Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 205, Numéro 3, 2011
Page(s) 179 - 197
Section Communication libre / Contributed article
DOI https://doi.org/10.1051/jbio/2011018
Publié en ligne 11 octobre 2011
  • Adams V.L., Goodman R.L., Salm A.K., Coolen L.M., Karsch F.J., Lehman M.N., Morphological plasticity in the neural circuitry responsible for seasonal breeding in the ewe. Endocrinology, 2006, 147, 4843–4851. [CrossRef] [PubMed] [Google Scholar]
  • Alsina B., Vu T., Cohen-Cory S., Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF. Nat Neurosci, 2001, 4, 1093–1101. [CrossRef] [PubMed] [Google Scholar]
  • Alvarez V.A., Sabatini B.L., Anatomical and physiological plasticity of dendritic spines. Annu Rev Neurosci, 2007, 30, 79–97. [CrossRef] [PubMed] [Google Scholar]
  • Bailey C.H., Kandel E.R., Structural changes accompanying memory storage. Annu Rev Physiol, 1993, 55, 397–426. [CrossRef] [PubMed] [Google Scholar]
  • Becquet D., Girardet C., Guillaumond F., François-Bellan A., Bosler O., Ultrastructural plasticity in the rat suprachiasmatic nucleus. Possible involvement in clock entrainment. Glia, 2008, 56, 294–305. [CrossRef] [PubMed] [Google Scholar]
  • Benediktsson A.M., Schachtele S.J., Green S.H., Dailey M.E., Ballistic labeling and dynamic imaging of astrocytes in organotypic hippocampal slice cultures. J Neurosci Methods, 2005, 141, 41–53. [CrossRef] [PubMed] [Google Scholar]
  • Björklund A., Wiklund L., Descarries L., Regeneration and plasticity of central serotoninergic neurons: a review. J Physiol (Paris), 1981, 77, 247–255. [PubMed] [Google Scholar]
  • Bonfanti L., PSA-NCAM in mammalian structural plasticity and neurogenesis. Prog Neurobiol, 2006, 80, 129–164. [CrossRef] [PubMed] [Google Scholar]
  • Bonfanti L., Olive S., Poulain D.A., Theodosis D.T., Mapping of the distribution of polysialylated neural cell adhesion molecule throughout the central nervous system of the adult rat: an immunohistochemical study. Neuroscience, 1992, 49, 419–436. [CrossRef] [PubMed] [Google Scholar]
  • Brezun J.M., Daszuta A., Serotonin depletion in the adult rat produces differential changes in highly polysialylated form of neural cell adhesion molecule and tenascin-C immunoreactivity. J Neurosci Res, 1999, 55, 54–70. [CrossRef] [PubMed] [Google Scholar]
  • Calizo L.H., Flanagan-Cato L.M., Estrogen selectively regulates spine density within the dendritic arbor of rat ventromedial hypothalamic neurons. J Neurosci, 2000, 20, 1589–1596. [PubMed] [Google Scholar]
  • Cashion A.B., Smith M.J., Wise P.M., The morphometry of astrocytes in the rostral preoptic area exhibits a diurnal rhythm on prœstrus: relationship to the luteinizing hormone surge and effects of age. Endocrinology, 2003, 144, 274–280. [CrossRef] [PubMed] [Google Scholar]
  • Catheline G., Touquet B., Lombard M., Poulain D.A., Theodosis D.T., A study of the role of neuro-glial remodeling in the oxytocin system at lactation. Neuroscience, 2006, 137, 309–316. [CrossRef] [PubMed] [Google Scholar]
  • Chalivoix S., Malpaux B., Dufourny L., Relationship between polysialylated neural cell adhesion molecule and beta-endorphin– or gonadotropin releasing hormone-containing neurons during activation of the gonadotrope axis in short day length in the ewe. Neuroscience, 2010, 169, 1326–1336. [CrossRef] [PubMed] [Google Scholar]
  • Chappell P.E., Goodall C.P., Tonsfeldt K.J., White R.S., Bredeweg E., Latham K.L., Modulation of gonadotrophin-releasing hormone secretion by an endogenous circadian clock. J Neuroendocrinol, 2009, 21, 339–345. [CrossRef] [PubMed] [Google Scholar]
  • Charlton H., Hypothalamic control of anterior pituitary function: a history. J Neuroendocrinol, 2008, 20, 641–646. [CrossRef] [PubMed] [Google Scholar]
  • Chounlamountry K., Kessler J., The ultrastructure of perisynaptic glia in the nucleus tractus solitarii of the adult rat: Comparison between single synapses and multisynaptic arrangements. Glia, 2011, 59, 655–663. [CrossRef] [PubMed] [Google Scholar]
  • Cornell-Bell A.H., Thomas P.G., Smith S.J., The excitatory neurotransmitter glutamate causes filopodia formation in cultured hippocampal astrocytes. Glia, 1990, 3, 322–334. [CrossRef] [PubMed] [Google Scholar]
  • Csakvari E., Hoyk Z., Gyenes A., Garcia-Ovejero D., García-Segura L.M., Párducz A., Fluctuation of synapse density in the arcuate nucleus during the estrous cycle. Neuroscience, 2007, 144, 1288–1292. [CrossRef] [PubMed] [Google Scholar]
