Accès gratuit
Biologie Aujourd'hui
Volume 204, Numéro 4, 2010
Page(s) 321 - 331
Section Article communiqué hors séance
Publié en ligne 10 janvier 2011
  • Abler B., Roebroeck A., Goebel R., Hose A., Schonfeldt-Lecuona C., Hole G., Walter H., Investigating directed influences between activated brain areas in a motor-response task using fMRI. Magn Reson Imaging, 2006, 24, 181–185. [CrossRef] [PubMed] [Google Scholar]
  • Ascher P., Les signaux neuronaux, in Université de tous les savoirs, le Cerveau, le Langage, le Sens., O. Jacob, 2002, 59–73. [Google Scholar]
  • Catani M., Howard R.J., Pajevic S., Jones D.K., Virtual in vivo interactive dissection of white matter fasciculi in the human brain. NeuroImage, 2002, 17, 77–94. [Google Scholar]
  • Damasio A., Descartes’ Error, Emotion, Reason and the Human Brain. Grosset/Putnam Books, 1994. [Google Scholar]
  • de Marco, G., Peretti I., Troprès I., Franconi J., Henry-Feugeas M., Cerebral perfusion : Dynamic susceptibility contrast MR imaging. Part I : Principle and theory. Médecine Nucléaire - Imagerie fonctionnelle et métabolique, 2003, 27. [Google Scholar]
  • de Marco G., Dassonvalle P., Henry-Feugeas M.C., Onen F., Peretti I., Cerebral perfusion : dynamic suceptibility contrast MR imaging. Part 2 : vascular models and data extraction. Médecine Nucléaire - Imagerie fonctionnelle et métabolique, 2004, 28, 35–48. [Google Scholar]
  • de Marco G., Roche A., Peretti I., Gossuin Y., Lehmann P., Menuel C., Vallée J.N., Muller R.N., MRI contrast agents : theoretical approch and relaxometric mechanisms. Médecine Nucléaire - Imagerie fonctionnelle et métabolique, 2006, 30, 645–658. [Google Scholar]
  • de Marco G., Vrignaud P., Destrieux C., de Marco D., Testelin S., Devauchelle B., Berquin P., Principle of structural equation modeling for exploring functional interactivity within a putative network of interconnected brain areas. Magn Reson Imaging, 2009, 27, 1–12. [CrossRef] [PubMed] [Google Scholar]
  • Fall S., de Marco G., Functional exploration of the brain by fMRI. Neurophysiol Clin, 2007, 37, 229–237. [CrossRef] [PubMed] [Google Scholar]
  • Fall S., de Marco G., Assessment of brain interactivity in the motor cortex from the concept of functional connectivity and spectral analysis of fMRI data. Biol Cybern, 2008, 98, 101–114. [CrossRef] [PubMed] [Google Scholar]
  • Fall S., de Marco G., Assessment of brain interactivity in the motor cortex from the concept of functional connectivity and spectral analysis of fMRI data. Biological Cybernetics (in press). [Google Scholar]
  • Fall S., Lehmann P., Ambaiki K., Vallée J.N., Meyer M.E., de Marco G., Contribution of the spectral analysis to the brain connectivity study by fMRI. Neurophysiol Clin, 2007, 37, 239–247. [CrossRef] [PubMed] [Google Scholar]
  • Fields D., La force des souvenirs. Pour la Science, 2005, n°335. [Google Scholar]
  • Friston K., Functional and effective connectivity in neuroimaging : a synthesis. Hum Brain Mapp, 1994, 2, 56–78. [Google Scholar]
  • Friston K., Bayesian estimation of dynamical systems : an application to fMRI. NeuroImage, 2002, 16, 513–530. [CrossRef] [PubMed] [Google Scholar]
  • Friston K.J., Frith C.D., Liddle P.F., Frackowiak R.S., Functional connectivity : the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab, 1993, 13, 5–14. [PubMed] [Google Scholar]
  • Friston K., Phillips J., Chawla D., Buchel C., Revealing interactions among brain systems with nonlinear PCA. Hum Brain Mapp, 1999, 8, 92–97. [CrossRef] [PubMed] [Google Scholar]
