Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 204, Numéro 3, 2010
Page(s) 189 - 197
Section Architecture fonctionnelle du noyau
DOI https://doi.org/10.1051/jbio/2010017
Publié en ligne 13 octobre 2010
  • Bastow R., Mylne J.S., Lister C., Lippman Z., Martienssen R.A., Dean C., Vernalization requires epigenetic silencing of FLC by histone methylation. Nature, 2004, 427, 164–167. [CrossRef] [PubMed] [Google Scholar]
  • Benvenuto G., Formiggini F., Laflamme P., Malakhov M., Bowler C., The photomorphogenesis regulator DET1 binds the amino-terminal tail of histone H2B in a nucleosome context. Curr Biol, 2002, 12, 1529–1534. [CrossRef] [PubMed] [Google Scholar]
  • Carrel L., Cottle A.A., Goglin K.C., Willard H.F., A first-generation X-inactivation profile of the human X chromosome. Proc Natl Acad Sci USA, 1999, 96, 14440–14444. [CrossRef] [Google Scholar]
  • Chambeyron S., Bickmore W.A., Chromatin decondensation , nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev, 2004, 18, 1119–1130. [Google Scholar]
  • Cheutin T., McNairn A.J., Jenuwein T., Gilbert D.M., Singh P.B., Misteli T., Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science, 2003, 299, 721-725. [CrossRef] [PubMed] [Google Scholar]
  • Cutler S.R., Ehrhardt D.W., Griffitts J.S., Somerville C.R., Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc Natl Acad Sci USA, 2000, 97, 3718–3723. [CrossRef] [Google Scholar]
  • De Lucia F., Crevillen P., Jones A.M., Greb T., Dean C., A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc Natl Acad Sci USA, 2008, 105, 16831–16836. [CrossRef] [Google Scholar]
  • Devlin R.H., Bingham B., Wakimoto B.T., The organization, expression of the light gene, and a heterochromatic gene of Drosophila melanogaster. Genetics, 1990, 125, 129–140. [PubMed] [Google Scholar]
  • Eberl D.F., Duyf B.J., Hilliker A.J., The role of heterochromatin in the expression of a heterochromatic gene, the rolled locus of Drosophila melanogaster. Genetics, 1993, 134, 277–292. [PubMed] [Google Scholar]
  • Fransz P., De Jong J.H., Lysak M., Castiglione M.R., Schubert I., Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc Natl Acad Sci USA, 2002, 99, 14584–14589. [CrossRef] [Google Scholar]
  • Fransz P., Soppe W., Schubert I., Heterochromatin in interphase nuclei of Arabidopsis thaliana. Chromosome Res, 2003, 11, 227–240. [CrossRef] [PubMed] [Google Scholar]
  • Fransz P., Ten Hoopen R., Tessadori F., Composition, and formation of heterochromatin in Arabidopsis thaliana. Chromosome Res, 2006, 14, 71–82. [CrossRef] [PubMed] [Google Scholar]
  • Gaudin V., Libault M., Pouteau S., Juul T., Zhao G., Lefebvre D., Grandjean O., Mutations in Like Heterochromatin Protein 1 affect flowering time, and plant architecture in Arabidopsis. Development, 2001, 128, 4847–4858. [PubMed] [Google Scholar]
  • Grafi G., How cells dedifferentiate: a lesson from plants. Dev Biol, 2004, 268, 1–6. [Google Scholar]
  • Grafi G., Avivi Y., Stem cells: a lesson from dedifferentiation. Trends Biotechnol, 2004, 22, 388–389. [CrossRef] [PubMed] [Google Scholar]
  • He Y., Amasino R.M., Role of chromatin modification in flowering-time control. Trends Plant Sci, 2005, 10, 30–35. [CrossRef] [PubMed] [Google Scholar]
  • Heitz E., Das Heterochromatin der Moose. I Jahrb Wiss Botanik, 1928, 69, 762–818. [Google Scholar]
