Accès gratuit
Biologie Aujourd'hui
Volume 204, Numéro 3, 2010
Page(s) 205 - 213
Section Architecture fonctionnelle du noyau
Publié en ligne 13 octobre 2010
  • Abdalla H., Yoshizawa Y., Hochi S., Active demethylation of paternal genome in mammalian zygotes. J Reprod Dev, 2009, 55, 356–360. [CrossRef] [PubMed] [Google Scholar]
  • Adenot P.G., Szollosi M.S., Geze M., Renard J.P., Debey P., Dynamics of paternal chromatin changes in live one-cell mouse embryo after natural fertilization. Mol Reprod Dev, 1991, 28, 23–34. [CrossRef] [PubMed] [Google Scholar]
  • Adenot P.G., Mercier Y., Renard J.P., Thompson E.M., Differential H4 acetylation of paternal, maternal chromatin precedes DNA replication, and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development, 1997, 124, 4615–4625. [PubMed] [Google Scholar]
  • Aoki F., Worrad D.M., Schultz R.M., Regulation of transcriptional activity during the first , and second cell cycles in the preimplantation mouse embryo. Dev Biol, 1997, 181, 296–307. [CrossRef] [PubMed] [Google Scholar]
  • Arney K.L., Bao S., Bannister A.J., Kouzarides T., Surani M.A., Histone methylation defines epigenetic asymmetry in the mouse zygote. Int J Dev Biol, 2002, 46, 317–320. [PubMed] [Google Scholar]
  • Austin C.R., Fertilization of mammalian eggs in vitro. Int Rev Cytol, 1961, 12, 337–359. [CrossRef] [PubMed] [Google Scholar]
  • Barton S.C., Arney K.L., Shi W., Niveleau A., Fundele R., Surani M.A., Haaf T., Genome-wide methylation patterns in normal , and uniparental early mouse embryos. Hum Mol Genet, 2001, 10, 2983–2987. [CrossRef] [PubMed] [Google Scholar]
  • Beaujean N., Bouniol-Baly C., Monod C., Kissa K., Jullien D., Aulner N., Amirand C., Debey P., Kas E., Induction of early transcription in one-cell mouse embryos by microinjection of the nonhistone chromosomal protein HMG-I. Dev Biol, 2000, 221, 337–354. [CrossRef] [PubMed] [Google Scholar]
  • Beaujean N., Hartshorne G., Cavilla J., Taylor J., Gardner J., Wilmut I., Meehan R., Young L., Non-conservation of mammalian preimplantation methylation dynamics. Curr Biol, 2004, 14, R266–267. [CrossRef] [PubMed] [Google Scholar]
  • Bellier S., Chastant S., Adenot P., Vincent M., Renard J.P., Bensaude O., Nuclear translocation , and carboxyl-terminal domain phosphorylation of RNA polymerase II delineate the two phases of zygotic gene activation in mammalian embryos. Embo J, 1997, 16, 6250–6262. [CrossRef] [PubMed] [Google Scholar]
  • Bouniol C., Nguyen E., Debey P., Endogenous transcription occurs at the 1-cell stage in the mouse embryo. Exp Cell Res, 1995, 218, 57–62. [CrossRef] [PubMed] [Google Scholar]
  • Braude P., Bolton V., Moore S., Human gene expression first occurs between the four- , and eight-cell stages of preimplantation development. Nature, 1988, 332, 459–461. [CrossRef] [PubMed] [Google Scholar]
  • Brown J.M., Green J., das Neves R.P., Wallace H.A., Smith A.J., Hughes J., Gray N., Taylor S., Wood W.G., Higgs D.R., Iborra F.J., Buckle V.J., Association between active genes occurs at nuclear speckles , and is modulated by chromatin environment. J Cell Biol, 2008, 182, 1083–1097. [CrossRef] [PubMed] [Google Scholar]
  • Campos E.I., Reinberg D. Histones: annotating chromatin. Ann Rev Genet, 2009, 43, 559–599. [Google Scholar]
  • Cheng X., Blumenthal R.M., Coordinated chromatin control: structural and functional linkage of DNA and histone methylation. Biochemistry, 2010, 49, 2999–3008. [CrossRef] [PubMed] [Google Scholar]
