Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 204, Numéro 2, 2010
Journée Claude Bernard 2009 : LA MÉMOIRE - Aspects physiologiques, pathologiques et thérapeutiques
Page(s) 93 - 102
DOI https://doi.org/10.1051/jbio/2010006
Publié en ligne 21 juin 2010
  • Abrous D.N., Koehl M., Le Moal M., Adult neurogenesis: from precursors to network and physiology. Physiol Rev, 2005, 85, 523–569. [CrossRef] [PubMed] [Google Scholar]
  • Alberini C.M., Mechanisms of memory stabilization: are consolidation and reconsolidation similar or distinct processes? Trends Neurosci, 2005, 28, 51–56. [CrossRef] [PubMed] [Google Scholar]
  • Baumgärtel K., Tweedie-Cullen R.Y., Grossmann J., Gehrig P., Livingstone-Zatchej M., Mansuy I.M., Changes in the proteome after neuronal zif268 overexpression. J Proteome Res, 2009, 8, 3298–3316. [CrossRef] [PubMed] [Google Scholar]
  • Beck H., Goussakov I.V., Lie A., Helmstaedter C., Elger C.E., Synaptic plasticity in the human dentate gyrus. J Neurosci, 2000, 20, 7080–7086. [PubMed] [Google Scholar]
  • Bhalla U.S., Iyengar R., Emergent properties of networks of biological signaling pathways. Science, 1999, 283, 381–387. [CrossRef] [PubMed] [Google Scholar]
  • Bliss T.V.P., Collingridge G.L., A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 1993, 361, 31–39. [CrossRef] [PubMed] [Google Scholar]
  • Bliss T.V.P., Lømo T., Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol (Lond), 1973, 232, 331–356. [Google Scholar]
  • Bozon B., Davis S., Laroche S., Regulated transcription of the immediate early gene Zif268: mechanisms and gene dosage-dependent function in synaptic plasticity and memory formation. Hippocampus, 2002, 12, 570–577. [CrossRef] [PubMed] [Google Scholar]
  • Bozon B., Davis S., Laroche S., A requirement for the immediate early gene zif268 in reconsolidation of recognition memory after retrieval. Neuron, 2003, 40, 695–701. [CrossRef] [PubMed] [Google Scholar]
  • Bozon B., Kelly A., Josselyn S.A., Silva A.J., Davis S., Laroche S., MAPK, CREB and zif268 are all required for the consolidation of recognition memory. Phil Trans R Soc B, 2003, 358, 805–814. [CrossRef] [Google Scholar]
  • Bruel-Jungerman E., Davis S., Laroche S., Brain plasticity mechanisms and memory: a party of four. Neuroscientist, 2007, 13, 492–505. [CrossRef] [PubMed] [Google Scholar]
  • Bruel-Jungerman E., Rampon C., Laroche S., Adult hippocampal neurogenesis, synaptic plasticity and memory: facts and hypotheses. Rev Neurosci, 2007, 18, 93–114. [PubMed] [Google Scholar]
  • Bruel-Jungerman E., Laroche S., Rampon C., New neurons in the dentate gyrus are involved in the expression of enhanced long-term memory following environmental enrichment. Eur J Neurosci, 2005, 21, 513–521. [CrossRef] [PubMed] [Google Scholar]
  • Burger C., Lopez M.C., Baker H.V., Mandel R.J., Muzyczka N., Genome-wide analysis of aging and learning-related genes in the hippocampal dentate gyrus. Neurobiol Learn Mem, 2008, 89, 379–396. [CrossRef] [PubMed] [Google Scholar]
  • Cavallaro S., D’Agata V., Manickam P., Dufour F., Alkon D.L., Memory-specific temporal profiles of gene expression in the hippocampus. Proc Natl Acad Sci USA, 2002, 99, 16279–16284. [CrossRef] [Google Scholar]
  • Chardonnet S., Le Maréchal P., Cheval H., Le Caer J.P., Decottignies P., Laprevote O., Laroche S., Davis S., Large-scale study of phosphoproteins involved in long-term potentitation in the rat dentate gyrus in vivo. Eur J Neurosci, 2008, 27, 2985–2998. [CrossRef] [PubMed] [Google Scholar]