  • Henikoff S., Eissenberg J.C., Hilliker A.J., Schmidt E.R., Wallrath L.L., Reaching for new heitz. Genetica, 2000, 109, 7–8. [CrossRef] [PubMed] [Google Scholar]
  • Irvine D.V., Zaratiegui M., Tolia N.H., Goto D.B., Chitwood D.H., Vaughn M.W., Joshua-Tor L., Martienssen R.A., Argonaute slicing is required for heterochromatic silencing and spreading. Science, 2006, 313, 1134–1137. [CrossRef] [PubMed] [Google Scholar]
  • James T.C., Eissenberg J.C., Craig C., Dietrich V., Hobson A., Elgin S.C., Distribution patterns of HP1, and a heterochromatin-associated nonhistone chromosomal protein of Drosophila. Eur J Cell Biol, 1989, 50, 170–180. [PubMed] [Google Scholar]
  • Janicki S.M., Tsukamoto T., Salghetti S.E., Tansey W.P., Sachidanandam R., Prasanth K.V., Ried T., Shav-Tal Y., Bertrand E., Singer R.H., Spector D.L., From silencing to gene expression: real-time analysis in single cells. Cell, 2004, 116, 683–698. [CrossRef] [PubMed] [Google Scholar]
  • Kotake T., Takada S., Nakahigashi K., Ohto M., Goto K., Arabidopsis Terminal Flower 2 gene encodes a heterochromatin protein 1 homolog, represses both Flowering Locus T to regulate flowering time, and several floral homeotic genes. Plant Cell Physiol, 2003, 44, 555–564. [CrossRef] [PubMed] [Google Scholar]
  • Krouwels I.M., Wiesmeijer K., Abraham T.E., Molenaar C., Verwoerd N.P., Tanke H.J., Dirks R.W., A glue for heterochromatin maintenance: stable SUV39H1 binding to heterochromatin is reinforced by the SET domain. J Cell Biol, 2005, 170, 537–549. [CrossRef] [PubMed] [Google Scholar]
  • Li B., Carey M., Workman J.L., The role of chromatin during transcription. Cell, 2007, 128, 707–719. [CrossRef] [PubMed] [Google Scholar]
  • Libault M., Tessadori F., Germann S., Snijder B., Fransz P., Gaudin V., The Arabidopsis LHP1 protein is a component of euchromatin. Planta, 2005, 222, 910–925. [CrossRef] [PubMed] [Google Scholar]
  • Lindroth A.M., Shultis D., Jasencakova Z., Fuchs J., Johnson L., Schubert D., Patnaik D., Pradhan S., Goodrich J., Schubert I., Jenuwein T., Khorasanizadeh S., Jacobsen S.E., Dual histone H3 methylation marks at lysines 9, and 27 required for interaction with chromomethylase3. Embo J, 2004, 23, 4286–4296. [Google Scholar]
  • Lippman Z., Martienssen R., The role of RNA interference in heterochromatic silencing. Nature, 2004, 431, 364–370. [CrossRef] [PubMed] [Google Scholar]
  • Lippman Z., May B., Yordan C., Singer T., Martienssen R., Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification. PLoS Biol, 2003, 1, e67. [Google Scholar]
  • Liu L.J., Zhang Y.C., Li Q.H., Sang Y., Mao J., Lian H.L., Wang L., Yang H.Q., COP1- mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell, 2008 20, 292–306. [CrossRef] [PubMed] [Google Scholar]
  • Lomberk G., Wallrath L., Urrutia R., The Heterochromatin Protein 1 family. Genome Biol, 2006, 7, 228. [CrossRef] [PubMed] [Google Scholar]
  • Martienssen R.A., Maintenance of heterochromatin by RNA interference of tandem repeats. Nat Genet, 2003, 35, 213–214. [CrossRef] [PubMed] [Google Scholar]
  • Mas P., Devlin P.F., Panda S., Kay S.A., Functional interaction of phytochrome B, and cryptochrome 2. Nature, 2000, 408, 207–211. [CrossRef] [PubMed] [Google Scholar]
  • Mathieu O., Jasencakova Z., Vaillant I., Gendrel A.V., Colot V., Schubert I., Tourmente S., Changes in 5S rDNA chromatin organization, and transcription during heterochromatin establishment in Arabidopsis. Plant Cell, 2003, 15, 2929–2939. [CrossRef] [PubMed] [Google Scholar]
