Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 205, Numéro 4, 2011
Différentiation et régulation des fonctions ovariennes - Nouveaux concepts
Page(s) 245 - 267
DOI https://doi.org/10.1051/jbio/2011023
Publié en ligne 19 janvier 2012
  • Afzelius B.A., A human syndrome caused by immotile cilia. Science, 1976, 193, 317-319. [CrossRef] [PubMed] [Google Scholar]
  • Afzelius B.A., Cilia-related diseases. J Pathol, 2004, 204, 470-477. [CrossRef] [PubMed] [Google Scholar]
  • Afzelius B.A., Maunsbach A.B., Biological ultrastructure research; the first 50 years. Tissue Cell, 2004, 36, 83-94. [Google Scholar]
  • Allen R.D., The morphogenesis of basal bodies and accessory structures of the cortex of the ciliated protozoan Tetrahymena pyriformis. J Cell Biol, 1969, 40, 716-733. [CrossRef] [PubMed] [Google Scholar]
  • Anderson R.G., The three-dimensional structure of the basal body from the rhesus monkey oviduct. J Cell Biol, 1972, 54, 246-265. [CrossRef] [PubMed] [Google Scholar]
  • Anderson R.G.W., Isolation of ciliated or unciliate basal bodies from rabbit oviduct. J Cell Biol, 1974, 60, 393-404. [CrossRef] [PubMed] [Google Scholar]
  • Anderson R.G., Hein C.E., Distribution of anionic sites on the oviduct ciliary membrane. J Cell Biol, 1977, 72, 482-492. [CrossRef] [PubMed] [Google Scholar]
  • Andersen J.S., Wilkinson C.J., Mayor T., Mortensen P., Nigg E.A., Mann M., Proteomic characterization of the human centrosome by protein correlation profiling. Nature, 2003, 426, 570-574. [CrossRef] [PubMed] [Google Scholar]
  • Andres K.H., Der olfaktorische Saum der Katze. Cell Tissue Res, 1969, 96, 250-274. [CrossRef] [PubMed] [Google Scholar]
  • Arnaiz O., Malinowska A., Klotz C., Sperling L., Dadlez M., Koll F., Cohen J., Cildb: a knowledgebase for centrosomes and cilia. Database (Oxford), 2009, 2009, bap022. [Google Scholar]
  • Bardele C.F., Mapping of highly ordered membrane domains in the plasma membrane of the ciliate Cyclidium glaucoma. J Cell Sci, 1983, 61, 1-30. [PubMed] [Google Scholar]
  • Baugh L.C., Satir P., Satir B., A ciliary membrane Ca2++ ATPase, a correlation of structure and function., J. Cell Biol, 1976, 70, 66a. [Google Scholar]
  • Bautista-Harris G., Julia-Serda G., Rodriguez de Castro F., Santana-Benitez I., Cabrera-Navarro P., Absence of central microtubules and transposition in the ciliary apparatus of three siblings. Respiration, 2000, 67, 449-452. [CrossRef] [PubMed] [Google Scholar]
  • Ben-Harush K., Maimon T., Patla I., Villa E., Medalia O., Visualizing cellular processes at the molecular level by cryo-electron tomography. J Cell Sci, 2010, 123, 7-12. [CrossRef] [PubMed] [Google Scholar]
  • Benchimol M., Trichomonads under Microscopy. Microsc Microanal, 2004, 10, 528-550. [PubMed] [Google Scholar]
  • Bergstrom B.H., Henley C., Flagellar necklaces: Freeze-etch observations. J Ultrastruct Res, 1973, 42, 551-553. [CrossRef] [PubMed] [Google Scholar]
  • Bertelli E., Regoli M., A morphological study of the primary cilia in the rat pancreatic ductal system: ultrastructural features and variability. Acta Anat (Basel), 1994, 151, 194-197. [CrossRef] [PubMed] [Google Scholar]
  • Bisgrove B.W., Yost H.J., The roles of cilia in developmental disorders and disease. Development, 2006, 133, 4131-4143. [CrossRef] [PubMed] [Google Scholar]
  • Blum J.J., Existence of a breaking point in cilia and flagella. J Theor Biol, 1971, 33, 257-263. [CrossRef] [PubMed] [Google Scholar]