  • Collingridge G.L., Kehl S.J., McLennan H., Excitatory amino acids in synaptic transmission in the schaffer collateral-commissural pathway of the rat hippocampus. J Physiol (Lond), 1983, 334, 33–46. [Google Scholar]
  • Davis H.P., Squire L.R., Protein synthesis and memory: a review. Psychol Bull, 1984, 96, 518–559. [CrossRef] [PubMed] [Google Scholar]
  • Davis S., Laroche S., A molecular biological approach to synaptic plasticity and learning. CR Acad Sci (Paris), 1998, 321, 97–107. [Google Scholar]
  • Davis S., Laroche S., MAP kinase/ERK signalling and memory stabilisation: a review. Gene, Brain Behav, 2006, 5, 61–72. [CrossRef] [Google Scholar]
  • Davis S., Butcher S.P., Morris R.G.M., The NMDA receptor antagonist, D-2-amino-5-phosphonopentanoate (D-AP5) impairs spatial learning and LTP in vivo at intracerebral concentrations comparable to those that block LTP in vitro. J Neurosci, 1992, 12, 21–34. [PubMed] [Google Scholar]
  • Davis S., Bozon B., Laroche S., How necessary is the activation of the immediate early gene zif268 in synaptic plasticity and learning? Behav Brain Res, 2003, 142, 17–30. [CrossRef] [PubMed] [Google Scholar]
  • Davis S., Vanhoutte P., Pagès C., Caboche J., Laroche S., The MAPK/ERK cascade targets both elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. J Neurosci, 2000, 20, 4563–4572. [PubMed] [Google Scholar]
  • Donahue C.P., Jensen R.V., Ochiishi T., Eisenstein I., Zhao M., Shors T., Kosik K.S., Transcriptional profiling reveals regulated genes in the hippocampus during memory formation. Hippocampus, 2002, 12, 821–833. [CrossRef] [PubMed] [Google Scholar]
  • Elgersma Y., Sweatt J.D., Giese K.P., Mouse genetic approaches to investigating calcium/calmodulin-dependent protein kinase II function in plasticity and cognition. J Neurosci, 2004, 24, 8410–8415. [CrossRef] [PubMed] [Google Scholar]
  • Eriksson P.S., Perfilieva E., Bjork-Eriksson T., Alborn A.M., Nordborg C., Peterson D.A., Gage F.H., Neurogenesis in the adult human hippocampus. Nat Med, 1998, 4, 1313–1317. [CrossRef] [PubMed] [Google Scholar]
  • Frey U., Morris R.G.M., Synaptic tagging and long-term potentiation. Nature, 1997, 385, 533–536. [CrossRef] [PubMed] [Google Scholar]
  • Geinisman Y., Structural synaptic modifications associated with hippocampal LTP and behavioral learning. Cerebral Cortex, 2000, 10, 952–962. [Google Scholar]
  • Genoux D., Haditsch U., Knobloch M., Michalon A., Storm D., Mansuy I.M., Protein phosphatase 1 is a molecular constraint on learning and memory. Nature, 2002, 418, 970–975. [CrossRef] [PubMed] [Google Scholar]
  • Gould E., Beylin A., Tanapat P., Reeves A., Shors T.J., Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci, 1999, 2, 260–265. [CrossRef] [PubMed] [Google Scholar]
  • Gould E., Reeves A.J., Fallah M., Tanapat P., Gross C.G., Fuchs E., Hippocampal neurogenesis in adult Old World primates. Proc Natl Acad Sci USA, 1999, 6, 5263–5267. [CrossRef] [Google Scholar]
  • Hall J., Thomas K.L., Everitt B.J., Cellular imaging of zif268 expression in the hippocampus and amygdala during contextual and cued fear memory retrieval: selective activation of hippocampal CA1 neurons during recall of contextual memories. J Neurosci, 2001, 21, 2186–2193. [PubMed] [Google Scholar]
  • Harris K.M., Fiala J.C., Ostroff L., Structural changes at dendritic spine synapses during long-term potentiation. Phil Trans R Soc Lond B Biol Sci, 2003, 358, 745–748. [CrossRef] [Google Scholar]
  • Hebb D.O., The Organisation of Behaviour. 1949, Wiley, New York. [Google Scholar]
