google Scholar]
- Imming P., Sinning C., Meyer A., Drugs, their targets and the nature and number of drug targets. Nature Rev, 2006, 5, 821-834. [CrossRef] [PubMed] [Google Scholar]
- Kola I., Landis J., Can the pharmaceutical industry reduce attrition rates. Nat Rev Drug Discov, 2004, 3, 711-715. [CrossRef] [PubMed] [Google Scholar]
- Kubinyi H., Drug research: myths, hype and reality. Nat Rev Drug Discov, 2003, 2, 665-668. [CrossRef] [PubMed] [Google Scholar]
- Kumar K., Wetzel, S., Waldmann H., Biology oriented synthesis and diversity oriented synthesis in compound collection development. In "The practice of Medicinal Chemistry", Wermuth C. (Ed.). Academic Press, 2008, pp. 187-209. [Google Scholar]
- Landry Y., Gies, J.P., Drugs and their molecular targets: an updated overview. Fundam Clin Pharmacol, 2008, 22, 1-18. [Google Scholar]
- Langer T., Bryant S.D., In silico screening: hit finding from database mining. In "The practice of Medicinal Chemistry", Wermuth C. (Ed.). Academic Press, 2008, pp. 210-227. [Google Scholar]
- Levoye A., Jockers R., Alternative drug discovery approaches for orphan GPCRs. Drug Discov Today, 2008, 12, 52-58. [CrossRef] [PubMed] [Google Scholar]
- Lonberg N., Human antibodies from transgenic animals. Nat Biotechnol, 2005, 23, 1117-1125. [CrossRef] [PubMed] [Google Scholar]
- Macarron R., Critical review of the role of HTS in drug discovery. Drug Discov Today, 2006, 11, 277-279. [CrossRef] [PubMed] [Google Scholar]
- Morrissette D.A., Parachikova A., Green K.N., La Ferla, F.M., Relevance of transgenic mouse models to human Alzheimer disease. J Biol Chem, 2009, 284, 6033-6037. [CrossRef] [PubMed] [Google Scholar]
- Newman D.J., Craag G.M., Kingston D., Natural products as pharmaceuticals and sources for lead structures. In "The practice of Medicinal Chemistry", Wermuth C. (Ed.). Academic Press, 2008, pp. 159-186. [Google Scholar]
- Nowicki J.P., Scatton B., Measurement and expression of drug effects. In "The practice of Medicinal Chemistry", Wermuth C. (Ed.). Academic Press, 2008, pp. 73-84. [Google Scholar]
- Owens J., 2006 drug approvals: finding the niche. Nat Rev, 2007, 6, 99-101. [CrossRef] [Google Scholar]
- Owens, D.R., Biol F.I., Bolli G.B., Beyond the era of NPH insulin-long-acting insulin analogs: chemistry, comparative pharmacology, and clinical application. Diabetes Technol Ther, 2008, 10, 333-349. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Pangalos M.N., Schechter L.E., Hurko O., Drug development for CNS disorders: Strategies for balancing risk and reducing attrition. Nat Rev Drug Discov, 2007, 6, 521-532. [CrossRef] [PubMed] [Google Scholar]
- Proudfoot J.R., High-throughput screening and drug discovery. In “The practice of Medicinal Chemistry”, Wermuth C. (Ed.). Academic Press, 2008, pp. 144-158. [Google Scholar]
- Reichert J.M., Rosensweig C.J., Faden L.B., Dewitz M.C., Monoclonal antibody successes in the clinic. Nat Biotechnol, 2005, 23, 1073-1078. [CrossRef] [PubMed] [Google Scholar]
- Rondeau J.M., Schreuder H., Protein crystallography and drug discovery. In "The practice of Medicinal Chemistry", Wermuth C. (Ed.). Academic Press, 2008, pp. 605-634. [Google Scholar]
- Sams-Dodd F., Target-based drug discovery: is something wrong? Drug Discov Today, 2005, 10, 139-147. [Google Scholar]
