Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 205, Numéro 1, 2011
Page(s) 5 - 28
Section Le cil, un organe cellulaire couplant sensorialité, motilité et division : le rôle du cil dans le développement de l’embryon et les pathologies de l’adulte
DOI https://doi.org/10.1051/jbio/2011005
Publié en ligne 19 avril 2011
  • Absalon S., Blisnick T., Bonhivers M., Kohl L., Cayet N., Toutirais G., Buisson J., Robinson D., Bastin P., Flagellum elongation is required for correct structure, orientation and function of the flagellar pocket in Trypanosoma brucei. J Cell Sci, 2008a, 121, 3704–3716. [CrossRef] [PubMed] [Google Scholar]
  • Absalon S., Blisnick T., Kohl L., Toutirais G., Dore G., Julkowska D., Tavenet A., Bastin P., Intraflagellar transport and functional analysis of genes required for flagellum formation in trypanosomes. Mol Biol Cell, 2008b, 19, 929–944. [CrossRef] [PubMed] [Google Scholar]
  • Adhiambo C., Blisnick T., Toutirais G., Delannoy E., Bastin P., A novel function for the atypical small G protein Rab-like 5 in the assembly of the trypanosome flagellum. J Cell Sci, 2009, 122, 834–841. [CrossRef] [PubMed] [Google Scholar]
  • Alexander J., Unusual axonemal doublet arrangements in the flagellum of Leishmania amastigotes. Trans R Soc Trop Med Hyg, 1978, 72, 345–347. [CrossRef] [PubMed] [Google Scholar]
  • Arnaiz O., Malinowska A., Klotz C., Sperling L., Dadlez M., Koll F., Cohen J., Cildb: a knowledgebase for centrosomes and cilia. Database (Oxford), 2009, bap022. [Google Scholar]
  • Avidor-Reiss T., Maer A.M., Koundakjian E., Polyanovsky A., Keil T., Subramaniam S., Zuker C.S., Decoding cilia function: defining specialized genes required for compartmentalized cilia biogenesis. Cell, 2004, 117, 527–539. [CrossRef] [PubMed] [Google Scholar]
  • Baas D., Meiniel A., Benadiba C., Bonnafe E., Meiniel O., Reith W., Durand B., A deficiency in RFX3 causes hydrocephalus associated with abnormal differentiation of ependymal cells. Eur J Neurosci, 2006, 24, 1020–1030. [CrossRef] [PubMed] [Google Scholar]
  • Baccetti B., Dallai R., Burrini A.G., The spermatozoon of Arthropoda. 18. The non-motile bifurcated sperm of Psychodidae flies. J Cell Sci, 1973, 12, 287–311. [PubMed] [Google Scholar]
  • Baldari C.T., Rosenbaum J., Intraflagellar transport: it’s not just for cilia anymore. Curr Opin Cell Biol, 2010, 22, 75–80. [CrossRef] [PubMed] [Google Scholar]
  • Baron D.M., Kabututu Z.P., Hill K.L., Stuck in reverse: loss of LC1 in Trypanosoma brucei disrupts outer dynein arms and leads to reverse flagellar beat and backward movement. J Cell Sci, 2007a, 120, 1513–1520. [CrossRef] [PubMed] [Google Scholar]
  • Baron D.M., Ralston K.S., Kabututu Z.P., Hill K.L., Functional genomics in Trypanosoma brucei identifies evolutionarily conserved components of motile flagella. J Cell Sci, 2007b, 120, 478–491. [CrossRef] [PubMed] [Google Scholar]
  • Bartoloni L., Blouin J.L., Pan Y., Gehrig C., Maiti A.K., Scamuffa N., Rossier C., Jorissen M., Armengot M., Meeks M., Mitchison H.M., Chung E.M., Delozier-Blanchet C.D., Craigen W.J., Antonarakis S.E., Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc Natl Acad Sci USA, 2002, 99, 10282–10286. [CrossRef] [Google Scholar]
  • Bastin P., MacRae T.H., Francis S.B., Matthews K.R., Gull K., Flagellar morphogenesis: protein targeting and assembly in the paraflagellar rod of trypanosomes. Mol Cell Biol, 1999, 19, 8191–8200. [PubMed] [Google Scholar]
  • Bastin P., Ellis K., Kohl L., Gull K., Flagellum ontogeny in trypanosomes studied via an inherited and regulated RNA interference system. J Cell Sci, 2000, 113, 3321–3328. [PubMed] [Google Scholar]
  • Bengs F., Scholz A., Kuhn D., Wiese M., LmxMPK9, a mitogen-activated protein kinase homologue affects flagellar length in Leishmania mexicana. Mol Microbiol, 2005, 55, 1606–1615. [CrossRef] [PubMed] [Google Scholar]
  • Berbari N.F., O’Connor A.K., Haycraft C.J., Yoder B.K., The primary cilium as a complex signaling center. Curr Biol, 2009, 19, R526–535. [CrossRef] [PubMed] [Google Scholar]
  • Berriman M., Ghedin E., Hertz-Fowler C., Blandin G., Renauld H., Bartholomeu D.C., Lennard N.J., Caler E., Hamlin N.E., Haas B., Bohme U., Hannick L., Aslett M.A., Shallom J., Marcello L., Hou L., Wickstead B., Alsmark U.C., Arrowsmith C., Atkin R.J., Barron A.J., Bringaud F., Brooks K., Carrington M., Cherevach I., Chillingworth T.J., Churcher C., Clark L.N., Corton C.H., Cronin A., Davies R.M., Doggett J., Djikeng A., Feldblyum T., Field M.C., Fraser A., Goodhead I., Hance Z., Harper D., Harris B.R., Hauser H., Hostetler J., Ivens A., Jagels K., Johnson D., Johnson J., Jones K., Kerhornou A.X., Koo H., Larke N., Landfear S., Larkin C., Leech V., Line A., Lord A., Macleod A., Mooney P.J., Moule S., Martin D.M., Morgan G.W., Mungall K., Norbertczak H., Ormond D., Pai G., Peacock C.S., Peterson J., Quail M.A., Rabbinowitsch E., Rajandream M.A., Reitter C., Salzberg S.L., Sanders M., Schobel S., Sharp S., Simmonds M., Simpson A.J., Tallon L., Turner C.M., Tait A., Tivey A.R., Van Aken S., Walker D., Wanless D., Wang S., White B., White O., Whitehead S., Woodward J., Wortman J., Adams M.D., Embley T.M., Gull K., Ullu E., Barry J.D., Fairlamb A.H., Opperdoes F., Barrell B.G., Donelson J.E., Hall N., Fraser C.M., Melville S.E., El-Sayed N.M., The genome of the African trypanosome Trypanosoma brucei. Science, 2005, 309, 416–422. [CrossRef] [PubMed] [Google Scholar]
  • Besharse J.C., Hollyfield J.G., Turnover of mouse photoreceptor outer segments in constant light and darkness. Invest Ophthalmol Vis Sci, 1979, 18, 1019–1024. [PubMed] [Google Scholar]
  • Besharse J.C., Hollyfield J.G., Rayborn M.E., Turnover of rod photoreceptor outer segments. II. Membrane addition and loss in relationship to light. J Cell Biol, 1977, 75, 507–527. [CrossRef] [PubMed] [Google Scholar]
  • Blacque O.E., Reardon M.J., Li C., McCarthy J., Mahjoub M.R., Ansley S.J., Badano J.L., Mah A.K., Beales P.L., Davidson W.S., Johnsen R.C., Audeh M., Plasterk R.H., Baillie D.L., Katsanis N., Quarmby L.M., Wicks S.R., Leroux M.R., Loss of C. elegans BBS-7 and BBS-8 protein function results in cilia defects and compromised intraflagellar transport. Genes Dev, 2004, 18, 1630–1642. [CrossRef] [PubMed] [Google Scholar]