  • Csakvari E., Kurunczi A., Hoyk Z., Gyenes A., Naftolin F., Párducz A., Estradiol-induced synaptic remodelling of tyrosine hydroxylase immunopositive neurons in the rat arcuate nucleus. Endocrinology, 2008, 149, 4137–4141. [CrossRef] [PubMed] [Google Scholar]
  • Czeh B., Simon M., Schmelting B., Hiemke C., Fuchs E., Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment. Neuropsychopharmacology, 2005, 31, 1616–1626. [Google Scholar]
  • Das A., Gilbert C.D., Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex. Nature, 1995, 375, 780–784. [CrossRef] [PubMed] [Google Scholar]
  • De Roo M., Klauser P., Garcia P.M., Poglia L., Muller D., Spine dynamics and synapse remodeling during LTP and memory processes. Prog Brain Res, 2008, 169, 199–207. [CrossRef] [PubMed] [Google Scholar]
  • de Seranno S., Estrella C., Loyens A., Cornea A., Ojeda S.R., Beauvillain J., Prévot V., Vascular endothelial cells promote acute plasticity in ependymoglial cells of the neuroendocrine brain. J Neurosci, 2004, 24, 10353–10363. [CrossRef] [PubMed] [Google Scholar]
  • Desmond N.L., Levy W.B., Changes in the numerical density of synaptic contacts with long-term potentiation in the hippocampal dentate gyrus. J Comp Neurol, 1986, 253, 466–475. [CrossRef] [PubMed] [Google Scholar]
  • Donohue H.S., Gabbott P.L.A., Davies H.A., Rodríguez J.J., Cordero M.I., Sandi C., Medvedev N.I., Popov V.I., Colyer F.M., Peddie C.J., Stewart M.G., Chronic restraint stress induces changes in synapse morphology in stratum lacunosum-moleculare CA1 rat hippocampus: a stereological and three-dimensional ultrastructural study. Neuroscience, 2006, 140, 597–606. [CrossRef] [PubMed] [Google Scholar]
  • El Majdoubi M., Poulain D.A., Theodosis D.T., Lactation-induced plasticity in the supraoptic nucleus augments axodendritic and axosomatic GABAergic and glutamatergic synapses: an ultrastructural analysis using the disector method. Neuroscience, 1997, 80, 1137–1147. [CrossRef] [PubMed] [Google Scholar]
  • Fernandez-Galaz M.C., Martinez Muñoz, R., Villanua, M.A., García-Segura, L.M., Diurnal oscillation in glial fibrillary acidic protein in a perisuprachiasmatic area and its relationship to the luteinizing hormone surge in the female rat. Neuroendocrinology, 1999, 70, 368–376. [CrossRef] [PubMed] [Google Scholar]
  • Flak J.N., Ostrander M.M., Tasker J.G., Herman J.P., Chronic stress-induced neurotransmitter plasticity in the PVN. J Comp Neurol, 2009, 517, 156–165. [CrossRef] [PubMed] [Google Scholar]
  • Fox K., Wong R.O.L., A comparison of experience-dependent plasticity in the visual and somatosensory systems. Neuron, 2005, 48, 465–477. [CrossRef] [PubMed] [Google Scholar]
  • Franceschini I., Desroziers E., Caraty A., Duittoz A., The intimate relationship of gonadotropin-releasing hormone neurons with the polysialylated neural cell adhesion molecule revisited across development and adult plasticity. Eur J Neurosci, 2010, 32, 2031–2041. [CrossRef] [PubMed] [Google Scholar]
  • Frankfurt M., Azmitia E., Regeneration of serotonergic fibers in the rat hypothalamus following unilateral 5,7-dihydroxytryptamine injection. Brain Res, 1984, 298, 273–282. [CrossRef] [PubMed] [Google Scholar]
  • Friedman H.V., Bresler T., Garner C.C., Ziv N.E., Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment. Neuron, 2000, 27, 57–69. [CrossRef] [PubMed] [Google Scholar]
  • García-Segura L.M., Luquín S., Párducz A., Naftolin F., Gonadal hormone regulation of glial fibrillary acidic protein immunoreactivity and glial ultrastructure in the rat neuroendocrine hypothalamus. Glia, 1994, 10, 59–69. [CrossRef] [PubMed] [Google Scholar]
  • García-Segura L.M., Cañas B., Párducz A., Rougon G., Theodosis D., Naftolin F., Torres-Aleman I., Estradiol promotion of changes in the morphology of astroglia growing in culture depends on the expression of polysialic acid of neural membranes. Glia, 1995, 13, 209–216. [CrossRef] [PubMed] [Google Scholar]
  • García-Segura L.M., Lorenz B., DonCarlos L.L., The role of glia in the hypothalamus: implications for gonadal steroid feedback and reproductive neuroendocrine output. Reproduction, 2008, 135, 419–29. [CrossRef] [PubMed] [Google Scholar]
  • Geinisman Y., Structural synaptic modifications associated with hippocampal LTP and behavioral learning. Cereb Cortex, 2000, 10, 952–962. [CrossRef] [PubMed] [Google Scholar]
  • Geinisman Y., de Toledo-Morrell L., Morrell F., Induction of long-term potentiation is associated with an increase in the number of axospinous synapses with segmented postsynaptic densities. Brain Res, 1991, 566, 77–88. [CrossRef] [PubMed] [Google Scholar]
