Accès gratuit
Biologie Aujourd'hui
Volume 204, Numéro 3, 2010
Page(s) 221 - 233
Section Architecture fonctionnelle du noyau
Publié en ligne 13 octobre 2010
  • Alcobia I., Dilao R., Parreira L., Spatial associations of centromeres in the nuclei of hematopoietic cells: evidence for cell-type-specific organizational patterns. Blood, 2000, 95, 1608–1615. [PubMed] [Google Scholar]
  • Aparicio O.M., Gottschling D.E., Overcoming telomeric silencing: a trans-activator competes to establish gene expression in a cell cycle-dependent way. Genes Dev, 1994, 8, 1133–1146. [CrossRef] [PubMed] [Google Scholar]
  • Arney K.L., Fisher A.G., Epigenetic aspects of differentiation. J Cell Sci, 2004, 117, 4355–4363. [CrossRef] [PubMed] [Google Scholar]
  • Ayyanathan K., Lechner M.S., Bell P., Maul G.G., Schultz D.C., Yamada Y., Tanaka K., Torigoe K., Rauscher F.J.3rd., Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation, Genes Dev, 2003, 17, 1855–1869. [CrossRef] [PubMed] [Google Scholar]
  • Azuara V., Perry P., Sauer S., Spivakov M., Jørgensen H.F., John R.M., Gouti M., Casanova M., Warnes G., Merkenschlager M., Fisher A.G., Chromatin signatures of pluripotent cell lines. Nat Cell Biol, 2006, 8, 532–538. [CrossRef] [PubMed] [Google Scholar]
  • Bernstein B.E., Mikkelsen T.S., Xie X., Kamal M., Huebert D.J., Cuff J., Fry B., Meissner A., Wernig M., Plath K., Jaenisch R., Wagschal A., Feil R., Schreiber S.L., Lander E.S., A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 2006, 125, 315–326. [CrossRef] [PubMed] [Google Scholar]
  • Blobel G., Gene, gating: a hypothesis. Proc Natl Acad Sci USA, 1985, 82, 8527–8529. [CrossRef] [Google Scholar]
  • Brown K.E., Guest S.S., Smale S.T., Hahm K., Merkenschlager M., Fisher A.G., Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell, 1997, 91, 845–854. [Google Scholar]
  • Brown K.E., Baxter J., Graf D., Merkenschlager M., Fisher A.G., Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol Cell, 1999, 3, 207–217. [CrossRef] [PubMed] [Google Scholar]
  • Brown J.M., Leach J., Reittie J.E., Atzberger A., Lee-Prudhoe J., Wood W.G., Higgs D.R., Iborra F.J., Buckle V.J., Coregulated human globin genes are frequently in spatial proximity when active. J Cell Biol, 2006, 172, 177–187. [CrossRef] [PubMed] [Google Scholar]
  • Chakalova L., Debrand E., Mitchell J.A., Osborne C.S., Fraser P., Replication and transcription: shaping the landscape of the genome. Nat Rev Genet, 2005, 6, 669–677. [CrossRef] [PubMed] [Google Scholar]
  • Chubb J.R., Bickmore W.A., Considering nuclear compartmentalization in the light of nuclear dynamics. Cell, 2003, 112, 403–406. [CrossRef] [PubMed] [Google Scholar]
  • Cobb B.S., Morales-Alcelay S., Kleiger G., Brown K.E., Fisher A.G., Smale S.T., Targeting of Ikaros to pericentromeric heterochromatin by direct DNA binding. Genes Dev, 2000, 14, 2146–2160. [CrossRef] [PubMed] [Google Scholar]
  • Cope N.F., Fraser P., Eskiw C.H., The yin and yang of chromatin spatial organization. Genome Biol, 2010, 11, 8. [Google Scholar]
  • Cosma M.P., Ordered recruitment: gene-specific mechanism of transcription activation. Mol Cell, 2002, 10, 227–236. [CrossRef] [PubMed] [Google Scholar]
  • Craig J.M., Earle E., Canham P., Wong L.H., Anderson M., Choo K.H., Analysis of mammalian proteins involved in chromatin modification reveals new metaphase centromeric proteins, and distinct chromosomal distribution patterns. Hum Mol Genet, 2003, 12, 3109–3121. [CrossRef] [PubMed] [Google Scholar]
  • Csink A.K., Henikoff S., Genetic modification of heterochromatic association, and nuclear organization in Drosophila. Nature, 1996, 381, 529–531. [CrossRef] [PubMed] [Google Scholar]