- Sato M., Hutchinson D., Evans B., Summers R., The -adrenoceptor agonist 4-[[(hexylamino) carbonyl]amino]-N-[4-[2-[[(2S)-2-hydroxy-3(4-hydroxyphenoxy)propyl]amino]ethyl]-phenyl]-benzenesulfonamide(L755507) and antagonist (S)-N-[4-[2-[[3-[3-(acetamidomethyl)phenoxy]-2-hydroxypropyl]amino]- ethyl]phenyl]benzenesulfonamide (L748337) activate different signaling pathways in chinese hamster ovary-K1 cells stably expressing the human -adrenoceptor. Mol Pharmacol, 2008, 74, 1417-1428. [CrossRef] [PubMed] [Google Scholar]
- Scheffer I.E., Berkovic S.F., The genetics of human epilepsy. TIPS, 2003, 24, 428-433. [Google Scholar]
- Schrama D., Reisfeld R.A., Becker J.C., Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov, 2006, 5, 147-159. [CrossRef] [PubMed] [Google Scholar]
- Serradeil-Le Gal, C., Wagnon J., Tonnerre B., Roux R., Garcia G., Griebel G., Aulombard A., An overview of SSR149415, a selective nonpeptide vasopressin V1b receptor antagonist for the treatment of stress-related disorders. CNS Drug Rev, 2005, 11, 53-68. [PubMed] [Google Scholar]
- Stasi R., Gemtuzumab ozogamicin: an anti-CD33 immunoconjugate for the treatment of acute myeloid leukaemia. Expert Opin Biol Ther, 2008, 8, 527-540. [CrossRef] [PubMed] [Google Scholar]
- Steidl E.M., Neveu E., Bertrand D., Buisson B., The adult rat hippocampal slice revisited with multi-electrode arrays. Brain Res, 2006, 1096, 70-84. [CrossRef] [PubMed] [Google Scholar]
- Terstappen G.C., Schlüpen C., Raggiaschi R., Gaviraghi G., Target deconvolution strategies in drug discovery. Nat Rev, 2007, 6, 891-903. [Google Scholar]
- Thakker D., Weatherspoon M., Harrison J., Keene T., Lane D., Kaemerrer W., Stewart G., Schafer L., Intracerebroventricular amyloid- antibodies reduce cerebral amyloidangiopathy and associated micro-hemorrhages in aged Tg2576 mice. PNAS, 2009, 106, 4501-4506. [CrossRef] [Google Scholar]
- Tolner B., Smith L., Hillyer T., Bathia J., Beckett P., Robson L., Sharma S.K., Griffin N., Vervecken W., Contreras R., Pedley R.B., Begent R.H.J., Chester K.A., From laboratory to phase I/II cancer trials with recombinant biotherapeutics. Europ J Cancer, 2007, 43, 2515-2522. [CrossRef] [Google Scholar]
- Tsai S.J., TrkB partial agonists: Potential treatment strategy for epilepsy, mania and autism. Medical Hypotheses, 2006, 66, 173-175. [Google Scholar]
- Venkateshan S.P., Sidhu S., Malhotra S., Pandhi P., Efficacy of biologicals in the treatment of rheumatoid arthritis. Pharmacology, 2009, 83, 1-9. [CrossRef] [PubMed] [Google Scholar]
- Wellendorph P., Goodman M., Burstein E.S., Nash N.R., Brann M.R., Weiner D.M., Molecular cloning and pharmacology of functionally distinct isoforms of the human histamine H3 receptor. Neuropharmacology, 2002, 42, 929-940. [CrossRef] [PubMed] [Google Scholar]
- Wermuth C.G., Strategies in the search for new lead compounds or original working hypotheses. In “The Practice of Medicinal chemistry”, Wermuth C. (Ed.). Academic Press, 2008, pp. 125-143. [Google Scholar]
- Wickenden A.D., Potassium channels as anti-epileptic drug targets. Neuropharmacology, 2002, 43, 1055-1060. [CrossRef] [PubMed] [Google Scholar]
- Wu A.M., Senter P.D., Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol, 2005, 23, 1137-1146. [CrossRef] [PubMed] [Google Scholar]
- Zavitz K.H., Bartel P.L., Hobden A.N., Drug targets, target identification, validation and screening. In "The Practice of Medicinal chemistry", Wermuth C. (Ed.). Academic Press, 2008, pp. 106-122. [Google Scholar]
- Zhou Q., Brown J., Kanarek A., Rajagopal J., Melton D.A., In vivo reprogramming of adult pancreatic exocrine cells to cells. Nature, 2008, 455, 627-632. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.