  • Genoud, C., Quairiaux, C., Steiner, P., Hirling, H., Welker, E., Knott, G.W., Plasticity of astrocytic coverage and glutamate transporter expression in adult mouse cortex. PLoS Biol, 2006, 4, e343. [CrossRef] [PubMed] [Google Scholar]
  • Gerhold L.M., Wise P.M., Vasoactive intestinal polypeptide regulates dynamic changes in astrocyte morphometry: impact on gonadotropin-releasing hormone neurons. Endocrinology, 2006, 147, 2197–2202. [CrossRef] [PubMed] [Google Scholar]
  • Girardet C., Becquet D., Blanchard M., François-Bellan A., Bosler O., Neuroglial and synaptic rearrangements associated with photic entrainment of the circadian clock in the suprachiasmatic nucleus. Eur J Neurosci, 2010a, 32, 2133–2142. [CrossRef] [PubMed] [Google Scholar]
  • Girardet C., Blanchard M., Ferracci G., Lévêque C., Moreno M., François-Bellan A., Becquet D., Bosler O., Daily changes in synaptic innervation of VIP neurons in the rat suprachiasmatic nucleus: contribution of glutamatergic afferents. Eur J Neurosci, 2010b, 31, 359–370. [CrossRef] [PubMed] [Google Scholar]
  • Girardet C., Lebrun B., Cabirol-Pol MJ., Tardivel C., Trouslard J., François-Bellan AM., Becquet D., Bosler O., Implication du BDNF dans la plasticité structurale du noyau suprachiasmatique. 37e colloque de la Société de Neuroendocrinologie, 2011. [Google Scholar]
  • Glass J.D., Chen L., Serotonergic modulation of astrocytic activity in the hamster suprachiasmatic nucleus. Neuroscience, 1999, 94, 1253–1259. [CrossRef] [PubMed] [Google Scholar]
  • Glass J.D., Shen H., Fedorkova L., Chen L., Tomasiewicz H., Watanabe M., Polysialylated neural cell adhesion molecule modulates photic signaling in the mouse suprachiasmatic nucleus. Neurosci Lett, 2000, 280, 207–210. [CrossRef] [PubMed] [Google Scholar]
  • Glass J.D., Watanabe M., Fedorkova L., Shen H., Ungers G., Rutishauser U., Dynamic regulation of polysialylated neural cell adhesion molecule in the suprachiasmatic nucleus. Neuroscience, 2003, 117, 203–211. [CrossRef] [PubMed] [Google Scholar]
  • Gogolla N., Galimberti I., Caroni P., Structural plasticity of axon terminals in the adult. Curr Opin Neurobiol, 2007, 17, 516–24. [CrossRef] [PubMed] [Google Scholar]
  • Gould E., How widespread is adult neurogenesis in mammals? Nat Rev Neurosci, 2007, 8, 481–488. [CrossRef] [PubMed] [Google Scholar]
  • Grillo C.A., Piroli G.G., Wood G.E., Reznikov L.R., McEwen B.S., Reagan L.P., Immunocytochemical analysis of synaptic proteins provides new insights into diabetes-mediated plasticity in the rat hippocampus. Neuroscience, 2005, 136, 477–486. [CrossRef] [PubMed] [Google Scholar]
  • Güldner F.H., Bahar E., Young C.A., Ingham C.A., Structural plasticity of optic synapses in the rat suprachiasmatic nucleus: adaptation to long-term influence of light and darkness. Cell Tissue Res, 1997, 287, 43–60. [PubMed] [Google Scholar]
  • Haber M., Zhou L., Murai K.K., Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses. J Neurosci, 2006, 26, 8881–8891. [CrossRef] [PubMed] [Google Scholar]
  • Halassa M.M., Fellin T., Takano H., Dong J., Haydon P.G., Synaptic islands defined by the territory of a single astrocyte. J Neurosci, 2007, 27, 6473–6477. [CrossRef] [PubMed] [Google Scholar]
  • Hansson E., Johansson B.B., Westergren I., Rönnbäck L., Glutamate-induced swelling of single astroglial cells in primary culture. Neuroscience, 1994, 63, 1057–1066. [CrossRef] [PubMed] [Google Scholar]
  • Hastings M.H., Herzog E.D., Clock genes, oscillators, and cellular networks in the suprachiasmatic nuclei. J Biol Rhythms, 2004, 19, 400–413. [CrossRef] [PubMed] [Google Scholar]
  • Hatton G.I., Dynamic neuronal-glial interactions: an overview 20 years later. Peptides, 2004, 25, 403–11. [CrossRef] [PubMed] [Google Scholar]
  • Hatton G.I., Walters J.K., Induced multiple nucleoli, nucleolar margination, and cell size changes in supraoptic neurons during dehydration and rehydration in the rat. Brain Res, 1973, 59, 137–154. [CrossRef] [PubMed] [Google Scholar]
  • Hawrylak N., Fleming J.C., Salm A.K., Dehydration and rehydration selectively and reversibly alter glial fibrillary acidic protein immunoreactivity in the rat supraoptic nucleus and subjacent glial limitans. Glia, 1998, 22, 260–271. [CrossRef] [PubMed] [Google Scholar]