  • Mathieu O., Probst A.V., Paszkowski J., Distinct regulation of histone H3 methylation at lysines 27, and 9 by CpG methylation in Arabidopsis. Embo J, 2005, 24, 2783–2791. [CrossRef] [PubMed] [Google Scholar]
  • Muller W.G., Walker D., Hager G.L., McNally J.G., Large-scale chromatin decondensation, and recondensation regulated by transcription from a natural promoter. J Cell Biol, 2001, 154, 33–48. [CrossRef] [PubMed] [Google Scholar]
  • Nakahigashi K., Jasencakova Z., Schubert I., Goto K., The Arabidopsis heterochromatin protein1 homolog (Terminal Flower2) silences genes within the euchromatic region but not genes positioned in heterochromatin. Plant Cell Physiol, 2005, 46, 1747–1756. [CrossRef] [PubMed] [Google Scholar]
  • Naumann K., Fischer A., Hofmann I., Krauss V., Phalke S., Irmler K., Hause G., Aurich A.C., Dorn R., Jenuwein T., Reuter G., Pivotal role of AtSUVH2 in heterochromatic histone methylation, and gene silencing in Arabidopsis. Embo J, 2005, 24, 1418–1429. [CrossRef] [PubMed] [Google Scholar]
  • Pavet V., Quintero C., Cecchini N.M., Rosa A.L., Alvarez M.E., Arabidopsis displays centromeric DNA hypomethylation, and cytological alterations of heterochromatin upon attack by Pseudomonas syringae. Mol Plant Microbe Interact, 2006, 9, 577–587. [CrossRef] [Google Scholar]
  • Probst A.V., Fransz P.F., Paszkowski J., Scheid O.M., Two means of transcriptional reactivation within heterochromatin. Plant J, 2003, 33, 743–749. [CrossRef] [PubMed] [Google Scholar]
  • Probst A.V., Fagard M., Proux F., Mourrain P., Boutet S., Earley K., Lawrence R.J., Pikaard C.S., Murfett J., Furner I., Vaucheret H., Mittelsten Scheid O., Arabidopsis histone deacetylase HDA6 is required for maintenance of transcriptional gene silencing, and determines nuclear organization of rDNA repeats. Plant Cell, 2004, 16, 1021–1034. [CrossRef] [PubMed] [Google Scholar]
  • Scheid O.M., Probst A.V., Afsar K., Paszkowski J., Two regulatory levels of transcriptional gene silencing in Arabidopsis. Proc Natl Acad Sci USA, 2002, 99, 13659–13662. [CrossRef] [Google Scholar]
  • Schmid M., Uhlenhaut N.H., Godard F., Demar M., Bressan R., Weigel D., Lohmann, J.U., Dissection of floral induction pathways using global expression analysis. Development, 2003, 130, 6001–6012. [CrossRef] [PubMed] [Google Scholar]
  • Soppe W.J., Jasencakova Z., Houben A., Kakutani T., Meister A., Huang M.S., Jacobsen S.E., Schubert I., Fransz P.F., DNA methylation controls histone H3 lysine 9 methylation, and heterochromatin assembly in Arabidopsis. Embo J, 2002, 21, 6549–6559. [CrossRef] [PubMed] [Google Scholar]
  • Spivakov M., Fisher A.G., Epigenetic signatures of stem-cell identity. Nat Rev Genet, 2007, 8, 263–271. [CrossRef] [PubMed] [Google Scholar]
  • Tanaka K., Appella E., Jay G., Developmental activation of the H-2K gene is correlated with an increase in DNA methylation. Cell, 1983, 35, 457–465. [CrossRef] [PubMed] [Google Scholar]
  • Tessadori F., van Driel R., Fransz P., Cytogenetics as a tool to study gene regulation. Trends Plant Sci, 2004, 9, 147–153. [CrossRef] [PubMed] [Google Scholar]
  • Tessadori F., Chupeau M.C., Chupeau Y., Knip M., Germann S., van Driel R., Fransz P., Gaudin V., Large-scale dissociation, and sequential reassembly of pericentric heterochromatin in dedifferentiated Arabidopsis cells. J Cell Sci, 2007, 120, 1200–1208. [CrossRef] [PubMed] [Google Scholar]