  • Delaire S., Huang Y.H., Chan S.W., Robey E.A., Dynamic repositioning of CD4, CD8 genes during T cell development. J Exp Med, 2004, 200, 1427–1435. [CrossRef] [PubMed] [Google Scholar]
  • Dernburg A.F., Broman K.W., Fung J.C., Marshall W.F., Philips J., Agard D.A., Sedat J.W., Perturbation of nuclear architecture by long-distance chromosome interactions. Cell, 1996, 85, 745–759. [CrossRef] [PubMed] [Google Scholar]
  • Farkas G., Gausz J., Galloni M., Reuter G., Gyurkovics H., Karch F., The Trithorax-like gene encodes the Drosophila GAGA factor. Nature, 1994, 371, 806–808. [CrossRef] [PubMed] [Google Scholar]
  • Fisher A.G., Merkenschlager M., Gene silencing, cell fate, and nuclear organisation. Curr Opin Genet Dev, 2002, 12, 193–197. [CrossRef] [PubMed] [Google Scholar]
  • Francastel C., Walters M.C., Groudine M., Martin D.I., A functional enhancer suppresses silencing of a transgene, and prevents its localization close to centrometric heterochromatin. Cell, 1999, 99, 259–269. [CrossRef] [PubMed] [Google Scholar]
  • Francastel C., Schubeler D., Martin D.I., Groudine M., Nuclear compartmentalization, and gene activity. Nat Rev Mol Cell Biol, 2000, 1, 137–143. [CrossRef] [PubMed] [Google Scholar]
  • Francastel C., Magis W., Groudine M., Nuclear relocation of a transactivator subunit precedes target gene activation. Proc Natl Acad Sci USA, 2001, 98, 12120–12125. [CrossRef] [Google Scholar]
  • Fraser P., Bickmore W., Nuclear organization of the genome, and the potential for gene regulation. Nature, 2007, 447, 413–417. [CrossRef] [PubMed] [Google Scholar]
  • Geiman T.M., Robertson K.D., Chromatin remodeling, histone modifications, and DNA methylation-how does it all fit together? J Cell Biochem, 2002, 87, 117–125. [CrossRef] [PubMed] [Google Scholar]
  • Guillemin C., Maleszewska M., Guais A., Maës J., Rouyez M.C., Yacia A., Fichelson S., Goodhardt M., Francastel C., Chromatin modifications in hematopoietic multipotent, and committed progenitors are independent of gene subnuclear positioning relative to repressive compartments. Stem Cells, 2009, 27, 108–115. [CrossRef] [PubMed] [Google Scholar]
  • Haaf T., Schmid M., Chromosome topology in mammalian interphase nuclei. Exp Cell Res, 1991, 192, 325–332. [CrossRef] [PubMed] [Google Scholar]
  • Heitz E., Das Heterochromatin der Moose. Jb Wiss Bot, 1928, 69, 728. [Google Scholar]
  • Hendzel M.J., Kruhlak M.J., MacLean N.A., Boisvert F., Lever M.A., Bazett-Jones D.P., Compartmentalization of regulatory proteins in the cell nucleus. J Steroid Biochem Mol Biol, 2001, 76, 9–21. [CrossRef] [PubMed] [Google Scholar]
  • Henikoff S., Position effect, and related phenomena. Curr Opin Genetics Dev, 1992, 2, 907–912. [CrossRef] [Google Scholar]
  • Jenuwein T., Allis C.D., Translating the histone code. Science, 2001, 293, 1074–1080. [CrossRef] [PubMed] [Google Scholar]
  • Kadonaga J.T., Regulation of RNA polymerase II transcription by sequence-specific DNA binding factors. Cell, 2004, 116, 247–257. [CrossRef] [PubMed] [Google Scholar]
  • Khorasanizadeh S., The nucleosome: from genomic organization to genomic regulation. Cell, 2004, 116, 259–272. [CrossRef] [PubMed] [Google Scholar]
  • Kosak S.T., Skok J.A., Medina K.L., Riblet R., Le Beau M.M., Fisher A.G., Singh H., Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science, 2002, 296, 158–162. [CrossRef] [PubMed] [Google Scholar]
  • Kouzarides T., Chromatin modifications, and their function. Cell, 2007, 128, 693–705. [CrossRef] [PubMed] [Google Scholar]
  • Lanctot C., Cheutin T., Cremer M., Cavalli G., Cremer T., Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet, 2007, 8, 104–115. [CrossRef] [PubMed] [Google Scholar]