  • Hawrylak N., Boone D., Salm A.K., The surface density of glial fibrillary acidic protein immunopositive astrocytic processes in the rat supraoptic nucleus is reversibly altered by dehydration and rehydration. Neurosci Lett, 1999, 277, 57–60. [CrossRef] [PubMed] [Google Scholar]
  • Haydon P.G., Carmignoto G., Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev, 2006, 86, 1009–1031. [CrossRef] [PubMed] [Google Scholar]
  • Herman J.P., Flak J., Jankord R., Chronic stress plasticity in the hypothalamic paraventricular nucleus. Prog Brain Res, 2008, 170, 353–364. [CrossRef] [PubMed] [Google Scholar]
  • Hirrlinger J., Hülsmann S., Kirchhoff F., Astroglial processes show spontaneous motility at active synaptic terminals in situ. Eur J Neurosci, 2004, 20, 2235–2239. [CrossRef] [PubMed] [Google Scholar]
  • Hofer S.B., Mrsic-Flogel T.D., Bonhoeffer T., Hübener M., Experience leaves a lasting structural trace in cortical circuits. Nature, 2009, 457, 313–317. [CrossRef] [PubMed] [Google Scholar]
  • Holtmaat A.J.G.D., Trachtenberg J.T., Wilbrecht L., Shepherd G.M., Zhang X., Knott G.W., Svoboda K., Transient and persistent dendritic spines in the neocortex in vivo. Neuron, 2005, 45, 279–291. [CrossRef] [PubMed] [Google Scholar]
  • Hoyk Z., Párducz A., Theodosis D.T., The highly sialylated isoform of the neural cell adhesion molecule is required for estradiol-induced morphological synaptic plasticity in the adult arcuate nucleus. Eur J Neurosci, 2001, 13, 649–656. [CrossRef] [PubMed] [Google Scholar]
  • Karatsoreos I.N., Butler M.P., Lesauter J., Silver R., Androgens modulate structure and function of the suprachiasmatic nucleus brain clock. Endocrinology, 2011, 152, 1970–1978. [CrossRef] [PubMed] [Google Scholar]
  • Karsch, F.J., Dahl, G.E., Evans, N.P., Manning, J.M., Mayfield, K.P., Moenter, S.M., Foster, D.L., Seasonal changes in gonadotropin-releasing hormone secretion in the ewe: alteration in response to the negative feedback action of estradiol. Biol Reprod, 1993, 49, 1377. [CrossRef] [PubMed] [Google Scholar]
  • Kaur G., Heera P.K., Srivastava L.K., Neuroendocrine plasticity in GnRH release during rat estrous cycle: correlation with molecular markers of synaptic remodeling. Brain Res, 2002, 954, 21–31. [CrossRef] [PubMed] [Google Scholar]
  • Kurunczi A., Hoyk Z., Csakvari E., Gyenes A., Párducz A., 17β-estradiol-induced remodeling of GABAergic axo-somatic synapses on estrogen receptor expressing neurons in the anteroventral periventricular nucleus of adult female rats. Neuroscience, 2009, 158, 553–557. [CrossRef] [PubMed] [Google Scholar]
  • Langle, S.L., Poulain, D.A., Theodosis, D.T., Neuronal-glial remodeling: a structural basis for neuronal-glial interactions in the adult hypothalamus. J Physiol (Paris), 2002, 96, 169–175. [Google Scholar]
  • Langle S.L., Poulain D.A., Theodosis D.T., Induction of rapid, activity-dependent neuronal-glial remodelling in the adult rat hypothalamus in vitro. Eur J Neurosci, 2003, 18, 206–214. [CrossRef] [PubMed] [Google Scholar]
  • Langub M.C., Maley B.E., Watson R.E., Estrous cycle-associated axosomatic synaptic plasticity upon estrogen receptive neurons in the rat preoptic area. Brain Res, 1994, 641, 303–310. [CrossRef] [PubMed] [Google Scholar]
  • Lavialle M., Servière J., Circadian fluctuations in GFAP distribution in the Syrian hamster suprachiasmatic nucleus. Neuroreport, 1993, 4, 1243–1246. [CrossRef] [PubMed] [Google Scholar]
  • Lehman M.N., Ladha Z., Coolen L.M., Hileman S.M., Connors J.M., Goodman R.L., Neuronal plasticity and seasonal reproduction in sheep. Eur J Neurosci, 2010, 32, 2152–2164. [CrossRef] [PubMed] [Google Scholar]
  • Leuner B., Gould E., Structural plasticity and hippocampal function. Annu Rev Psychol, 2010, 61, 111–140, C1–3. [CrossRef] [PubMed] [Google Scholar]
  • Liang F.Q., Walline R., Earnest D.J., Circadian rhythm of brain-derived neurotrophic factor in the rat suprachiasmatic nucleus. Neurosci Lett, 1998, 242, 89–92. [CrossRef] [PubMed] [Google Scholar]
  • Liang F.Q., Allen G., Earnest D., Role of brain-derived neurotrophic factor in the circadian regulation of the suprachiasmatic pacemaker by light. J Neurosci, 2000, 20, 2978–2987. [PubMed] [Google Scholar]
  • Luckman S.M., Bicknell R.J., Morphological plasticity that occurs in the neurohypophysis following activation of the magnocellular neurosecretory system can be mimicked in vitro by β-adrenergic stimulation. Neuroscience, 1990, 39, 701–709. [CrossRef] [PubMed] [Google Scholar]