  • Christians E., Rao V.H., Renard J.P., Sequential acquisition of transcriptional control during early embryonic development in the rabbit. Dev Biol, 1994, 164, 160–172. [CrossRef] [PubMed] [Google Scholar]
  • Couldrey C., Lee R.S., DNA methylation patterns in tissues from mid-gestation bovine foetuses produced by somatic cell nuclear transfer show subtle abnormalities in nuclear reprogramming. BMC Dev Biol, 2010, 10, 27. [CrossRef] [PubMed] [Google Scholar]
  • Cremer T., Cremer C., Chromosome territories , nuclear architecture , and gene regulation in mammalian cells. Nat Rev Genet, 2001, 2, 292–301. [CrossRef] [PubMed] [Google Scholar]
  • Foster H.A., Bridger J.M., The genome , and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma, 2005, 114, 212–229. [CrossRef] [PubMed] [Google Scholar]
  • Francastel C., Schubeler D., Martin D.I., Groudine M., Nuclear compartmentalization , and gene activity. Nat Rev Mol Cell Biol, 2000, 1, 137–143. [CrossRef] [PubMed] [Google Scholar]
  • Francastel C., Magis W., Groudine M., Nuclear relocation of a transactivator subunit precedes target gene activation. Proc Natl Acad Sci USA, 2001, 98, 12120–12125. [CrossRef] [Google Scholar]
  • Fulka H., St John J.C., Fulka J., Hozak P., Chromatin in early mammalian embryos: achieving the pluripotent state. Differentiation, 2008, 76, 3–14. [CrossRef] [PubMed] [Google Scholar]
  • Giraldo A.M., Hylan D.A., Ballard C.B., Purpera M.N., Vaught T.D., Lynn J.W., Godke R.A., Bondioli K.R., Effect of epigenetic modifications of donor somatic cells on the subsequent chromatin remodeling of cloned bovine embryos. Biol Reprod, 2008, 78, 832–840. [CrossRef] [PubMed] [Google Scholar]
  • Haaf T., The battle of the sexes after fertilization: behaviour of paternal and maternal chromosomes in the early mammalian embryo. Chromosome Res, 2001, 9, 263–271. [CrossRef] [PubMed] [Google Scholar]
  • Howlett S.K., Reik W., Methylation levels of maternal , and paternal genomes during preimplantation development. Development, 1991, 113, 119–127. [PubMed] [Google Scholar]
  • Huang J.C., Lei Z.L., Shi L.H., Miao Y.L., Yang J.W., Ouyang Y.C., Sun Q.Y., Chen D.Y., Comparison of histone modifications in in vivo and in vitro fertilization mouse embryos. Biochem Biophys Res Commun, 2007, 354, 77–83. [CrossRef] [PubMed] [Google Scholar]
  • Kopecny V., Fléchon J.E., Camous S., Fulka J. Jr., Nucleologenesis , and the onset of transcription in the eight-cell bovine embryo: fine-structural autoradiographic study. Mol Reprod Dev, 1989, 1, 79–90. [CrossRef] [PubMed] [Google Scholar]
  • Kremenskoy M., Kremenska Y., Suzuki M., Imai K., Takahashi S., Hashizume K., Yagi S., Shiota K. DNA methylation profiles of donor nuclei cells, and tissues of cloned bovine fetuses. J Reprod Dev, 2006, 52, 259–266. [CrossRef] [PubMed] [Google Scholar]
  • Lepikhov K., Walter J., Differential dynamics of histone H3 methylation at positions K4 and K9 in the mouse zygote. BMC Dev Biol, 2004, 4, 12. [CrossRef] [PubMed] [Google Scholar]
  • Liu H., Kim J.M., Aoki F., Regulation of histone H3 lysine 9 methylation in oocytes , and early pre-implantation embryos. Development, 2004, 131, 2269–2280. [CrossRef] [PubMed] [Google Scholar]
  • Loi P., Beaujean N., Khochbin S., Fulka J., Jr., Ptak G., Asymmetric nuclear reprogramming in somatic cell nuclear transfer? Bioessays, 2008, 30, 66–74. [CrossRef] [PubMed] [Google Scholar]