  • Igaz L.M., Bekinschtein P., Izquierdo I., Medina J.H., One-trial aversive learning induces late changes in hippocampal CaMKIIalpha, Homer 1a, Syntaxin 1a and ERK2 protein levels. Mol Brain Res, 2004, 132, 1–12. [CrossRef] [Google Scholar]
  • Ikegami S., Inokuchi K., Antisense DNA against calcineurin facilitates memory in contextual fear conditioning by lowering the threshold for hippocampal long-term potentiation induction. Neurosci, 2000, 98, 637–646. [CrossRef] [Google Scholar]
  • Jones M.W., Errington M.L., French P.J., Fine A., Bliss T.V.P., Garel S., Charnay P., Bozon B., Laroche S., Davis S., A requirement for the immediate early gene Zif268 in the expression of late LTP and the consolidation of long-term memories. Nat Neurosci, 2001, 4, 289–296. [CrossRef] [PubMed] [Google Scholar]
  • Kee N., Teixeira C.M., Wang A.H., Frankland P.W., Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci, 2007, 10, 355–362. [CrossRef] [PubMed] [Google Scholar]
  • Kelly A., Laroche S., Davis S., Activation of mitogen-activated protein kinase/extracellular signal-regulated kinase in hippocampal circuitry is required for consolidation and reconsolidation of recognition memory. J Neurosci, 2003, 12, 5354–5360. [Google Scholar]
  • Kempermann G., Kuhn H.G., Gage F.H., More hippocampal neurons in adult mice living in an enriched environment. Nature, 1997, 386, 493–495. [CrossRef] [PubMed] [Google Scholar]
  • Kempermann G., Jessberger S., Steiner B., Kronenberg G., Milestones of neuronal development in the adult hippocampus. Trends Neurosci, 2004, 27, 447–452. [CrossRef] [PubMed] [Google Scholar]
  • Kempermann G., Wiskott L., Gage F.H., Functional significance of adult neurogenesis. Curr Opin Neurobiol, 2004, 14, 186–191. [CrossRef] [PubMed] [Google Scholar]
  • Leuner B., Falduto J., Shors T.J., Associative memory formation increases the observation of dendritic spines in the hippocampus. J Neurosci, 2003, 23, 659–665. [PubMed] [Google Scholar]
  • Malinow R., AMPA receptor trafficking and long-term potentiation. Phil Trans R Soc Lond B, 2003, 358, 707–714. [CrossRef] [Google Scholar]
  • Malleret G., Haditsch U., Genoux D., Jones M.W., Bliss T.V.P., Vanhoose A.M., Weitlauf C., Kandel E.R., Winder D.G., Mansuy I.M., Inducible and reversible enhancement of learning, memory, and long-term potentiation by genetic inhibition of calcineurin. Cell, 2001, 104, 675–686. [PubMed] [Google Scholar]
  • Mansuy I.M., Mayford M., Jacob B., Kandel E.R., Bach M.E., Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory. Cell, 1998, 92, 39–49. [CrossRef] [PubMed] [Google Scholar]
  • Markham J., Greenough W.T., Experience-driven brain plasticity: beyond the synapse. Neuron Glia Biol, 2004, 1, 351–363. [Google Scholar]
  • Marrone D.F., Ultrastructural plasticity associated with hippocampal-dependent learning: a meta-analysis. Neurobiol Learn Mem, 2007, 87, 361–371. [CrossRef] [PubMed] [Google Scholar]
  • Mayford M., Kandel E.R., Genetic approaches to memory storage. Trends Genetics, 1999, 15, 463–470. [CrossRef] [Google Scholar]
  • Milekic M.H., Alberini C.M., Temporally graded requirement for protein synthesis following memory reactivation. Neuron, 2002, 36, 521–525. [CrossRef] [PubMed] [Google Scholar]
  • Miyashita Y., Kameyama M., Hasegawa I., Fukushima T., Consolidation of visual associative long-term memory in the temporal cortex of primates. Neurobiol Learn Mem, 1998, 70, 197–211. [CrossRef] [PubMed] [Google Scholar]
  • Nader K., Memory traces unbound. Trends Neurosci, 2003, 26, 65–72. [CrossRef] [PubMed] [Google Scholar]