  • Maguire E.A., Gadian D.G., Johnsrude I.S., Good C.D., Ashburner J., Frackowiak R.S., Frith C.D., Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci USA, 2000, 97, 4398–4403. [Google Scholar]
  • Malek Z.S., Sage D., Pevet P., Raison S., Daily rhythm of tryptophan hydroxylase-2 messenger ribonucleic acid within raphe neurons is induced by corticoid daily surge and modulated by enhanced locomotor activity. Endocrinology, 2007, 148, 5165–5172. [CrossRef] [PubMed] [Google Scholar]
  • Matsumoto A., Arai Y., Synaptogenic effect of estrogen on the hypothalamic arcuate nucleus of the adult female rat. Cell Tissue Res, 1979, 198, 427–433. [CrossRef] [PubMed] [Google Scholar]
  • Matus A., Actin-based plasticity in dendritic spines. Science, 2000, 290, 754–758. [CrossRef] [PubMed] [Google Scholar]
  • Maurel D., Sage D., Mekaouche M., Bosler O., Glucocorticoids up-regulate the expression of glial fibrillary acidic protein in the rat suprachiasmatic nucleus. Glia, 2000, 29, 212–221. [CrossRef] [PubMed] [Google Scholar]
  • Maywood E.S., Reddy A.B., Wong G.K.Y., O’Neill, J.S., O’Brien, J.A., McMahon, D.G., Harmar, A.J., Okamura, H., Hastings, M.H., Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling. Curr Biol, 2006, 16, 599–605. [CrossRef] [PubMed] [Google Scholar]
  • McEwen B.S., Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol, 2008, 583, 174–185. [CrossRef] [PubMed] [Google Scholar]
  • Meijer J.H., Michel S., Vanderleest H.T., Rohling J.H.T., Daily and seasonal adaptation of the circadian clock requires plasticity of the SCN neuronal network. Eur J Neurosci, 2010, 32, 2143–2151. [CrossRef] [PubMed] [Google Scholar]
  • Migaud M., Batailler M., Segura S., Duittoz A., Franceschini I., Pillon D., Emerging new sites for adult neurogenesis in the mammalian brain: a comparative study between the hypothalamus and the classical neurogenic zones. Eur J Neurosci, 2010, 32, 2042–2052. [CrossRef] [PubMed] [Google Scholar]
  • Miklós I.H., Kovács K.J., GABAergic innervation of corticotropin-releasing hormone (CRH)-secreting parvocellular neurons and its plasticity as demonstrated by quantitative immunoelectron microscopy. Neuroscience, 2002, 113, 581–592. [CrossRef] [PubMed] [Google Scholar]
  • Miyata S., Itoh T., Matsushima O., Nakashima T., Kiyohara T., Not only osmotic stress but also repeated restraint stress causes structural plasticity in the supraoptic nucleus of the rat hypothalamus. Brain Res Bull, 1994, 33, 669–675. [CrossRef] [PubMed] [Google Scholar]
  • Miyata S., Furuya K., Nakai S., Bun H., Kiyohara T., Morphological plasticity and rearrangement of cytoskeletons in pituicytes cultured from adult rat neurohypophysis. Neurosci Res, 1999, 33, 299–306. [CrossRef] [PubMed] [Google Scholar]
  • Monlezun S., Ouali S., Poulain D.A., Theodosis D.T., Polysialic acid is required for active phases of morphological plasticity of neurosecretory axons and their glia. Mol Cell Neurosci, 2005, 29, 516–524. [CrossRef] [PubMed] [Google Scholar]
  • Montagnese C., Poulain D.A., Theodosis D.T., Influence of ovarian steroids on the ultrastructural plasticity of the adult rat supraoptic nucleus induced by central administration of oxytocin. J Neuroendocrinol, 1990, 2, 225–231. [CrossRef] [PubMed] [Google Scholar]
  • Morin L.P., Allen C.N., The circadian visual system, 2005. Brain Res Rev, 2006, 51, 1–60. [CrossRef] [PubMed] [Google Scholar]
  • Morris J.F., Dyball R.E., A quantitative study of the ultrastructural changes in the hypothalamo-neurohypophysial system during and after experimentally induced hypersecretion. Cell Tissue Res, 1974, 149, 525–535. [CrossRef] [PubMed] [Google Scholar]
  • Muller D., Djebbara-Hannas Z., Jourdain P., Vutskits L., Durbec P., Rougon G., Kiss J.Z., Brain-derived neurotrophic factor restores long-term potentiation in polysialic acid-neural cell adhesion molecule-deficient hippocampus. Proc Natl Acad Sci USA, 2000, 97, 4315–4320. [CrossRef] [Google Scholar]
  • Naftolin F., Leranth C., Perez J., García-Segura L.M., Estrogen induces synaptic plasticity in adult primate neurons. Neuroendocrinology, 1993, 57, 935–939. [CrossRef] [PubMed] [Google Scholar]
  • Navarro V.M., Tena-Sempere M., Kisspeptins and the neuroendocrine control of reproduction. Front Biosci (Schol Ed), 2011, 3, 267–275. [CrossRef] [PubMed] [Google Scholar]
  • Nothias F., Fischer I., Murray M., Mirman S., Vincent J.D., Expression of a phosphorylated isoform of MAP1B is maintained in adult central nervous system areas that retain capacity for structural plasticity. J Comp Neurol, 1996, 368, 317–334. [CrossRef] [PubMed] [Google Scholar]