  • Friston K., Mechelli A., Turner R., Price C., Nonlinear Responses in fMRI, The Ballon Model, Voltera Kernels, and Other Hemodynamics. NeuroImage, 2000, 12, 466–477. [CrossRef] [PubMed] [Google Scholar]
  • Friston K.J., Harrison L., Penny W., Dynamic causal modelling. NeuroImage, 2003, 19, 1273–1302. [Google Scholar]
  • Friston K., Kilner J., Harrison L., A free energy principle for the brain. J Physiol, 2006, 100, 70–87. [Google Scholar]
  • Gandolfo G., À quoi sert le cerveau ? Petite synthèse des grandes fonctions cérébrales. Revue de l’APBG, Biologie-Géologie, 2004, 3, 513–545. [Google Scholar]
  • Gerstein G.L., Perkel D.H., Simultaneously recorded trains of action potentials : analysis and functional interpretation. Science, 1969, 164, 828–830. [CrossRef] [PubMed] [Google Scholar]
  • Goldman R.I., Stern J.M., Engel J., Jr., Cohen M.S., Acquiring simultaneous EEG and functional MRI. Clin Neurophysiol, 2000, 111, 1974–1980. [CrossRef] [PubMed] [Google Scholar]
  • Gössl C., Auer D., Fahrmeir L., Dynamics models in fMRI. MRM, 2000, 43, 72–81. [Google Scholar]
  • Halliday D.M., Conway B.A., Farmer S.F., Shahani U., Russell A.J., Rosenberg J.R., Coherence between low-frequency activation of the motor cortex and tremor in patients with essential tremor. Lancet, 2000, 355, 1149–1153. [CrossRef] [PubMed] [Google Scholar]
  • Hamalainen M., Hari R., Ilmoniemi R., Knuutila J., Lounasmaa O., Magnetoencephalography – theory, instrumentation, and application to noninvasive studies of the working human brain. Rev Mod Physics, 1993, 65, 413–497. [Google Scholar]
  • Hanson S., Olson C., Connectionist Modeling and Brain Function : The Developing Interface. 1990, A Bradford Book., The MIT Press, Cambridge, Massachusetts. [Google Scholar]
  • Harel N., Ugurbil K., Uludag K., Yacoub E., Frontiers of brain mapping using MRI. J Magn Reson Imaging, 2006, 23, 945–957. [CrossRef] [PubMed] [Google Scholar]
  • Harrison L., Penny W.D., Friston K., Multivariate autoregressive modeling of fMRI time series. NeuroImage, 2003, 19, 1477–1491. [CrossRef] [PubMed] [Google Scholar]
  • Hebb D., The organization of Behavior : A Neurophysiological Theory. 1949, Wiley, New York. [Google Scholar]
  • Heeger D.J., Ress D., What does fMRI tell us about neuronal activity? Nat Rev Neurosci, 2002, 3, 142–151. [CrossRef] [PubMed] [Google Scholar]
  • Jacquard A., La matière et la vie. Essentiels, Milan, 1996, 63 p. [Google Scholar]
  • Komssi S., Kahkonen S., The novelty value of the combined use of electroencephalography and transcranial magnetic stimulation for neuroscience research. Brain Res Rev, 2006, 52, 183–192. [CrossRef] [PubMed] [Google Scholar]
  • Laird A.R., Robbins J.M., Li K., Price L.R., Cykowski M.D., Narayana S., Laird R.W., Franklin C., Fox P.T., Modeling motor connectivity using TMS/PET and structural equation modeling. NeuroImage, 2008, 41, 424–436. [CrossRef] [PubMed] [Google Scholar]
  • Lee L., Harrison L.M., Mechelli A., A report of the functional connectivity workshop, Dusseldorf 2002. NeuroImage, 2003, 19, 457–465. [CrossRef] [PubMed] [Google Scholar]
  • Logothetis N.K., Pauls J., Augath M., Trinath T., Oeltermann A., Neurophysiological investigation of the basis of the fMRI signal. Nature, 2001, 412, 150–157. [CrossRef] [PubMed] [Google Scholar]
  • MacGregor R., Neural and Brain Modeling. 1987, Harcourt Brace Jovanovich, Publishers, New York, Academic Press, Inc. [Google Scholar]