  • Blacque O.E., Perens E.A., Boroevich K.A., Inglis P.N., Li C., Warner A., Khattra J., Holt R.A., Ou G., Mah A.K., McKay S.J., Huang P., Swoboda P., Jones S.J., Marra M.A., Baillie D.L., Moerman D.G., Shaham S., Leroux M.R., Functional genomics of the cilium, a sensory organelle. Curr Biol, 2005, 15, 935–941. [CrossRef] [PubMed] [Google Scholar]
  • Blacque O.E., Li C., Inglis P.N., Esmail M.A., Ou G., Mah A.K., Baillie D.L., Scholey J.M., Leroux M.R., The WD repeat-containing protein IFTA-1 is required for retrograde intraflagellar transport. Mol Biol Cell, 2006, 17, 5053–5062. [CrossRef] [PubMed] [Google Scholar]
  • Blaineau C., Tessier M., Dubessay P., Tasse L., Crobu L., Pages M., Bastien P., A novel microtubule-depolymerizing kinesin involved in length control of a eukaryotic flagellum. Curr Biol, 2007, 17, 778–782. [CrossRef] [PubMed] [Google Scholar]
  • Bloodgood R.A., Protein targeting to flagella of trypanosomatid protozoa. Cell Biol Int, 2000, 24, 857–862. [CrossRef] [Google Scholar]
  • Bobinnec Y., Khodjakov A., Mir L.M., Rieder C.L., Edde B., Bornens M., Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J Cell Biol, 1998, 143, 1575–1589. [CrossRef] [PubMed] [Google Scholar]
  • Bonnafe E., Touka M., AitLounis A., Baas D., Barras E., Ucla C., Moreau A., Flamant F., Dubruille R., Couble P., Collignon J., Durand B., Reith W., The transcription factor RFX3 directs nodal cilium development and left-right asymmetry specification. Mol Cell Biol, 2004, 24, 4417–4427. [CrossRef] [PubMed] [Google Scholar]
  • Brancati F., Iannicelli M., Travaglini L., Mazzotta A., Bertini E., Boltshauser E., D’Arrigo S., Emma F., Fazzi E., Gallizzi R., Gentile M., Loncarevic D., Mejaski-Bosnjak V., Pantaleoni C., Rigoli L., Salpietro C.D., Signorini S., Stringini G.R., Verloes A., Zabloka D., Dallapiccola B., Gleeson J.G., Valente E.M., MKS3/TMEM67 mutations are a major cause of COACH Syndrome, a Joubert Syndrome related disorder with liver involvement. Hum Mutat, 2009, 30, E432–442. [CrossRef] [PubMed] [Google Scholar]
  • Branche C., Kohl L., Toutirais G., Buisson J., Cosson J., Bastin P., Conserved and specific functions of axoneme components in trypanosome motility. J Cell Sci, 2006, 119, 3443–3455. [CrossRef] [PubMed] [Google Scholar]
  • Briggs L.J., Davidge J.A., Wickstead B., Ginger M.L., Gull K., More than one way to build a flagellum: comparative genomics of parasitic protozoa. Curr Biol, 2004, 14, R611–612. [CrossRef] [PubMed] [Google Scholar]
  • Broadhead R., Dawe H.R., Farr H., Griffiths S., Hart S.R., Portman N., Shaw M.K., Ginger M.L., Gaskell S.J., McKean P.G., Gull K., Flagellar motility is required for the viability of the bloodstream trypanosome. Nature, 2006, 440, 224–227. [CrossRef] [PubMed] [Google Scholar]
  • Castleman V.H., Romio L., Chodhari R., Hirst R.A., de Castro S.C., Parker K.A., Ybot-Gonzalez P., Emes R.D., Wilson S.W., Wallis C., Johnson C.A., Herrera R.J., Rutman A., Dixon M., Shoemark A., Bush A., Hogg C., Gardiner R.M., Reish O., Greene N.D., O’Callaghan C., Purton S., Chung E.M., Mitchison H.M., Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central-microtubular-pair abnormalities. Am J Hum Genet, 2009, 84, 197–209. [CrossRef] [PubMed] [Google Scholar]
  • Cevik S., Hori Y., Kaplan O.I., Kida K., Toivenon T., Foley-Fisher C., Cottell D., Katada T., Kontani K., Blacque O.E., Joubert syndrome Arl13b functions at ciliary membranes and stabilizes protein transport in Cœnorhabditis elegans. J Cell Biol, 2010, 188, 953–969. [CrossRef] [PubMed] [Google Scholar]
  • Chen J., Knowles H.J., Hebert J.L., Hackett B.P., Mutation of the mouse hepatocyte nuclear factor/forkhead homologue 4 gene results in an absence of cilia and random left-right asymmetry. J Clin Invest, 1998, 102, 1077–1082. [CrossRef] [PubMed] [Google Scholar]
  • Chen N., Mah A., Blacque O.E., Chu J., Phgora K., Bakhoum M.W., Newbury C.R., Khattra J., Chan S., Go A., Efimenko E., Johnsen R., Phirke P., Swoboda P., Marra M., Moerman D.G., Leroux M.R., Baillie D.L., Stein L.D., Identification of ciliary and ciliopathy genes in Cœnorhabditis elegans through comparative genomics. Genome Biol, 2006, 7, R126. [Google Scholar]
  • Cheung H.O., Zhang X., Ribeiro A., Mo R., Makino S., Puviindran V., Law K.K., Briscoe J., Hui C.C., The kinesin protein Kif7 is a critical regulator of Gli transcription factors in mammalian hedgehog signaling. Sci Signal, 2009, 2, ra29. [Google Scholar]
  • Cole D.G., Diener D.R., Himelblau A.L., Beech P.L., Fuster J.C., Rosenbaum J.L., Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Cœnorhabditis elegans sensory neurons. J Cell Biol, 1998, 141, 993–1008. [CrossRef] [PubMed] [Google Scholar]
  • Collet J., Spike C.A., Lundquist E.A., Shaw J.E., Herman R.K., Analysis of osm-6, a gene that affects sensory cilium structure and sensory neuron function in Cœnorhabditis elegans. Genetics, 1998, 148, 187–200. [PubMed] [Google Scholar]
  • Coppieters F., Lefever S., Leroy B.P., De Baere E., CEP290, a gene with many faces: mutation overview and presentation of CEP290base. Hum Mutat, 2010, 31, 1097–1108. [CrossRef] [PubMed] [Google Scholar]
  • Cuvillier A., Redon F., Antoine J.C., Chardin P., DeVos T., Merlin G., LdARL-3A, a Leishmania promastigote-specific ADP-ribosylation factor-like protein, is essential for flagellum integrity. J Cell Sci, 2000, 113, 2065–2074. [PubMed] [Google Scholar]
  • Cuvillier A., Miranda J.C., Ambit A., Barral A., Merlin G., Abortive infection of Lutzomyia longipalpis insect vectors by aflagellated LdARL-3A-Q70L overexpressing Leishmania amazonensis parasites. Cell Microbiol, 2003, 5, 717–728. [CrossRef] [PubMed] [Google Scholar]
  • Davidge J.A., Chambers E., Dickinson H.A., Towers K., Ginger M.L., McKean P.G., Gull K., Trypanosome IFT mutants provide insight into the motor location for mobility of the flagella connector and flagellar membrane formation. J Cell Sci, 2006, 119, 3935–3943. [CrossRef] [PubMed] [Google Scholar]