  • Nothias F., Vernier P., von Boxberg Y., Mirman S., Vincent J.D., Modulation of NCAM polysialylation is associated with morphofunctional modifications in the hypothalamo-neurohypophysial system during lactation. Eur J Neurosci, 1997, 9, 1553–1565. [CrossRef] [PubMed] [Google Scholar]
  • Ojeda S.R., Lomniczi A., Sandau U., Contribution of glial-neuronal interactions to the neuroendocrine control of female puberty. Eur J Neurosci, 2010, 32, 2003–2010. [CrossRef] [PubMed] [Google Scholar]
  • Oliet S.H., Piet R., Poulain D.A., Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science, 2001, 292, 923–926. [CrossRef] [PubMed] [Google Scholar]
  • Olmos G., Naftolin F., Perez J., Tranque P.A., García-Segura L.M., Synaptic remodeling in the rat arcuate nucleus during the estrous cycle. Neuroscience, 1989, 32, 663–667. [CrossRef] [PubMed] [Google Scholar]
  • Panatier A., Theodosis D.T., Mothet J., Touquet B., Pollegioni L., Poulain D.A., Oliet S.H.R., Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell, 2006, 125, 775–784. [CrossRef] [PubMed] [Google Scholar]
  • Párducz A., Perez J., García-Segura L.M., Estradiol induces plasticity of GABAergic synapses in the hypothalamus. Neuroscience, 1993, 53, 395–401. [CrossRef] [PubMed] [Google Scholar]
  • Párducz A., Hoyk Z., Kis Z., García-Segura L.M., Hormonal enhancement of neuronal firing is linked to structural remodelling of excitatory and inhibitory synapses. Eur J Neurosci, 2002, 16, 665–670. [CrossRef] [PubMed] [Google Scholar]
  • Párducz A., Zsarnovszky A., Naftolin F., Horvath T.L., Estradiol affects axo-somatic contacts of neuroendocrine cells in the arcuate nucleus of adult rats. Neuroscience, 2003, 117, 791–794. [CrossRef] [PubMed] [Google Scholar]
  • Párducz A., Hajszan T., Maclusky N.J., Hoyk Z., Csakvari E., Kurunczi A., Prange-Kiel J., Leranth C., Synaptic remodeling induced by gonadal hormones: neuronal plasticity as a mediator of neuroendocrine and behavioral responses to steroids. Neuroscience, 2006, 138, 977–985. [CrossRef] [PubMed] [Google Scholar]
  • Parkash J., Kaur G., Neuronal-glial plasticity in gonadotropin-releasing hormone release in adult female rats: role of the polysialylated form of the neural cell adhesion molecule. J Endocrinol, 2005, 186, 397–409. [CrossRef] [PubMed] [Google Scholar]
  • Perea G., Navarrete M., Araque A., Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci, 2009, 32, 421–431. [CrossRef] [PubMed] [Google Scholar]
  • Pérez J., Luquín S., Naftolin F., García-Segura L.M., The role of estradiol and progesterone in phased synaptic remodelling of the rat arcuate nucleus. Brain Res, 1993, 608, 38–44. [CrossRef] [PubMed] [Google Scholar]
  • Piet R., Vargová L., Syková E., Poulain D.A., Oliet S.H.R., Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk. Proc Natl Acad Sci USA, 2004, 101, 2151–2155. [CrossRef] [Google Scholar]
  • Pinto S., Roseberry A.G., Liu H., Diano S., Shanabrough M., Cai X., Friedman J.M., Horvath T.L., Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science, 2004, 304, 110–115. [CrossRef] [PubMed] [Google Scholar]
  • Plano S.A., Golombek D.A., Chiesa J.J., Circadian entrainment to light-dark cycles involves extracellular nitric oxide communication within the suprachiasmatic nuclei. Eur J Neurosci, 2010, 31, 876–882. [CrossRef] [PubMed] [Google Scholar]
  • Prévot V., Plasticity of neuroendocrine systems. Eur J Neurosci, 2010, 32, 1987–1988. [CrossRef] [PubMed] [Google Scholar]
  • Prévot V., Croix D., Bouret S., Dutoit S., Tramu G., Stefano G.B., Beauvillain J.C., Definitive evidence for the existence of morphological plasticity in the external zone of the median eminence during the rat estrous cycle: implication of neuro-glio-endothelial interactions in gonadotropin-releasing hormone release. Neuroscience, 1999, 94, 809–819. [CrossRef] [PubMed] [Google Scholar]
  • Prévot V., Hanchate N.K., Bellefontaine N., Sharif A., Parkash J., Estrella C., Allet C., de Seranno S., Campagne C., de Tassigny X.D., Baroncini M., Function-related structural plasticity of the GnRH system: a role for neuronal-glial-endothelial interactions. Front Neuroendocrinol, 2010, 31, 241–258. [CrossRef] [PubMed] [Google Scholar]
  • Prosser R.A., Rutishauser U., Ungers G., Fedorkova L., Glass J.D., Intrinsic role of polysialylated neural cell adhesion molecule in photic phase resetting of the Mammalian circadian clock. J Neurosci, 2003, 23, 652–658. [PubMed] [Google Scholar]