  • Nader K., Schafe G.E., Le Doux J.E., Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature, 2000, 406, 722–726. [CrossRef] [PubMed] [Google Scholar]
  • Nguyen P.V., Abel T., Kandel E.R., Requirement of a critical period of transcription for induction of late-phase LTP. Science, 1994, 256, 1104–1107. [CrossRef] [Google Scholar]
  • Nowak L., Bregestovski P., Ascher P., Herbet A., Prochiantz A., Magnesium gates glutamate-activated channels in mouse central neurons. Nature, 1984, 307, 462–465. [CrossRef] [PubMed] [Google Scholar]
  • Park C.S., Gong R., Stuart J., Tang S.J., Molecular network and chromosomal clustering of genes involved in synaptic plasticity in the hippocampus. J Biol Chem, 2006, 281, 30195–30211. [CrossRef] [PubMed] [Google Scholar]
  • Radley J.J., Johnson L.R., Janssen W.G., Martino J., Lamprecht R., Hof P.R., LeDoux J.E., Morrison J.H., Associative Pavlovian conditioning leads to an increase in spinophilin-immunoreactive dendritic spines in the lateral amygdala. Eur J Neurosci, 2006, 24, 876–84. [Google Scholar]
  • Renaudineau S., Poucet B., Laroche S., Davis S., Save E., Impaired long term stability of CA1 place cell representation in mice lacking the transcription factor zif268/egr1. Proc Natl Acad Sci USA, 2009, 106, 11771–11775. [CrossRef] [Google Scholar]
  • Schmidt-Hieber C., Jonas P., Bischofberger J., Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature, 2004, 429, 184–187. [CrossRef] [PubMed] [Google Scholar]
  • Shors T.J., Miesegaes G., Beylin A., Zhao M., Rydel T., Gould E., Neurogenesis in the adult is involved in the formation of trace memories. Nature, 2001, 410, 372–376. [CrossRef] [PubMed] [Google Scholar]
  • Silva A.J., Paylor R., Wehner J.M., Tonegawa S., Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science, 1992, 257, 206–211. [CrossRef] [PubMed] [Google Scholar]
  • Soderling T.R., Derkach V.A., Postsynaptic protein phosphorylation and LTP. Trends Neurosci, 2000, 23, 75–80. [CrossRef] [PubMed] [Google Scholar]
  • Song H., Kempermann G., Wadiche L.O., Zhao C., Schinder A.F., Bischofberger J., New neurons in the adult mammalian brain: synaptogenesis and functional integration. J Neurosci, 2005, 25, 10366–10368. [CrossRef] [PubMed] [Google Scholar]
  • Soulé J., Penke Z., Alme M.N., Kanhema T., Laroche S., Bramham C.R., Object-place recognition learning triggers rapid induction of plasticity-related immediate early genes and synaptic proteins in the rat dentate gyrus. Neural Plasticity, 2008, 2008, 1–12. [CrossRef] [Google Scholar]
  • Sweatt J.D., Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol, 2004, 14, 311–317. [CrossRef] [PubMed] [Google Scholar]
  • Thomas K.L., Laroche S., Errington M.L., Bliss T.V.P., Hunt S.P., Spatial and temporal changes in signal transduction pathways during LTP. Neuron, 1994, 13, 737–745. [CrossRef] [PubMed] [Google Scholar]
  • Tischmeyer W., Grimm R., Activation of immediate early genes and memory formation. Cell Mol Life Sci, 1999, 55, 564–574. [CrossRef] [PubMed] [Google Scholar]
  • Tsien J.Z., Huerta P.T., Tonegawa S., The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell, 1996, 87, 1327–1338. [CrossRef] [PubMed] [Google Scholar]
  • van Praag H., Kempermann G., Gage F.H., Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci, 1999, 2, 266–270. [CrossRef] [PubMed] [Google Scholar]
  • Zhao C., Deng W., Gage F.H., Mechanisms and functional implications of adult neurogenesis. Cell, 2008, 132, 645–660. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.