  • Dawe H.R., Farr H., Portman N., Shaw M.K., Gull K., The Parkin co-regulated gene product, PACRG, is an evolutionarily conserved axonemal protein that functions in outer-doublet microtubule morphogenesis. J Cell Sci, 2005, 118, 5421–5430. [CrossRef] [PubMed] [Google Scholar]
  • de Bono M., Tobin D.M., Davis M.W., Avery L., Bargmann C.I., Social feeding in Cœnorhabditis elegans is induced by neurons that detect aversive stimuli. Nature, 2002, 419, 899–903. [CrossRef] [PubMed] [Google Scholar]
  • Demonchy R., Blisnick T., Deprez C., Toutirais G., Loussert C., Marande W., Grellier P., Bastin P., Kohl L., Kinesin 9 family members perform separate functions in the trypanosome flagellum. J Cell Biol, 2009, 187, 615–622. [CrossRef] [PubMed] [Google Scholar]
  • DiBella L.M., King S.M., Dynein motors of the Chlamydomonas flagellum. Int Rev Cytol, 2001, 210, 227–268. [CrossRef] [PubMed] [Google Scholar]
  • Drummond I.A., Majumdar A., Hentschel H., Elger M., Solnica-Krezel L., Schier A.F., Neuhauss S.C., Stemple D.L., Zwartkruis F., Rangini Z., Driever W., Fishman M.C., Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development, 1998, 125, 4655–4667. [PubMed] [Google Scholar]
  • Duquesnoy P., Escudier E., Vincensini L., Freshour J., Bridoux A.M., Coste A., Deschildre A., de Blic J., Legendre M., Montantin G., Tenreiro H., Vojtek A.M., Loussert C., Clément A., Escalier D., Bastin P., Mitchell D.R., Amselem S., Loss-of-function mutations in the human ortholog of Chlamydomonas reinhardtii ODA7 disrupt dynein arm assembly and cause primary ciliary dyskinesia. Am J Hum Genet, 2009, 85, 890–896. [CrossRef] [PubMed] [Google Scholar]
  • Durand-Dubief M., Kohl L., Bastin P., Efficiency and specificity of RNA interference generated by intra- and intermolecular double stranded RNA in Trypanosoma brucei. Mol Biochem Parasitol, 2003, 129, 11–21. [CrossRef] [PubMed] [Google Scholar]
  • Dutcher S.K., Flagellar assembly in two hundred and fifty easy-to-follow steps. Trends Genet, 1995, 11, 398–404. [CrossRef] [PubMed] [Google Scholar]
  • Edde B., Rossier J., Le Caer J.P., Desbruyères E., Gros F., Denoulet P., Post-translational glutamylation of alpha-tubulin. Science, 1990, 247, 83–85. [CrossRef] [PubMed] [Google Scholar]
  • Efimenko E., Bubb K., Mak H.Y., Holzman T., Leroux M.R., Ruvkun G., Thomas J.H., Swoboda P., Analysis of xbx genes in C. elegans. Development, 2005, 132, 1923–1934. [CrossRef] [PubMed] [Google Scholar]
  • Efimenko E., Blacque O.E., Ou G., Haycraft C.J., Yoder B.K., Scholey J.M., Leroux M.R., Swoboda P., Cœnorhabditis elegans DYF-2, an orthologue of human WDR19, is a component of the intraflagellar transport machinery in sensory cilia. Mol Biol Cell, 2006, 17, 4801–4811. [CrossRef] [PubMed] [Google Scholar]
  • El-Sayed N.M., Myler P.J., Blandin G., Berriman M., Crabtree J., Aggarwal G., Caler E., Renauld H., Worthey E.A., Hertz-Fowler C., Ghedin E., Peacock C., Bartholomeu D.C., Haas B.J., Tran A.N., Wortman J.R., Alsmark U.C., Angiuoli S., Anupama A., Badger J., Bringaud F., Cadag E., Carlton J.M., Cerqueira G.C., Creasy T., Delcher A.L., Djikeng A., Embley T.M., Hauser C., Ivens A.C., Kummerfeld S.K., Pereira-Leal J.B., Nilsson D., Peterson J., Salzberg S.L., Shallom J., Silva J.C., Sundaram J., Westenberger S., White O., Melville S.E., Donelson J.E., Andersson B., Stuart K.D., Hall N., Comparative genomics of trypanosomatid parasitic protozoa. Science, 2005, 309, 404–409. [CrossRef] [PubMed] [Google Scholar]
  • Endoh-Yamagami S., Evangelista M., Wilson D., Wen X., Theunissen J.W., Phamluong K., Davis M., Scales S.J., Solloway M.J., de Sauvage F.J., Peterson A.S., The mammalian Cos2 homolog Kif7 plays an essential role in modulating Hh signal transduction during development. Curr Biol, 2009, 19, 1320–1326. [CrossRef] [PubMed] [Google Scholar]
  • Engel B.D., Ludington W.B., Marshall W.F., Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model. J Cell Biol, 2009, 187, 81–89. [CrossRef] [PubMed] [Google Scholar]
  • Erdmann M., Scholz A., Melzer I.M., Schmetz C., Wiese M., Interacting protein kinases involved in the regulation of flagellar length. Mol Biol Cell, 2006, 17, 2035–2045. [Google Scholar]
  • Ersfeld K., Gull K., Targeting of cytoskeletal proteins to the flagellum of Trypanosoma brucei. J Cell Sci, 2001, 114, 141–148. [Google Scholar]
  • Farzan S.F., Ascano M., Jr., Ogden S.K., Sanial M., Brigui A., Plessis A., Robbins D.J., Costal2 functions as a kinesin-like protein in the hedgehog signal transduction pathway. Curr Biol, 2008, 18, 1215–1220. [CrossRef] [PubMed] [Google Scholar]
  • Finetti F., Paccani S.R., Riparbelli M.G., Giacomello E., Perinetti G., Pazour G.J., Rosenbaum J.L., Baldari C.T., Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse. Nat Cell Biol, 2009, 11, 1332–1339. [CrossRef] [PubMed] [Google Scholar]
  • Fliegauf M., Omran H., Novel tools to unravel molecular mechanisms in cilia-related disorders. Trends Genet, 2006, 22, 241–245. [CrossRef] [PubMed] [Google Scholar]
  • Fliegauf M., Benzing T., Omran H., When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol, 2007, 8, 880–893. [CrossRef] [PubMed] [Google Scholar]
  • Freshour J., Yokoyama R., Mitchell D.R., Chlamydomonas flagellar outer row dynein assembly protein ODA7 interacts with both outer row and I1 inner row dyneins. J Biol Chem, 2007, 282, 5404–5412. [CrossRef] [PubMed] [Google Scholar]
  • Gavin R.H., In vitro reassembly of basal body components. J Cell Sci, 1984, 66, 147–154. [PubMed] [Google Scholar]
  • Gherman A., Davis E.E., Katsanis N., The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia. Nat Genet, 2006, 38, 961–962. [CrossRef] [PubMed] [Google Scholar]
  • Gibbons I.R., Cilia and flagella of eukaryotes. J Cell Biol, 1981, 91, 107s–124s. [Google Scholar]
  • Gluenz E., Hoog J.L., Smith A.E., Dawe H.R., Shaw M.K., Gull K., Beyond 9+0: noncanonical axoneme structures characterize sensory cilia from protists to humans. FASEB J, 2010, 3117–3121. [Google Scholar]
  • Godsel L.M., Engman D.M., Flagellar protein localization mediated by a calcium-myristoyl/palmitoyl switch mechanism. Embo J, 1999, 18, 2057–2065. [CrossRef] [PubMed] [Google Scholar]