  • Lundgren M., Chow C.M., Sabbattini P., Georgiou A., Minaee S., Dillon N., Transcription factor dosage affects changes in higher order chromatin structure associated with activation of a heterochromatic gene. Cell, 2000, 103, 733–743. [CrossRef] [PubMed] [Google Scholar]
  • Maes J., O’Neill L.P., Cavelier P., Turner B.M., Rougeon F., Goodhardt M., Chromatin remodeling at the Ig loci prior to V(D)J recombination. J Immunol, 2001, 167, 866–874. [PubMed] [Google Scholar]
  • Maes J., Maleszewska M., Guillemin C., Pflumio F., Six E., Andre-Schmutz I., Cavazzana-Calvo M., Charron D., Francastel C., Goodhardt M., Lymphoid-affiliated genes are associated with active histone modifications in human hematopoietic stem cells. Blood, 2008, 112, 2722–2729. [CrossRef] [PubMed] [Google Scholar]
  • Manuelidis L., Indications of centromere movement during interphase and differentiation. Ann NY Acad Sci, 1985, 450, 205–221. [CrossRef] [Google Scholar]
  • Manuelidis L., Langer-Safer P.R., Ward D.C., High-resolution mapping of satellite DNA using biotin-labeled DNA probes. J Cell Biol, 1982, 95, 619–625. [CrossRef] [PubMed] [Google Scholar]
  • Manuelidis L., Different central nervous system cell types display distinct, and nonrandom arrangements of satellite DNA sequences. Proc Natl Acad Sci USA, 1984, 81, 3123–3127. [CrossRef] [Google Scholar]
  • Martin C., Beaujean N., Brochard V., Audouard C., Zink D., Debey P., Genome restructuring in mouse embryos during reprogramming, and early development. Dev Biol, 2006, 292, 317–332. [CrossRef] [PubMed] [Google Scholar]
  • Merkenschlager M., Amoils S., Roldan E., Rahemtulla A., O’Connor E., Fisher A.G., Brown K.E., Centromeric repositioning of coreceptor loci predicts their stable silencing, and the CD4/CD8 lineage choice. J Exp Med, 2004, 200, 1437–1444. [CrossRef] [PubMed] [Google Scholar]
  • Mikkelsen T.S., Ku M., Jaffe D.B., Issac B., Lieberman E., Giannoukos G., Alvarez P., Brockman W., Kim T.K., Koche R.P., Lee W., Mendenhall E., O’Donovan A., Presser A., Russ C., Xie X., Meissner A., Wernig M., Jaenisch R., Nusbaum C., Lander E.S., Bernstein B.E., Genome-wide maps of chromatin state in pluripotent, and lineage-committed cells. Nature, 2007, 448, 553–560. [CrossRef] [PubMed] [Google Scholar]
  • Mitchell P.J., Tjian R., Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science, 1989, 245, 371–378. [CrossRef] [PubMed] [Google Scholar]
  • Mohn F., Schübeler D., Genetics and epigenetics: stability and plasticity during cellular differentiation. Trends Genet, 2009, 25, 129–136. [CrossRef] [PubMed] [Google Scholar]
  • Osborne C.S., Chakalova L., Brown K.E., Carter D., Horton A., Debrand E., Goyenechea B., Mitchell J.A., Lopes S., Reik W., Fraser P., Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet, 2004, 36, 1065–1071. [CrossRef] [PubMed] [Google Scholar]
  • Osborne C.S., Chakalova L., Mitchell J.A., Horton A., Wood A.L., Bolland D.J., Corcoran A.E., Fraser P., Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol, 2007, 5, e192. [Google Scholar]
  • Perrod S., Gasser S.M., Long-range silencing, position effects at telomeres and centromeres: parallels and differences. Cell Mol Life Sci, 2003, 60, 2303–2318. [CrossRef] [PubMed] [Google Scholar]
  • Ragoczy T., Bender M.A., Telling A., Byron R., Groudine M., The locus control region is required for association of the murine beta-globin locus with engaged transcription factories during erythroid maturation. Genes Dev, 2006, 20, 1447–1457. [CrossRef] [PubMed] [Google Scholar]
  • Robertson G., Garrick D., Wu W., Kearns M., Martin D., Whitelaw E., Position-dependent variegation of globin transgene expression in mice. Proc Natl Acad Sci USA, 1995, 92, 5371–5375. [CrossRef] [Google Scholar]