  • Ramon y Cajal S., Histologie du système nerveux de l’Homme et des Vertébrés. Maloine, Paris, 1909, 1911. [Google Scholar]
  • Rao A., Lévi S., Birth of a synapse: not such long labor. Neuron, 2000, 27, 3–5. [CrossRef] [PubMed] [Google Scholar]
  • Reagan L.P., Rosell D.R., Wood G.E., Spedding M., Muñoz C., Rothstein J., McEwen B.S., Chronic restraint stress up-regulates GLT-1 mRNA and protein expression in the rat hippocampus: reversal by tianeptine. Proc Natl Acad Sci USA, 2004, 101, 2179–2184. [CrossRef] [Google Scholar]
  • Sage D., Ganem J., Guillaumond F., Laforge-Anglade G., François-Bellan A., Bosler O., Becquet D., Influence of the corticosterone rhythm on photic entrainment of locomotor activity in rats. J Biol Rhythms, 2004, 19, 144–156. [CrossRef] [PubMed] [Google Scholar]
  • Salm A.K., Smithson K.G., Hatton G.I., Lactation-associated redistribution of the glial fibrillary acidic protein within the supraoptic nucleus. An immunocytochemical study. Cell Tissue Res, 1985, 242, 9–15. [PubMed] [Google Scholar]
  • Sergeeva A., Jansen H.T., Neuroanatomical plasticity in the gonadotropin-releasing hormone system of the ewe: seasonal variation in glutamatergic and gamma-aminobutyric acidergic afferents. J Comp Neurol, 2009, 515, 615–628. [CrossRef] [PubMed] [Google Scholar]
  • Singh S.R., Hileman S.M., Connors J.M., McManus C.J., Coolen L.M., Lehman M.N., Goodman R.L., Estradiol negative feedback regulation by glutamatergic afferents to A15 dopaminergic neurons: variation with season. Endocrinology, 2009, 150, 4663–4671. [CrossRef] [PubMed] [Google Scholar]
  • Smith J.T., Coolen L.M., Kriegsfeld L.J., Sari I.P., Jaafarzadehshirazi M.R., Maltby M., Bateman K., Goodman R.L., Tilbrook A.J., Ubuka T., Bentley G.E., Clarke I.J., Lehman M.N., Variation in kisspeptin and RFamide-related peptide (RFRP) expression and terminal connections to gonadotropin-releasing hormone neurons in the brain: a novel medium for seasonal breeding in the sheep. Endocrinology, 2008, 149, 5770–5782. [CrossRef] [PubMed] [Google Scholar]
  • Soares S., von Boxberg Y., Ravaille-Véron M., Vincent J.D., Nothias F., Morphofunctional plasticity in the adult hypothalamus induces regulation of polysialic acid-neural cell adhesion molecule through changing activity and expression levels of polysialyltransferases. J Neurosci, 2000, 20, 2551–2557. [PubMed] [Google Scholar]
  • Stern J.E., Armstrong W.E., Reorganization of the dendritic trees of oxytocin and vasopressin neurons of the rat supraoptic nucleus during lactation. J Neurosci, 1998, 18, 841–853. [PubMed] [Google Scholar]
  • Stettler D.D., Yamahachi H., Li W., Denk W., Gilbert C.D., Axons and synaptic boutons are highly dynamic in adult visual cortex. Neuron, 2006, 49, 877–887. [CrossRef] [PubMed] [Google Scholar]
  • Stewart M.G., Medvedev N.I., Popov V.I., Schoepfer R., Davies H.A., Murphy K., Dallérac G.M., Kraev I.V., Rodríguez J.J., Chemically induced long-term potentiation increases the number of perforated and complex postsynaptic densities but does not alter dendritic spine volume in CA1 of adult mouse hippocampal slices. Eur J Neurosci, 2005, 21, 3368–3378. [CrossRef] [PubMed] [Google Scholar]
  • Stroh T., van Schouwenburg M.R., Beaudet A., Tannenbaum G.S., Subcellular dynamics of somatostatin receptor subtype 1 in the rat arcuate nucleus: receptor localization and synaptic connectivity vary in parallel with the ultradian rhythm of growth hormone secretion. J Neurosci, 2009, 29, 8198–8205. [CrossRef] [PubMed] [Google Scholar]
  • Sunanda Rao M.S., Raju T.R., Effect of chronic restraint stress on dendritic spines and excrescences of hippocampal CA3 pyramidal neurons: a quantitative study. Brain Res, 1995, 694, 312–317. [CrossRef] [PubMed] [Google Scholar]
  • Theodosis D.T., Oxytocin-secreting neurons: A physiological model of morphological neuronal and glial plasticity in the adult hypothalamus. Front Neuroendocrinol, 2002, 23, 101–35. [CrossRef] [PubMed] [Google Scholar]
  • Theodosis D.T., Poulain D.A., Evidence that oxytocin-secreting neurones are involved in the ultrastructural reorganisation of the rat supraoptic nucleus apparent at lactation. Cell Tissue Res, 1984, 235, 217–219. [CrossRef] [PubMed] [Google Scholar]
  • Theodosis D.T., Poulain D.A., Vincent J.D., Possible morphological bases for synchronisation of neuronal firing in the rat supraoptic nucleus during lactation. Neuroscience, 1981, 6, 919–929. [CrossRef] [PubMed] [Google Scholar]