  • Goetz S.C., Anderson K.V., The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet, 2010, 11, 331–344. [CrossRef] [PubMed] [Google Scholar]
  • Griffiths G.M., Tsun A., Stinchcombe J.C., The immunological synapse: a focal point for endocytosis and exocytosis. J Cell Biol, 2010, 189, 399–406. [CrossRef] [PubMed] [Google Scholar]
  • Griffiths S., Portman N., Taylor P.R., Gordon S., Ginger M.L., Gull K., RNA interference mutant induction in vivo demonstrates the essential nature of trypanosome flagellar function during mammalian infection. Eukaryot Cell, 2007, 6, 1248–1250. [CrossRef] [PubMed] [Google Scholar]
  • Guirao B., Meunier A., Mortaud S., Aguilar A., Corsi J.M., Strehl L., Hirota Y., Desoeuvre A., Boutin C., Han Y.G., Mirzadeh Z., Cremer H., Montcouquiol M., Sawamoto K., Spassky N., Coupling between hydrodynamic forces and planar cell polarity orients mammalian motile cilia. Nat Cell Biol, 2010, 12, 341–350. [CrossRef] [PubMed] [Google Scholar]
  • Guttman S.D., Gorovsky M.A., Cilia regeneration in starved Tetrahymena: an inducible system for studying gene expression and organelle biogenesis. Cell, 1979, 17, 307–317. [CrossRef] [PubMed] [Google Scholar]
  • Han Y.G., Kwok B.H., Kernan M.J., Intraflagellar transport is required in Drosophila to differentiate sensory cilia but not sperm. Curr Biol, 2003, 13, 1679–1686. [CrossRef] [PubMed] [Google Scholar]
  • Han Y.G., Spassky N., Romaguera-Ros M., Garcia-Verdugo J.M., Aguilar A., Schneider-Maunoury S., Alvarez-Buylla A., Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nat Neurosci, 2008, 11, 277–284. [CrossRef] [PubMed] [Google Scholar]
  • Hao L., Scholey J.M., Intraflagellar transport at a glance. J Cell Sci, 2009, 122, 889–892. [CrossRef] [PubMed] [Google Scholar]
  • Hart S.R., Lau K.W., Hao Z., Broadhead R., Portman N., Huhmer A., Gull K., McKean P.G., Hubbard S.J., Gaskell S.J., Analysis of the trypanosome flagellar proteome using a combined electron transfer/collisionally activated dissociation strategy. J Am Soc Mass Spectrom, 2009, 20, 167–175. [CrossRef] [PubMed] [Google Scholar]
  • Hayes J.M., Kim S.K., Abitua P.B., Park T.J., Herrington E.R., Kitayama A., Grow M.W., Ueno N., Wallingford J.B., Identification of novel ciliogenesis factors using a new in vivo model for mucociliary epithelial development. Dev Biol, 2007, 312, 115–130. [CrossRef] [PubMed] [Google Scholar]
  • Hill K.L., Hutchings N.R., Russell D.G., Donelson J.E., A novel protein targeting domain directs proteins to the anterior cytoplasmic face of the flagellar pocket in African trypanosomes. J Cell Sci, 1999, 112, 3091–3101. [PubMed] [Google Scholar]
  • Hiraki M., Nakazawa Y., Kamiya R., Hirono M., Bld10p constitutes the cartwheel-spoke tip and stabilizes the 9-fold symmetry of the centriole. Curr Biol, 2007, 17, 1778–1783. [CrossRef] [PubMed] [Google Scholar]
  • Hollyfield J.G., Besharse J.C., Rayborn M.E., Turnover of rod photoreceptor outer segments. I. Membrane addition and loss in relationship to temperature. J Cell Biol, 1977, 75, 490–506. [CrossRef] [PubMed] [Google Scholar]
  • Huangfu D., Liu A., Rakeman A.S., Murcia N.S., Niswander L., Anderson K.V., Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature, 2003, 426, 83–87. [CrossRef] [PubMed] [Google Scholar]
  • Iftode F., Fleury-Aubusson A., Structural inheritance in Paramecium: ultrastructural evidence for basal body and associated rootlets polarity transmission through binary fission. Biol Cell, 2003, 95, 39–51. [CrossRef] [PubMed] [Google Scholar]
  • Inaba K., Molecular architecture of the sperm flagella: molecules for motility and signaling. Zoolog Sci, 2003, 20, 1043–1056. [CrossRef] [PubMed] [Google Scholar]
  • Inglis P.N., Boroevich K.A., Leroux M.R., Piecing together a ciliome. Trends Genet, 2006, 22, 491–500. [CrossRef] [PubMed] [Google Scholar]
  • Ivens A.C., Peacock C.S., Worthey E.A., Murphy L., Aggarwal G., Berriman M., Sisk E., Rajandream M.A., Adlem E., Aert R., Anupama A., Apostolou Z., Attipoe P., Bason N., Bauser C., Beck A., Beverley S.M., Bianchettin G., Borzym K., Bothe G., Bruschi C.V., Collins M., Cadag E., Ciarloni L., Clayton C., Coulson R.M., Cronin A., Cruz A.K., Davies R.M., De Gaudenzi J., Dobson D.E., Duesterhoeft A., Fazelina G., Fosker N., Frasch A.C., Fraser A., Fuchs M., Gabel C., Goble A., Goffeau A., Harris D., Hertz-Fowler C., Hilbert H., Horn D., Huang Y., Klages S., Knights A., Kube M., Larke N., Litvin L., Lord A., Louie T., Marra M., Masuy D., Matthews K., Michaeli S., Mottram J.C., Muller-Auer S., Munden H., Nelson S., Norbertczak H., Oliver K., O’Neil S., Pentony M., Pohl T.M., Price C., Purnelle B., Quail M.A., Rabbinowitsch E., Reinhardt R., Rieger M., Rinta J., Robben J., Robertson L., Ruiz J.C., Rutter S., Saunders D., Schafer M., Schein J., Schwartz D.C., Seeger K., Seyler A., Sharp S., Shin H., Sivam D., Squares R., Squares S., Tosato V., Vogt C., Volckaert G., Wambutt R., Warren T., Wedler H., Woodward J., Zhou S., Zimmermann W., Smith D.F., Blackwell J.M., Stuart K.D., Barrell B., Myler P.J., The genome of the kinetoplastid parasite, Leishmania major. Science, 2005, 309, 436–442. [Google Scholar]
  • Jackson A.P., Quail M.A., Berriman M., Insights into the genome sequence of a free-living Kinetoplastid: Bodo saltans (Kinetoplastida: Euglenozoa). BMC Genomics, 2008, 9, 594. [CrossRef] [PubMed] [Google Scholar]
  • Jackson A.P., Sanders M., Berry A., McQuillan J., Aslett M.A., Quail M.A., Chukualim B., Capewell P., MacLeod A., Melville S.E., Gibson W., Barry J.D., Berriman M., Hertz-Fowler C., The genome sequence of Trypanosoma brucei gambiense, causative agent of chronic human african trypanosomiasis. PLoS Negl Trop Dis, 2010, 4, e658. [Google Scholar]
  • Julkowska D., Bastin P., Tools for analyzing intraflagellar transport in trypanosomes. Methods Cell Biol, 2009, 93, 59–80. [CrossRef] [PubMed] [Google Scholar]
  • Katta S.S., Tammana T.V., Sahasrabuddhe A.A., Bajpai V.K., Gupta C.M., Trafficking activity of myosin XXI is required in assembly of Leishmania flagellum. J Cell Sci, 2010, 123, 2035–2044. [CrossRef] [PubMed] [Google Scholar]