  • Boisvieux-Ulrich E., Sandoz D., Chailley B., A freeze-fracture and thin section study of the ciliary necklace in quail oviduct. Biologie Cellulaire, 1977, 30, 245-252. [Google Scholar]
  • Boisvieux-Ulrich E., Laine M.C., Sandoz D., In vitro effects of colchicine and nocodazole on ciliogenesis in quail oviduct. Biol Cell, 1989, 67, 67-79. [CrossRef] [PubMed] [Google Scholar]
  • Breipohl W., Mendoza A.S., Miragall F., Freeze-etching studies on the ciliary necklace in the rat and chick. J Anat, 1980, 130, 801-807. [PubMed] [Google Scholar]
  • Brightman M.W., Palay S.L., The fine structure of ependyma in the brain of the rat. J Cell Biol, 1963, 19, 415-439. [CrossRef] [PubMed] [Google Scholar]
  • Brugerolle G., Bricheux G., Coffe G., Centrin protein and genes in Trichomonas vaginalis and close relatives. J Eukaryot Microbiol, 2000, 47, 129-138. [CrossRef] [PubMed] [Google Scholar]
  • Bui K.H., Sakakibara H., Movassagh T., Oiwa K., Ishikawa T., Molecular architecture of inner dynein arms in situ in Chlamydomonas reinhardtii flagella. J Cell Biol, 2008, 183, 923-932. [CrossRef] [PubMed] [Google Scholar]
  • Bui K.H., Sakakibara H., Movassagh T., Oiwa K., Ishikawa T., Asymmetry of inner dynein arms and inter-doublet links in Chlamydomonas flagella. J Cell Biol, 2009, 186, 437-446. [CrossRef] [PubMed] [Google Scholar]
  • Carson J.L., Collier A.M., Knowles M.R., Boucher R.C., Rose J.G., Morphometric aspects of ciliary distribution and ciliogenesis in human nasal epithelium. Proc Natl Acad Sci USA, 1981, 78, 6996-6999. [CrossRef] [Google Scholar]
  • Caudron F., Barral Y., Septins and the lateral compartmentalization of eukaryotic membranes. Dev Cell, 2009, 16, 493-506. [CrossRef] [PubMed] [Google Scholar]
  • Cavalier-Smith T., Basal body and flagellar development during the vegetative cell cycle and the sexual cycle of Chlamydomonas reinhardii. J Cell Sci, 1974, 16, 529-556. [PubMed] [Google Scholar]
  • Chailley B., Boisvieux-Ulrich E., Sandoz D., Evolution of filipin-sterol complexes and intramembrane particle distribution during ciliogenesis. J Submicrosc Cytol, 1983, 15, 275-280. [PubMed] [Google Scholar]
  • Chang B., Khanna H., Hawes N., Jimeno D., He S., Lillo C., Parapuram S. K., Cheng H., Scott A., Hurd R.E., Sayer J.A., Otto E.A., Attanasio M., O'Toole J.F., Jin G., Shou C., Hildebrandt F., Williams D.S., Heckenlively J.R., Swaroop A., In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse. Hum Mol Genet, 2006, 15, 1847-1857. [CrossRef] [PubMed] [Google Scholar]
  • Cordier A.C., Ultrastructure of the cilia of thymic cysts in “nude” mice. Anat Rec, 1975, 181, 227-249. [CrossRef] [PubMed] [Google Scholar]
  • Cordier A.C., Haumont S., Origin of necklace particles in thymic ciliating cells. Am J Anat, 1979, 156, 91-97. [CrossRef] [PubMed] [Google Scholar]
  • Cortese K., Diaspro A., Tacchetti C., Advanced correlative light/electron microscopy: current methods and new developments using Tokuyasu cryosections. J Histochem Cytochem, 2009, 57, 1103-1112. [CrossRef] [PubMed] [Google Scholar]
  • Cosson M.P., Gulik A., Description of the mitochondria-axoneme junction in sea urchin spermatozoa: presence of a flagellar necklace. J Ultrastruct Res, 1982, 79, 47-57. [CrossRef] [PubMed] [Google Scholar]
  • Craige B., Tsao C.C., Diener D. R., Hou Y., Lechtreck K.F., Rosenbaum J.L., Witman G. B., CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J Cell Biol, 2010, 190, 927-940. [CrossRef] [PubMed] [Google Scholar]