  • Theodosis D.T., Chapman D.B., Montagnese C., Poulain D.A., Morris J.F., Structural plasticity in the hypothalamic supraoptic nucleus at lactation affects oxytocin-, but not vasopressin-secreting neurones. Neuroscience, 1986a, 17, 661–678. [CrossRef] [PubMed] [Google Scholar]
  • Theodosis D.T., Montagnese C., Rodriguez F., Vincent J.D., Poulain D.A., Oxytocin induces morphological plasticity in the adult hypothalamo-neurohypophysial system. Nature, 1986b, 322, 738–740. [CrossRef] [PubMed] [Google Scholar]
  • Theodosis D.T., Rougon G., Poulain D.A., Retention of embryonic features by an adult neuronal system capable of plasticity: polysialylated neural cell adhesion molecule in the hypothalamo-neurohypophysial system. Proc Natl Acad Sci USA, 1991, 88, 5494–5498. [CrossRef] [Google Scholar]
  • Theodosis D.T., Bonhomme R., Vitiello S., Rougon G., Poulain D.A., Cell surface expression of polysialic acid on NCAM is a prerequisite for activity-dependent morphological neuronal and glial plasticity. J Neurosci, 1999, 19, 10228–10236. [PubMed] [Google Scholar]
  • Theodosis D.T., Piet R., Poulain D.A., Oliet S.H., Neuronal, glial and synaptic remodeling in the adult hypothalamus: functional consequences and role of cell surface and extracellular matrix adhesion molecules. Neurochem Internatl, 2004, 45, 491–501. [CrossRef] [Google Scholar]
  • Theodosis D.T., Trailin A., Poulain D.A., Remodeling of astrocytes, a prerequisite for synapse turnover in the adult brain? Insights from the oxytocin system of the hypothalamus. Am J Physiol Regul Integr Comp Physiol, 2006a, 290, R1175–82. [CrossRef] [PubMed] [Google Scholar]
  • Theodosis D.T., Koksma J., Trailin A., Langle S.L., Piet R., Lodder J.C., Timmerman J., Mansvelder H., Poulain D.A., Oliet S.H.R., Brussaard A.B., Oxytocin and estrogen promote rapid formation of functional GABA synapses in the adult supraoptic nucleus. Mol Cell Neurosci, 2006b, 31, 785–794. [CrossRef] [PubMed] [Google Scholar]
  • Theodosis D.T., Poulain D.A., Oliet S.H.R., Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol Rev, 2008, 88, 983–1008. [CrossRef] [PubMed] [Google Scholar]
  • Trachtenberg J.T., Chen B.E., Knott G.W., Feng G., Sanes J.R., Welker E., Svoboda K., Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature, 2002, 420, 788–794. [CrossRef] [PubMed] [Google Scholar]
  • Tweedle C.D., Hatton G.I., Ultrastructural comparisons of neurons of supraoptic and circularis nuclei in normal and dehydrated rats. Brain Res. Bull, 1976, 1, 103–121. [CrossRef] [PubMed] [Google Scholar]
  • Ullian E.M., Sapperstein S.K., Christopherson K.S., Barres B.A., Control of synapse number by glia. Science, 2001, 291, 657–661. [CrossRef] [PubMed] [Google Scholar]
  • ViguiéC.,Jansen H.T., Glass J.D., Watanabe M., Billings H.J., Coolen L., Lehman M.N., Karsch F.J., Potential for polysialylated form of neural cell adhesion molecule-mediated neuroplasticity within the gonadotropin-releasing hormone neurosecretory system of the ewe. Endocrinology, 2001, 142, 1317–1324. [CrossRef] [PubMed] [Google Scholar]
  • Volterra A., Meldolesi J., Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci, 2005, 6, 626–640. [CrossRef] [PubMed] [Google Scholar]
  • Watanabe Y., Gould E., McEwen B.S., Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res, 1992, 588, 341–345. [CrossRef] [PubMed] [Google Scholar]
  • Welsh D.K., Takahashi J.S., Kay S.A., Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol, 2010, 72, 551–577. [Google Scholar]
  • Wiklund L., Björklund A., Mechanisms of regrowth in the bulbospinal serotonin system following 5,6-dihydroxytryptamine induced axotomy. II. Fluorescence histochemical observations. Brain Res, 1980, 191, 109–127. [CrossRef] [Google Scholar]
  • Wilbrecht L., Holtmaat A., Wright N., Fox K., Svoboda K., Structural plasticity underlies experience-dependent functional plasticity of cortical circuits. J Neurosci, 2010, 30, 4927–4932. [CrossRef] [PubMed] [Google Scholar]
  • Witkin J.W., Ferin M., Popilskis S.J., Silverman A.J., Effects of gonadal steroids on the ultrastructure of GnRH neurons in the rhesus monkey: synaptic input and glial apposition. Endocrinology, 1991, 129, 1083–1092. [CrossRef] [PubMed] [Google Scholar]
  • Xiong J.J., Karsch F.J., Lehman M.N., Evidence for seasonal plasticity in the gonadotropin-releasing hormone (GnRH) system of the ewe: changes in synaptic inputs onto GnRH neurons. Endocrinology, 1997, 138, 1240–1250. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.