  • Kennedy M.P., Omran H., Leigh M.W., Dell S., Morgan L., Molina P.L., Robinson B.V., Minnix S.L., Olbrich H., Severin T., Ahrens P., Lange L., Morillas H.N., Noone P.G., Zariwala M.A., Knowles M.R., Congenital heart disease and other heterotaxic defects in a large cohort of patients with primary ciliary dyskinesia. Circulation, 2007, 115, 2814–2821. [CrossRef] [PubMed] [Google Scholar]
  • Kennedy P.G., The continuing problem of human African trypanosomiasis (sleeping sickness). Ann Neurol, 2008, 64, 116–126. [CrossRef] [PubMed] [Google Scholar]
  • Kernan M., Cowan D., Zuker C., Genetic dissection of mechanosensory transduction: mechanoreception-defective mutations of Drosophila. Neuron, 1994, 12, 1195–1206. [CrossRef] [PubMed] [Google Scholar]
  • Kilburn C.L., Pearson C.G., Romijn E.P., Meehl J.B., Giddings T.H., Jr., Culver B.P., Yates J.R., 3rd, Winey M., New Tetrahymena basal body protein components identify basal body domain structure. J Cell Biol, 2007, 178, 905–912. [CrossRef] [PubMed] [Google Scholar]
  • Kim S.K., Shindo A., Park T.J., Oh E.C., Ghosh S., Gray R.S., Lewis R.A., Johnson C.A., Attie-Bittach T., Katsanis N., Wallingford J.B., Planar cell polarity acts through septins to control collective cell movement and ciliogenesis. Science, 2010, 329, 1337–1340. [CrossRef] [PubMed] [Google Scholar]
  • Kleyn P.W., Fan W., Kovats S.G., Lee J.J., Pulido J.C., Wu Y., Berkemeier L.R., Misumi D.J., Holmgren L., Charlat O., Woolf E.A., Tayber O., Brody T., Shu P., Hawkins F., Kennedy B., Baldini L., Ebeling C., Alperin G.D., Deeds J., Lakey N.D., Culpepper J., Chen H., Glucksmann-Kuis M.A., Carlson G.A., Duyk G.M., Moore K.J., Identification and characterization of the mouse obesity gene tubby: a member of a novel gene family. Cell, 1996, 85, 281–290. [CrossRef] [PubMed] [Google Scholar]
  • Kohl L., Bastin P., The flagellum of trypanosomes. Int Rev Cytol, 2005, 244, 227–285. [CrossRef] [PubMed] [Google Scholar]
  • Kohl L., Robinson D., Bastin P., Novel roles for the flagellum in cell morphogenesis and cytokinesis of trypanosomes. Embo J, 2003, 22, 5336–5346. [Google Scholar]
  • Kozminski K.G., Beech P.L., Rosenbaum J.L., The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane. J Cell Biol, 1995, 131, 1517–1527. [CrossRef] [PubMed] [Google Scholar]
  • Kozminski K.G., Johnson K.A., Forscher P., Rosenbaum J.L., A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci USA, 1993, 90, 5519–5523. [CrossRef] [Google Scholar]
  • Kramer-Zucker A.G., Olale F., Haycraft C.J., Yoder B.K., Schier A.F., Drummond I.A., Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development, 2005, 132, 1907–1921. [CrossRef] [PubMed] [Google Scholar]
  • Kubo T., Yanagisawa H.A., Yagi T., Hirono M., Kamiya R., Tubulin polyglutamylation regulates axonemal motility by modulating activities of inner-arm dyneins. Curr Biol, 2010, 20, 441–445. [CrossRef] [PubMed] [Google Scholar]
  • Kulaga H.M., Leitch C.C., Eichers E.R., Badano J.L., Lesemann A., Hoskins B.E., Lupski J.R., Beales P.L., Reed R.R., Katsanis N., Loss of BBS proteins causes anosmia in humans and defects in olfactory cilia structure and function in the mouse. Nat Genet, 2004, 36, 994–998. [CrossRef] [PubMed] [Google Scholar]
  • Lee E., Sivan-Loukianova E., Eberl D.F., Kernan M.J., An IFT-A protein is required to delimit functionally distinct zones in mechanosensory cilia. Curr Biol, 2008, 18, 1899–1906. [CrossRef] [PubMed] [Google Scholar]
  • Li J.B., Gerdes J.M., Haycraft C.J., Fan Y., Teslovich T.M., May-Simera H., Li H., Blacque O.E., Li L., Leitch C.C., Lewis R.A., Green J.S., Parfrey P.S., Leroux M.R., Davidson W.S., Beales P.L., Guay-Woodford L.M., Yoder B.K., Stormo G.D., Katsanis N., Dutcher S.K., Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell, 2004, 117, 541–552. [CrossRef] [PubMed] [Google Scholar]
  • Li W., Feng Z., Sternberg P.W., Xu X.Z., A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. Nature, 2006, 440, 684–687. [CrossRef] [PubMed] [Google Scholar]
  • Liem K.F., Jr., He M., Ocbina P.J., Anderson K.V., Mouse Kif7/Costal2 is a cilia-associated protein that regulates Sonic hedgehog signaling. Proc Natl Acad Sci USA, 2009, 106, 13377–13382. [Google Scholar]
  • Loges N.T., Olbrich H., Becker-Heck A., Haffner K., Heer A., Reinhard C., Schmidts M., Kispert A., Zariwala M.A., Leigh M.W., Knowles M.R., Zentgraf H., Seithe H., Nurnberg G., Nurnberg P., Reinhardt R., Omran H., Deletions and point mutations of LRRC50 cause primary ciliary dyskinesia due to dynein arm defects. Am J Hum Genet, 2009, 85, 883–889. [CrossRef] [PubMed] [Google Scholar]
  • Loges N.T., Olbrich H., Fenske L., Mussaffi H., Horvath J., Fliegauf M., Kuhl H., Baktai G., Peterffy E., Chodhari R., Chung E.M., Rutman A., O’Callaghan C., Blau H., Tiszlavicz L., Voelkel K., Witt M., Zietkiewicz E., Neesen J., Reinhardt R., Mitchison H.M., Omran H., DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm. Am J Hum Genet, 2008, 83, 547–558. [CrossRef] [PubMed] [Google Scholar]
  • Maltezou H.C., Drug resistance in visceral leishmaniasis. J Biomed Biotechnol, 2010, 2010, 617521. [Google Scholar]
  • Marshall W.F., Rosenbaum J.L., Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control. J Cell Biol, 2001, 155, 405–414. [CrossRef] [PubMed] [Google Scholar]
  • Marszalek J.R., Liu X., Roberts E.A., Chui D., Marth J.D., Williams D.S., Goldstein L.S., Genetic evidence for selective transport of opsin and arrestin by kinesin-II in mammalian photoreceptors. Cell, 2000, 102, 175–187. [CrossRef] [PubMed] [Google Scholar]
  • McGrath J., Somlo S., Makova S., Tian X., Brueckner M., Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell, 2003, 114, 61–73. [CrossRef] [PubMed] [Google Scholar]
  • Milenkovic L., Scott M.P., Rohatgi R., Lateral transport of Smoothened from the plasma membrane to the membrane of the cilium. J Cell Biol, 2009, 187, 365–374. [CrossRef] [PubMed] [Google Scholar]
  • Mitchell B., Stubbs J.L., Huisman F., Taborek P., Yu C., Kintner C., The PCP pathway instructs the planar orientation of ciliated cells in the Xenopus larval skin. Curr Biol, 2009, 19, 924–929. [CrossRef] [PubMed] [Google Scholar]