  • Tessadori F., Schulkes R.K., van Driel R., Fransz P., Light-regulated large-scale reorganization of chromatin during the floral transition in Arabidopsis. Plant J, 2007, 50, 848–857. [CrossRef] [PubMed] [Google Scholar]
  • Tessadori F., van Zanten M., Pavlova P., Clifton R., Pontvianne F., Snoek L.B., Millenaar F.F., Schulkes R.K., van Driel R., Voesenek L.A., Spillane C., Pikaard C.S., Fransz P., Peeters A.J., Phytochrome B., histone deacetylase 6 control light-induced chromatin compaction in Arabidopsis thaliana. PLoS Genet, 2009, 5e1000638. [Google Scholar]
  • The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408, 796–815. [Google Scholar]
  • Tumbar T., Sudlow G., Belmont A.S., Large-scale chromatin unfolding, and remodeling induced by VP16 acidic activation domain. J Cell Biol, 1999, 145, 1341–1354. [CrossRef] [PubMed] [Google Scholar]
  • Turck F., Roudier F., Farrona S., Martin-Magniette M.L., Guillaume E., Buisine N., Gagnot S., Martienssen R.A., Coupland G., Colot V., Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genet, 20073, e86. [Google Scholar]
  • van Driel R., Fransz P., Nuclear architecture and genome functioning in plants and animals: what can we learn from both? Exp Cell Res, 2004, 296, 86–90. [CrossRef] [PubMed] [Google Scholar]
  • Verschure P.J., van der Kraan I., de Leeuw W., van der Vlag J., Carpenter A.E., Belmont A.S., van Driel R., In vivo HP1 targeting causes large-scale chromatin condensation, and enhanced histone lysine methylation. Mol Cell Biol, 2005, 25, 4552–4564. [CrossRef] [PubMed] [Google Scholar]
  • Wegel E., Vallejos R.H., Christou P., Stoger E., Shaw P., Large-scale chromatin decondensation induced in a developmentally activated transgene locus. JCell Sci, 2005, 118, 1021–1031. [Google Scholar]
  • Wierzbicki A.T., Haag J.R., Pikaard C.S., Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping, and adjacent genes. Cell, 2008, 135, 635–648. [CrossRef] [PubMed] [Google Scholar]
  • Yang H.Q., Tang R.H., Cashmore A.R., The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1. Plant Cell, 2001, 13, 2573–2587. [CrossRef] [PubMed] [Google Scholar]
  • Yu X., Klejnot J., Zhao X., Shalitin D., Maymon M., Yang H., Lee, J., Liu X., Lopez J., Lin C., Arabidopsis cryptochrome 2 completes its posttranslational life cycle in the nucleus. Plant Cell, 2007, 19, 3146–3156. [CrossRef] [PubMed] [Google Scholar]
  • Yu X., Sayegh R., Maymon, M., Warpeha, K., Klejnot, J., Yang, H., Huang, J., Lee J., Kaufman L. Lin C., Formation of nuclear bodies of Arabidopsis CRY2 in response to blue light is associated with its blue light-dependent degradation. Plant Cell, 2009, 21, 118–130. [CrossRef] [PubMed] [Google Scholar]
  • Zhang X., Germann S., Blus B.J., Khorasanizadeh S., Gaudin V., Jacobsen S.E., The Arabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation. Nat Struct Mol Biol, 2007, 14, 869–871. [CrossRef] [PubMed] [Google Scholar]
  • Zhao J., Morozova N., Williams L., Libs L., Avivi Y., Grafi G., Two phases of chromatin decondensation during dedifferentiation of plant cells: distinction between competence for cell fate switch and a commitment for S phase. J Biol Chem, 2001, 276, 22772–22778. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.