  • Sadoni N., Langer S., Fauth C., Bernardi G., Cremer T., Turner B.M., Zink D., Nuclear organization of mammalian genomes. Polar chromosome territories build up functionally distinct higher order compartments. J Cell Biol, 1999, 146, 1211–1226. [CrossRef] [PubMed] [Google Scholar]
  • Schneider R., Grosschedl R., Dynamics, interplay of nuclear architecture, genome organization, and gene expression. Genes Dev, 2007, 21, 3027–3043. [CrossRef] [PubMed] [Google Scholar]
  • Schoenfelder S., Sexton T., Chakalova L., Cope N.F., Horton A., Andrews S., Kurukuti S., Mitchell J.A., Umlauf D., Dimitrova D.S., Eskiw C.H., Luo Y., Wei C.L., Ruan Y., Bieker J.J., Fraser P., Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet, 2010, 42, 53–61. [CrossRef] [PubMed] [Google Scholar]
  • Schubeler D., Francastel C., Cimbora D.M., Reik A., Martin D.I., Groudine M., Nuclear localization, histone acetylation: a pathway for chromatin opening and transcriptional activation of the human beta-globin locus. Genes Dev, 2000, 14, 940–950. [PubMed] [Google Scholar]
  • Skok J.A., Brown K.E., Azuara V., Caparros M.L., Baxter J., Takacs K., Dillon N., Gray D., Perry R.P., Merkenschlager M., Fisher A.G., Nonequivalent nuclear location of immunoglobulin alleles in B lymphocytes. Nat Immunol, 2001, 2, 848–854. [CrossRef] [PubMed] [Google Scholar]
  • Stein G., Sabbattini P., Zaidi S.K., Braastad C.D., Montecino M., van Wijnen A.J., Choi J.Y., Stein J.L., Lian J.B., Javed A., Functional architecture of the nucleus: organizing the regulatory machinery for gene expression, replication and repair. Trends Cell Biol, 2003, 13, 584–592. [CrossRef] [PubMed] [Google Scholar]
  • Tumbar T., Belmont A.S., Interphase movements of a DNA chromosome region modulated by VP16 transcriptional activator. Nat Cell Biol, 2001, 3, 134–139. [CrossRef] [PubMed] [Google Scholar]
  • Turner B.M., Cellular memory, and the histone code. Cell, 2002, 111, 285–291. [CrossRef] [PubMed] [Google Scholar]
  • van Driel R., Fransz P.F., Verschure P.J., The eukaryotic genome: a system regulated at different hierarchical levels. J Cell Sci, 2003, 116, 4067–4075. [CrossRef] [PubMed] [Google Scholar]
  • van Steensel B., Brink M., van der Meulen K., van Binnendijk E.P., Wansink D.G., de Jong L., de Kloet E.R., van Driel R., Localization of the glucocorticoid receptor in discrete clusters in the cell nucleus. J Cell Sci, 1995, 108, 3003–3011. [PubMed] [Google Scholar]
  • Verschure P.J., van der Kraan I., Enserink J.M., Mone M.J., Manders E.M., van Driel R., Large-scale chromatin organization, and the localization of proteins involved in gene expression in human cells. J Histochem Cytochem, 2002, 50, 1303–1312. [PubMed] [Google Scholar]
  • Vourc’h C., Taruscio D., Boyle A.L., Ward D.C., Cell cycle-dependent distribution of telomeres, centromeres, and chromosome-specific subsatellite domains in the interphase nucleus of mouse lymphocytes. Exp Cell Res, 1993, 205, 142–151. [CrossRef] [PubMed] [Google Scholar]
  • Walters M.C., Magis W., Fiering S., Eidemiller J., Scalzo D., Groudine M., Martin D.I., Transcriptional enhancers act in cis to suppress position-effect variegation. Genes Dev, 1996, 10, 185–195. [CrossRef] [PubMed] [Google Scholar]
  • Wansink D.G., Schul W., van der Kraan I., van Steensel B., van Driel R., de Jong L., Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. J Cell Biol, 1993, 122, 283–293. [CrossRef] [PubMed] [Google Scholar]
  • Wolffe A.P., Transcriptional regulation in the context of chromatin structure. Essays Biochem, 2001, 37, 45–57. [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.