  • Ma P., Schultz R.M., Histone deacetylase 1 (HDAC1) regulates histone acetylation, development, and gene expression in preimplantation mouse embryos. Dev Biol, 2008, 319, 110–120. [CrossRef] [PubMed] [Google Scholar]
  • Maalouf W.E., Liu Z., Brochard V., Renard J.P., Debey P., Beaujean N., Zink D., Trichostatin A treatment of cloned mouse embryos improves constitutive heterochromatin remodeling as well as developmental potential to term. BMC Dev Biol, 2009, 9, 11. [CrossRef] [PubMed] [Google Scholar]
  • Mahy N.L., Perry P.E., Gilchrist S., Baldock R.A., Bickmore W.A., Spatial organization of active , inactive genes , and noncoding DNA within chromosome territories. J Cell Biol, 2002, 157, 579–589. [CrossRef] [PubMed] [Google Scholar]
  • Martin C., Beaujean N., Brochard V., Audouard C., Zink D., Debey P., Genome restructuring in mouse embryos during reprogramming , and early development. Dev Biol, 2006, 292, 317–332. [CrossRef] [PubMed] [Google Scholar]
  • Mayer W., Niveleau A., Walter J., Fundele R., Haaf T., Demethylation of the zygotic paternal genome. Nature, 2000, 403, 501–502. [CrossRef] [PubMed] [Google Scholar]
  • Merico V., Barbieri J., Zuccotti M., Joffe B., Cremer T., Redi C.A., Solovei I., Garagna S., Epigenomic differentiation in mouse preimplantation nuclei of biparental, parthenote , and cloned embryos. Chromosome Res, 2007, 15, 341–360. [PubMed] [Google Scholar]
  • Misteli T., Spatial positioning; a new dimension in genome function. Cell, 2004, 119, 153–156. [CrossRef] [PubMed] [Google Scholar]
  • Monk M., Boubelik M., Lehnert S., Temporal, regional changes in DNA methylation in the embryonic , extraembryonic , and germ cell lineages during mouse embryo development. Development, 1987, 99, 371–382. [PubMed] [Google Scholar]
  • Morgan H.D., SantosF., Green K., DeanW., Reik W., Epigenetic reprogramming in mammals. Hum Mol Genet, 2005, 14 Spec No 1, R47–58. [CrossRef] [PubMed] [Google Scholar]
  • Olek A., Walter J., The pre-implantation ontogeny of the H19 methylation imprint. Nat Genet, 1997, 17, 275–276. [CrossRef] [PubMed] [Google Scholar]
  • Ooi S.K., Bestor T.H., The colorful history of active DNA demethylation. Cell, 2008, 133, 1145–1148. [CrossRef] [PubMed] [Google Scholar]
  • Osborne C.S., Chakalova L., Brown K.E., Carter D., Horton A., Debrand E., Goyenechea B., Mitchell J.A., Lopes S., Reik W., Fraser P., Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet, 2004, 36, 1065–1071. [CrossRef] [PubMed] [Google Scholar]
  • Park J.S., Jeong Y.S., Shin S.T., Lee K.K., Kang Y.K., Dynamic DNA methylation reprogramming: active demethylation and immediate remethylation in the male pronucleus of bovine zygotes. Dev Dyn, 2007, 236, 2523–2533. [CrossRef] [PubMed] [Google Scholar]
  • Pichugin A., Le Bourhis D., Adenot P., Lehmann G., Audouard C., Renard J.P., Vignon X., Beaujean N., Dynamics of constitutive heterochromatin: two contrasted kinetics of genome restructuring in early cloned bovine embryos. Reproduction, 2010, 139, 129–137. [CrossRef] [PubMed] [Google Scholar]
  • Probst A.V., Santos F., Reik W., Almouzni G., Dean W., Structural differences in centromeric heterochromatin are spatially reconciled on fertilisation in the mouse zygote. Chromosoma, 2007, 116, 403–415. [CrossRef] [PubMed] [Google Scholar]