  • Molla-Herman A., Ghossoub R., Blisnick T., Meunier A., Serres C., Silbermann F., Emmerson C., Romeo K., Bourdoncle P., Schmitt A., Saunier S., Spassky N., Bastin P., Benmerah A., The ciliary pocket: an endocytic membrane domain at the base of primary and motile cilia. J Cell Sci, 2010, 123, 1785–1795. [CrossRef] [PubMed] [Google Scholar]
  • Moore A., Escudier E., Roger G., Tamalet A., Pelosse B., Marlin S., Clément A., Geremek M., Delaisi B., Bridoux A.M., Coste A., Witt M., Duriez B., Amselem S., RPGR is mutated in patients with a complex X linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa. J Med Genet, 2006, 43, 326–333. [CrossRef] [PubMed] [Google Scholar]
  • Mukhopadhyay A., Deplancke B., Walhout A.J., Tissenbaum H.A., C. elegans tubby regulates life span and fat storage by two independent mechanisms. Cell Metab, 2005, 2, 35–42. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Mukhopadhyay S., Lu Y., Qin H., Lanjuin A., Shaham S., Sengupta P., Distinct IFT mechanisms contribute to the generation of ciliary structural diversity in C. elegans. Embo J, 2007, 26, 2966–2980. [Google Scholar]
  • Mukhopadhyay S., Lu Y., Shaham S., Sengupta P., Sensory signaling-dependent remodeling of olfactory cilia architecture in C. elegans. Dev Cell, 2008, 14, 762–774. [CrossRef] [PubMed] [Google Scholar]
  • Nakazawa Y., Hiraki M., Kamiya R., Hirono M., SAS-6 is a cartwheel protein that establishes the 9-fold symmetry of the centriole. Curr Biol, 2007, 17, 2169–2174. [CrossRef] [PubMed] [Google Scholar]
  • Nauli S.M., Alenghat F.J., Luo Y., Williams E., Vassilev P., Li X., Elia A.E., Lu W., Brown E.M., Quinn S.J., Ingber D.E., Zhou J., Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet, 2003, 33, 129–137. [CrossRef] [PubMed] [Google Scholar]
  • Noben-Trauth K., Naggert J.K., North M.A., Nishina P.M., A candidate gene for the mouse mutation tubby. Nature, 1996, 380, 534–538. [CrossRef] [PubMed] [Google Scholar]
  • Nohynkova E., Tumova P., Kulda J., Cell division of Giardia intestinalis: flagellar developmental cycle involves transformation and exchange of flagella between mastigonts of a diplomonad cell. Eukaryot Cell, 2006, 5, 753–761. [CrossRef] [PubMed] [Google Scholar]
  • Nonaka S., Tanaka Y., Okada Y., Takeda S., Harada A., Kanai Y., Kido M., Hirokawa N., Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell, 1998, 95, 829–837. [CrossRef] [PubMed] [Google Scholar]
  • Oberholzer M., Lopez M.A., Ralston K.S., Hill K.L., Approaches for functional analysis of flagellar proteins in African trypanosomes. Methods Cell Biol, 2009, 93, 21–57. [CrossRef] [PubMed] [Google Scholar]
  • Ogawa K., Takai H., Ogiwara A., Yokota E., Shimizu T., Inaba K., Mohri H., Is outer arm dynein intermediate chain 1 multifunctional? Mol Biol Cell, 1996, 7, 1895–1907. [PubMed] [Google Scholar]
  • Olbrich H., Haffner K., Kispert A., Volkel A., Volz A., Sasmaz G., Reinhardt R., Hennig S., Lehrach H., Konietzko N., Zariwala M., Noone P.G., Knowles M., Mitchison H.M., Meeks M., Chung E.M., Hildebrandt F., Sudbrak R., Omran H., Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat Genet, 2002, 30, 143–144. [CrossRef] [PubMed] [Google Scholar]
  • Omori Y., Zhao C., Saras A., Mukhopadhyay S., Kim W., Furukawa T., Sengupta P., Veraksa A., Malicki J., Elipsa is an early determinant of ciliogenesis that links the IFT particle to membrane-associated small GTPase Rab8. Nat Cell Biol, 2008, 10, 437–444. [CrossRef] [PubMed] [Google Scholar]
  • Omran H., Kobayashi D., Olbrich H., Tsukahara T., Loges N.T., Hagiwara H., Zhang Q., Leblond G., O’Toole E., Hara C., Mizuno H., Kawano H., Fliegauf M., Yagi T., Koshida S., Miyawaki A., Zentgraf H., Seithe H., Reinhardt R., Watanabe Y., Kamiya R., Mitchell D.R., Takeda H., Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature, 2008, 456, 611–616. [CrossRef] [PubMed] [Google Scholar]
  • Orozco J.T., Wedaman K.P., Signor D., Brown H., Rose L., Scholey J.M., Movement of motor and cargo along cilia. Nature, 1999, 398, 674. [CrossRef] [PubMed] [Google Scholar]
  • Ou G., Blacque O.E., Snow J.J., Leroux M.R., Scholey J.M., Functional coordination of intraflagellar transport motors. Nature, 2005, 436, 583–587. [CrossRef] [PubMed] [Google Scholar]
  • Padma P., Hozumi A., Ogawa K., Inaba K., Molecular cloning and characterization of a thioredoxin/nucleoside diphosphate kinase related dynein intermediate chain from the ascidian, Ciona intestinalis. Gene, 2001, 275, 177–183. [CrossRef] [PubMed] [Google Scholar]
  • Pan X., Ou G., Civelekoglu-Scholey G., Blacque O.E., Endres N.F., Tao L., Mogilner A., Leroux M.R., Vale R.D., Scholey J.M., Mechanism of transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II and OSM-3 motors. J Cell Biol, 2006, 174, 1035–1045. [CrossRef] [PubMed] [Google Scholar]
  • Park T.J., Mitchell B.J., Abitua P.B., Kintner C., Wallingford J.B., Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. Nat Genet, 2008, 40, 871–879. [CrossRef] [PubMed] [Google Scholar]
  • Pathak N., Obara T., Mangos S., Liu Y., Drummond I.A., The zebrafish fleer gene encodes an essential regulator of cilia tubulin polyglutamylation. Mol Biol Cell, 2007, 18, 4353–4364. [CrossRef] [PubMed] [Google Scholar]
  • Pazour G.J., Wilkerson C.G., Witman G.B., A dynein light chain is essential for the retrograde particle movement of intraflagellar transport (IFT). J Cell Biol, 1998, 141, 979–992. [CrossRef] [PubMed] [Google Scholar]
  • Pazour G.J., Dickert B.L., Vucica Y., Seeley E.S., Rosenbaum J.L., Witman G.B., Cole D.G., Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol, 2000, 151, 709–718. [CrossRef] [PubMed] [Google Scholar]
  • Pazour G.J., Agrin N., Leszyk J., Witman G.B., Proteomic analysis of a eukaryotic cilium. J Cell Biol, 2005, 170, 103–113. [CrossRef] [PubMed] [Google Scholar]
  • Peacock C.S., Seeger K., Harris D., Murphy L., Ruiz J.C., Quail M.A., Peters N., Adlem E., Tivey A., Aslett M., Kerhornou A., Ivens A., Fraser A., Rajandream M.A., Carver T., Norbertczak H., Chillingworth T., Hance Z., Jagels K., Moule S., Ormond D., Rutter S., Squares R., Whitehead S., Rabbinowitsch E., Arrowsmith C., White B., Thurston S., Bringaud F., Baldauf S.L., Faulconbridge A., Jeffares D., Depledge D.P., Oyola S.O., Hilley J.D., Brito L.O., Tosi L.R., Barrell B., Cruz A.K., Mottram J.C., Smith D.F., Berriman M., Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet, 2007, 39, 839–847. [Google Scholar]