  • Marchini L.J., Ripley B.D., A new statistical approach to detecting significant activation in functional MRI. NeuroImage, 2000, 12, 366–380. [CrossRef] [PubMed] [Google Scholar]
  • Marrelec G., Kim J., Doyon J., Horwitz, B., Large-scale neural model validation of partial correlation analysis for effective connectivity investigation in functional MRI. Hum Brain Mapp, 2008, in press. [Google Scholar]
  • McIntosh A.R., Gonzalez-Lima F., Structural equation modeling and its application to network analysis in functional brain imaging. Hum Brain Mapp, 1994, 2, 2–22. [CrossRef] [Google Scholar]
  • McKeown M.J., Makeig S., Brown G.G., Jung T.P., Kindermann S.S., Bell A.J., Sejnowski T.J., Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp, 1998, 6, 160–188. [CrossRef] [PubMed] [Google Scholar]
  • Muller K., Mildner T., Lohmann G., von Cramon D.Y., Investigating the stimulus-dependent temporal dynamics of the BOLD signal using spectral methods. J Magn Reson Imaging, 2003, 17, 375–382. [CrossRef] [PubMed] [Google Scholar]
  • Nelson P.G., Un tissu de plus en plus excitable. Science et Vie, 2003, 210, 81–86. [Google Scholar]
  • Penny W.D., Stephan K.E., Mechelli A., Friston K.J., Modelling functional integration : a comparison of structural equation and dynamic causal models. NeuroImage, 2004, 23, S264–S274. [Google Scholar]
  • Périn B., Godefroy O., Fall S., de Marco G., Alertness in young healthy subjects : an fMRI study of brain region interactivity enhanced by a warning signal. Brain Cogn, 72, 271–281. [PubMed] [Google Scholar]
  • Roebroeck A., Formisano E., Goebel R., Mapping directed influence over the brain using Granger causality and fMRI. NeuroImage, 2005, 25, 230–242. [CrossRef] [PubMed] [Google Scholar]
  • Rykhlevskaia E., Fabiani M., Gratton G., Lagged covariance structure models for studying functional connectivity in the brain. NeuroImage, 2006, 30, 1203–1218. [CrossRef] [PubMed] [Google Scholar]
  • Shinoura N., Suzuki Y., Yamada R., Kodama T., Takahashi M., Yagi K., Fibers connecting the primary motor and sensory areas play a role in grasp stability of the hand. NeuroImage, 2005, 25, 936–941. [CrossRef] [PubMed] [Google Scholar]
  • Singh K.D., Barnes G.R., Hillebrand A., Forde E.M., Williams A.L., Task-related changes in cortical synchronization are spatially coincident with the hemodynamic response. NeuroImage, 2002, 16, 103–114. [CrossRef] [PubMed] [Google Scholar]
  • Sun F.T., Miller L.M., D’Esposito M., Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data. NeuroImage, 2004, 21, 647–658. [CrossRef] [PubMed] [Google Scholar]
  • Varela F., Lachaux J.P., Rodriguez E., Martinerie J., The brainweb : phase synchronization and large-scale integration. Nat Rev Neurosci, 2001, 2, 229–239. [Google Scholar]
  • Vens-Wagner G., Le Guen M., Les bases biologiques du traitement cognitif de l'information. Pour repenser l'éducation. Les cahiers de la MSE, Série Rouge-Matisse, 2005, 2005.81, 1–43. [Google Scholar]
  • Wakana S., Jiang H., Nagae-Poetscher L.M., van Zijl P.C., Mori S., Fiber tract-based atlas of human white matter anatomy. Radiology, 2004, 230, 77–87. [CrossRef] [PubMed] [Google Scholar]
  • Zaveri H.P., Williams W.J., Sackellares J.C., Beydoun A., Duckrow R.B., Spencer S.S., Measuring the coherence of intracranial electroencephalograms. Clin Neurophysiol, 1999, 110, 1717–1725. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.