  • Puschendorf M., Terranova R., Boutsma E., Mao X., Isono K., Brykczynska U., Kolb C., Otte A.P., Koseki H., Orkin S.H., van Lohuizen M., Peters A.H., PRC1 , and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat Genet, 2008, 40, 411-420. [CrossRef] [PubMed] [Google Scholar]
  • Romanova L., Korobova F., Noniashvilli E., Dyban A., Zatsepina O., High resolution mapping of ribosomal DNA in early mouse embryos by fluorescence in situ hybridization. Biol Reprod, 2006, 74, 807–815. [CrossRef] [PubMed] [Google Scholar]
  • Rougier N., Bourc’his D., Gomes D.M., Niveleau A., Plachot M., Paldi A., Viegas-Pequignot E., Chromosome methylation patterns during mammalian preimplantation development. Genes Dev, 1998, 12, 2108–2113. [CrossRef] [PubMed] [Google Scholar]
  • Santos F., Hendrich B., Reik W., Dean W., Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol, 2002, 241, 172–182. [CrossRef] [PubMed] [Google Scholar]
  • Schneider R., Grosschedl R., Dynamics , interplay of nuclear architecture , genome organization , gene expression. Genes Dev, 2007, 21, 3027–3043. [CrossRef] [PubMed] [Google Scholar]
  • Schotta G., Lachner M., Sarma K., Ebert A., Sengupta R., Reuter G., Reinberg D., Jenuwein T., A silencing pathway to induce H3-K9 , and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev, 2004, 18, 1251–1262. [CrossRef] [PubMed] [Google Scholar]
  • Schultz R.M., Regulation of zygotic gene activation in the mouse. Bioessays, 1993, 15, 531–538. [CrossRef] [PubMed] [Google Scholar]
  • Shao G.B., Ding H.M., Gong A.H., Role of histone methylation in zygotic genome activation in the preimplantation mouse embryo. In Vitro Cell Dev Biol Anim, 2008, 44, 115–120. [CrossRef] [PubMed] [Google Scholar]
  • Shi W., Haaf T., Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure. Mol Reprod Dev, 2002, 63, 329–334. [CrossRef] [PubMed] [Google Scholar]
  • Shopland L.S., Johnson C.V., Byron M., McNeil J., Lawrence J.B., Clustering of multiple specific genes , and gene-rich R-bands around SC-35 domains: evidence for local euchromatic neighborhoods. J Cell Biol, 2003, 162, 981–990. [CrossRef] [PubMed] [Google Scholar]
  • Stein P., Worrad D.M., Belyaev N.D., Turner B.M., Schultz R.M., Stage-dependent redistributions of acetylated histones in nuclei of the early preimplantation mouse embryo. Mol Reprod Dev, 1997, 47, 421–429. [CrossRef] [PubMed] [Google Scholar]
  • Warnecke P.M., Mann J.R., Frommer M., Clark S.J., Bisulfite sequencing in preimplantation embryos: DNA methylation profile of the upstream region of the mouse imprinted H19 gene. Genomics, 1998, 51, 182–190. [CrossRef] [PubMed] [Google Scholar]
  • Worrad D.M., Ram P.T., Schultz R.M., Regulation of gene expression in the mouse oocyte , and early preimplantation embryo: developmental changes in Sp1 and TATA box-binding protein, TBP. Development, 1994, 120, 2347–2357. [PubMed] [Google Scholar]
  • Worrad D.M., Turner B.M., Schultz R.M., Temporally restricted spatial localization of acetylated isoforms of histone H4 , and RNA polymerase II in the 2-cell mouse embryo. Development, 1995, 121, 2949–2959. [PubMed] [Google Scholar]
  • Young L.E., Beaujean N., DNA methylation in the preimplantation embryo: the differing stories of the mouse and sheep. Anim Reprod Sci, 2004, 82–83, 61-78. [CrossRef] [PubMed] [Google Scholar]
  • Zatsepina O., Baly C., Chebrout M., Debey P., The step-wise assembly of a functional nucleolus in preimplantation mouse embryos involves the cajal (coiled) body. Dev Biol, 2003, 253, 66–83. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.