  • Pearson C.G., Winey M., Basal body assembly in ciliates: the power of numbers. Traffic, 2009, 10, 461–471. [CrossRef] [PubMed] [Google Scholar]
  • Pearson C.G., Giddings T.H., Jr., Winey M., Basal body components exhibit differential protein dynamics during nascent basal body assembly. Mol Biol Cell, 2009a, 20, 904–914. [CrossRef] [PubMed] [Google Scholar]
  • Pearson C.G., Osborn D.P., Giddings T.H., Jr., Beales P.L., Winey M., Basal body stability and ciliogenesis requires the conserved component Poc1. J Cell Biol, 2009b, 187, 905–920. [CrossRef] [PubMed] [Google Scholar]
  • Pennarun G., Escudier E., Chapelin C., Bridoux A.M., Cacheux V., Roger G., Clément A., Goossens M., Amselem S., Duriez B., Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am J Hum Genet, 1999, 65, 1508–1519. [CrossRef] [PubMed] [Google Scholar]
  • Perkins L.A., Hedgecock E.M., Thomson J.N., Culotti J.G., Mutant sensory cilia in the nematode Cœnorhabditis elegans. Dev Biol, 1986, 117, 456–487. [CrossRef] [PubMed] [Google Scholar]
  • Piperno G., Mead K., Transport of a novel complex in the cytoplasmic matrix of Chlamydomonas flagella. Proc Natl Acad Sci USA, 1997, 94, 4457–4462. [CrossRef] [Google Scholar]
  • Porter M.E., Bower R., Knott J.A., Byrd P., Dentler W., Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas. Mol Biol Cell, 1999, 10, 693–712. [PubMed] [Google Scholar]
  • Portman N., Lacomble S., Thomas B., McKean P.G., Gull K., Combining RNA interference mutants and comparative proteomics to identify protein components and dependences in a eukaryotic flagellum. J Biol Chem, 2009, 284, 5610–5619. [CrossRef] [PubMed] [Google Scholar]
  • Praetorius H.A., Spring K.R., Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol, 2001, 184, 71–79. [CrossRef] [PubMed] [Google Scholar]
  • Prensier G., Vivier E., Goldstein S., Schrevel J., Motile flagellum with a “3+0” ultrastructure. Science, 1980, 207, 1493–1494. [CrossRef] [PubMed] [Google Scholar]
  • Pullen T.J., Ginger M.L., Gaskell S.J., Gull K., Protein targeting of an unusual, evolutionarily conserved adenylate kinase to a eukaryotic flagellum. Mol Biol Cell, 2004, 15, 3257–3265. [CrossRef] [PubMed] [Google Scholar]
  • Qin H., Burnette D.T., Bae Y.K., Forscher P., Barr M.M., Rosenbaum J.L., Intraflagellar transport is required for the vectorial movement of TRPV channels in the ciliary membrane. Curr Biol, 2005, 15, 1695–1699. [CrossRef] [PubMed] [Google Scholar]
  • Ralston K.S., Lerner A.G., Diener D.R., Hill K.L., Flagellar motility contributes to cytokinesis in Trypanosoma brucei and is modulated by an evolutionarily conserved dynein regulatory system. Eukaryot Cell, 2006, 5, 696–711. [CrossRef] [PubMed] [Google Scholar]
  • Redeker V., Levilliers N., Schmitter J.M., Le Caer J.P., Rossier J., Adoutte A., Bre M.H., Polyglycylation of tubulin: a posttranslational modification in axonemal microtubules. Science, 1994, 266, 1688–1691. [CrossRef] [PubMed] [Google Scholar]
  • Rohatgi R., Snell W.J., The ciliary membrane. Curr Opin Cell Biol, 2010, 22, 541–546. [CrossRef] [PubMed] [Google Scholar]
  • Rosenbaum J.L., Witman G.B., Intraflagellar transport. Nat Rev Mol Cell Biol, 2002, 3, 813–825. [CrossRef] [PubMed] [Google Scholar]
  • Rotureau B., Morales M.A., Bastin P., Spath G.F., The flagellum-MAP kinase connection in Trypanosomatids: a key sensory role in parasite signaling and development? Cell Microbiol, 2009, 11, 710–718 [CrossRef] [PubMed] [Google Scholar]
  • Ruiz iAltaba A., Palma V., Dahmane N., Hedgehog-Gli signalling and the growth of the brain. Nat Rev Neurosci, 2002, 3, 24–33. [CrossRef] [PubMed] [Google Scholar]
  • Salomon R., Saunier S., Niaudet P., Nephronophthisis. Pediatr Nephrol, 2009, 24, 2333–2344. [CrossRef] [PubMed] [Google Scholar]
  • Sapiro R., Kostetskii I., Olds-Clarke P., Gerton G.L., Radice G.L., Strauss I.J., Male infertility, impaired sperm motility, and hydrocephalus in mice deficient in sperm-associated antigen 6. Mol Cell Biol, 2002, 22, 6298–6305. [CrossRef] [PubMed] [Google Scholar]
  • Sarpal R., Todi S.V., Sivan-Loukianova E., Shirolikar S., Subramanian N., Raff E.C., Erickson J.W., Ray K., Eberl D.F., Drosophila KAP interacts with the kinesin II motor subunit KLP64D to assemble chordotonal sensory cilia, but not sperm tails. Curr Biol, 2003, 13, 1687–1696. [CrossRef] [PubMed] [Google Scholar]
  • Schafer J.C., Winkelbauer M.E., Williams C.L., Haycraft C.J., Desmond R.A., Yoder B.K., IFTA-2 is a conserved cilia protein involved in pathways regulating longevity and dauer formation in Cœnorhabditis elegans. J Cell Sci, 2006, 119, 4088–4100. [CrossRef] [PubMed] [Google Scholar]
  • Scholey J.M., Anderson K.V., Intraflagellar transport and cilium-based signaling. Cell, 2006, 125, 439–442. [CrossRef] [PubMed] [Google Scholar]
  • Shah A.S., Ben-Shahar Y., Moninger T.O., Kline J.N., Welsh M.J., Motile cilia of human airway epithelia are chemosensory. Science, 2009, 325, 1131–1134. [CrossRef] [PubMed] [Google Scholar]
  • Sheffield V.C., The blind leading the obese: the molecular pathophysiology of a human obesity syndrome. Trans Am Clin Climatol Assoc, 2010, 121, 172–181; discussion 181–172. [PubMed] [Google Scholar]
  • Shi H., Tschudi C., Ullu E., Functional replacement of Trypanosoma brucei Argonaute by the human slicer Argonaute2. RNA, 2006, 12, 943–947. [CrossRef] [PubMed] [Google Scholar]
  • Signor D., Wedaman K.P., Rose L.S., Scholey J.M., Two heteromeric kinesin complexes in chemosensory neurons and sensory cilia of Cœnorhabditis elegans. Mol Biol Cell, 1999, 10, 345–360. [PubMed] [Google Scholar]
  • Silverman M.A., Leroux M.R., Intraflagellar transport and the generation of dynamic, structurally and functionally diverse cilia. Trends Cell Biol, 2009, 19, 306–316. [CrossRef] [PubMed] [Google Scholar]
  • Singla V., Reiter J.F., The primary cilium as the cell’s antenna: signaling at a sensory organelle. Science, 2006, 313, 629–633. [CrossRef] [PubMed] [Google Scholar]
  • Smith J.C., Northey J.G., Garg J., Pearlman R.E., Siu K.W., Robust method for proteome analysis by MS/MS using an entire translated genome: demonstration on the ciliome of Tetrahymena thermophila. J Proteome Res, 2005, 4, 909–919. [CrossRef] [Google Scholar]
  • Snapp E.L., Landfear S.M., Cytoskeletal association is important for differential targeting of glucose transporter isoforms in Leishmania. J Cell Biol, 1997, 139, 1775–1783. [CrossRef] [PubMed] [Google Scholar]
  • Snow J.J., Ou G., Gunnarson A.L., Walker M.R., Zhou H.M., Brust-Mascher I., Scholey J.M., Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons. Nat Cell Biol, 2004, 6, 1109–1113. [CrossRef] [PubMed] [Google Scholar]
  • Stubbs J.L., Oishi I., Izpisua Belmonte J.C., Kintner C., The forkhead protein Foxj1 specifies node-like cilia in Xenopus and zebrafish embryos. Nat Genet, 2008, 40, 1454–1460. [CrossRef] [PubMed] [Google Scholar]
  • Sukumaran S., Perkins B.D., Early defects in photoreceptor outer segment morphogenesis in zebrafish ift57, ift88 and ift172 Intraflagellar Transport mutants. Vision Res, 2009, 49, 479–489. [CrossRef] [PubMed] [Google Scholar]
  • Sun Z., Amsterdam A., Pazour G.J., Cole D.G., Miller M.S., Hopkins N., A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development, 2004, 131, 4085–4093. [CrossRef] [PubMed] [Google Scholar]
  • Suryavanshi S., Edde B., Fox L.A., Guerrero S., Hard R., Hennessey T., Kabi A., Malison D., Pennock D., Sale W.S., Wloga D., Gaertig J., Tubulin glutamylation regulates ciliary motility by altering inner dynein arm activity. Curr Biol, 2010, 20, 435–440. [CrossRef] [PubMed] [Google Scholar]
  • Swoboda P., Adler H.T., Thomas J.H., The RFX-type transcription factor DAF-19 regulates sensory neuron cilium formation in C. elegans. Mol Cell, 2000, 5, 411–421. [Google Scholar]
  • Tabish M., Siddiqui Z.K., Nishikawa K., Siddiqui S.S., Exclusive expression of C. elegans osm-3 kinesin gene in chemosensory neurons open to the external environment. J Mol Biol, 1995, 247, 377–389. [CrossRef] [PubMed] [Google Scholar]
  • Tamalet A., Clément A., Roudot-Thoraval F., Desmarquest P., Roger G., Boule M., Millepied M.C., Baculard T.A., Escudier E., Abnormal central complex is a marker of severity in the presence of partial ciliary defect. Pediatrics, 2001, 108, E86. [CrossRef] [PubMed] [Google Scholar]
  • Tammana T.V., Sahasrabuddhe A.A., Mitra K., Bajpai V.K., Gupta C.M., Actin-depolymerizing factor, ADF/cofilin, is essentially required in assembly of Leishmania flagellum. Mol Microbiol, 2008, 70, 837–852. [PubMed] [Google Scholar]
  • Thazhath R., Jerka-Dziadosz M., Duan J., Wloga D., Gorovsky M.A., Frankel J., Gaertig J., Cell context-specific effects of the beta-tubulin glycylation domain on assembly and size of microtubular organelles. Mol Biol Cell, 2004, 15, 4136–4147. [CrossRef] [PubMed] [Google Scholar]
  • Tsiokas L., Function and regulation of TRPP2 at the plasma membrane. Am J Physiol Renal Physiol, 2009, 297, F1-9. [CrossRef] [PubMed] [Google Scholar]
  • Van Den Abbeele J., Claes Y., van Bockstaele D., Le Ray D., Coosemans M., Trypanosoma brucei spp. development in the tsetse fly: characterization of the post-mesocyclic stages in the foregut and proboscis. Parasitology, 1999, 118, 469–478. [CrossRef] [PubMed] [Google Scholar]
  • van Rooijen E., Giles R.H., Voest E.E., van Rooijen C., Schulte-Merker S., van Eeden F.J., LRRC50, a conserved ciliary protein implicated in polycystic kidney disease. J Am Soc Nephrol, 2008, 19, 1128–1138. [CrossRef] [PubMed] [Google Scholar]
  • Vincensini L., Blisnick T., Bastin P., 1001 model organisms to study cilia and flagella. Biol Cell, 2011, 103, 109–130. [CrossRef] [PubMed] [Google Scholar]
  • Walker R.G., Willingham A.T., Zuker C.S., A Drosophila mechanosensory transduction channel. Science, 2000, 287, 2229–2234. [CrossRef] [PubMed] [Google Scholar]
  • Wallingford J.B., Low-magnification live imaging of Xenopus embryos for cell and developmental biology. Cold Spring Harb Protoc, 2010a, pdb prot5425. [Google Scholar]
  • Wallingford J.B., Planar cell polarity signaling, cilia and polarized ciliary beating. Curr Opin Cell Biol, 2010b, 22, 597–604. [CrossRef] [PubMed] [Google Scholar]
  • Wallingford J.B., Preparation of fixed Xenopus embryos for confocal imaging. Cold Spring Harb Protoc, 2010c, pdb prot5426. [Google Scholar]
  • Wang Z., Li V., Chan G.C., Phan T., Nudelman A.S., Xia Z., Storm D.R., Adult type 3 adenylyl cyclase-deficient mice are obese. PLoS One, 2009, 4, e6979. [Google Scholar]
  • Wiese M., Kuhn D., Grunfelder C.G., Protein kinase involved in flagellar-length control. Eukaryot Cell, 2003, 2, 769–777. [Google Scholar]
  • Wilkerson C.G., King S.M., Koutoulis A., Pazour G.J., Witman G.B., The 78 000 M(r) intermediate chain of Chlamydomonas outer arm dynein is a WD-repeat protein required for arm assembly. J Cell Biol, 1995, 129, 169–178. [CrossRef] [PubMed] [Google Scholar]
  • Wloga D., Rogowski K., Sharma N., Van Dijk J., Janke C., Edde B., Bre M.H., Levilliers N., Redeker V., Duan J., Gorovsky M.A., Jerka-Dziadosz M., Gaertig J., Glutamylation on alpha-tubulin is not essential but affects the assembly and functions of a subset of microtubules in Tetrahymena thermophila. Eukaryot Cell, 2008, 7, 1362–1372. [CrossRef] [PubMed] [Google Scholar]
  • Yu X., Ng C.P., Habacher H., Roy S., Foxj1 transcription factors are master regulators of the motile ciliogenic program. Nat Genet, 2008, 40, 1445–1453. [CrossRef] [PubMed] [Google Scholar]
  • Zaghloul N.A., Katsanis N., Mechanistic insights into Bardet-Biedl syndrome, a model ciliopathy. J Clin Invest, 2009, 119, 428–437. [CrossRef] [PubMed] [Google Scholar]
  • Zaghloul N.A., Katsanis N., Functional modules, mutational load and human genetic disease. Trends Genet, 2010, 26, 168–176. [CrossRef] [PubMed] [Google Scholar]
  • Zariwala M.A., Knowles M.R., Omran H., Genetic defects in ciliary structure and function. Annu Rev Physiol, 2007, 69, 423–450. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.