  • Currie A.R., Wheatley D.N., Cilia of a Distinctive Structure (9+0) in Endocrine and other Tissues. Postgrad Med J, 1966, 42, 403-408. [CrossRef] [Google Scholar]
  • Dahl H.A., Fine structure of cilia in rat cerebral cortex. Z Zellforsch Mikrosk Anat, 1963, 60, 369-386. [CrossRef] [PubMed] [Google Scholar]
  • Dalen H., An ultrastructural study of the tracheal epithelium of the guinea-pig with special reference to the ciliary structure. J Anat, 1983, 136, 47-67. [PubMed] [Google Scholar]
  • Davis A.E., Smallman L.A., An ultrastructural study of the mucosal surface of the human inferior concha. I. Normal appearances. J Anat, 1988, 161, 61-71. [PubMed] [Google Scholar]
  • Deane J.A., Cole D.G., Seeley E.S., Diener D.R., Rosenbaum, J.L., Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles. Curr Biol, 2001, 11, 1586-1590. [CrossRef] [PubMed] [Google Scholar]
  • Dentler W.L., Fine structural localization of phosphatases in cilia and basal bodies of Tetrahymena pyriformis. Tissue Cell, 1977, 9, 209-222. [Google Scholar]
  • Dentler W.L., Structures linking the tips of ciliary and flagellar microtubules to the membrane. J Cell Sci, 1980, 42, 207-220. [PubMed] [Google Scholar]
  • Dentler W.L., LeCluyse E.L., Microtubule capping structures at the tips of tracheal cilia: evidence for their firm attachment during ciliary bend formation and the restriction of microtubule sliding. Cell Motil, 1982, 2, 549-572. [CrossRef] [PubMed] [Google Scholar]
  • Dentler W.L., Rosenbaum J.L., Flagellar elongation and shortening in Chlamydomonas. III. Structures attached to the tips of flagellar microtubules and their relationship to the directionality of flagellar microtubule assembly. J Cell Biol, 1977, 74, 747-759. [CrossRef] [PubMed] [Google Scholar]
  • Dingle A.D., Fulton C., Development of the flagellar apparatus of Naegleria. J Cell Biol, 1966, 31, 43-54. [CrossRef] [PubMed] [Google Scholar]
  • Dippell R.V., Effects of nuclease and protease digestion on the ultrastructure of Paramecium basal bodies. J Cell Biol, 1976, 69, 622-637. [CrossRef] [PubMed] [Google Scholar]
  • Dirksen E.R., Satir P., Ciliary activity in the mouse oviduct as studied by transmission and scanning electron microscopy. Tissue Cell, 1972, 4, 389-403. [Google Scholar]
  • Drobne D., Milani M., Leser V., Tatti F., Zrimec A., Znidarsic N., Kostanjsek R., Strus J., Imaging of intracellular spherical lamellar structures and tissue gross morphology by a focused ion beam/scanning electron microscope (FIB/SEM). Ultramicroscopy, 2008, 108, 663-670. [CrossRef] [PubMed] [Google Scholar]
  • Dute R., Kung C., Ultrastructure of the proximal region of somatic cilia in Paramecium tetraurelia. J Cell Biol, 1978, 78, 451-464. [CrossRef] [PubMed] [Google Scholar]
  • Endo T., Ueno K., Yonezawa K., Mineta K., Hotta K., Satou Y., Yamada L., Ogasawara M., Takahashi H., Nakajima A., Nakachi M., Nomura M., Yaguchi J., Sasakura Y., Yamasaki C., Sera M., Yoshizawa A.C., Imanishi T., Taniguchi H., Inaba K., CIPRO 2.5: Ciona intestinalis protein database, a unique integrated repository of large-scale omics data, bioinformatic analyses and curated annotation, with user rating and reviewing functionality. Nucleic Acids Res, 2011, 39, D807-814. [CrossRef] [PubMed] [Google Scholar]
  • Fawcett D.W., Porter K.R., A study of the fine structure of ciliated epithelia. J Morphol, 1954, 94, 221-282. [Google Scholar]
  • Fernandez-Gonzalez A., Kourembanas S., Wyatt T.A., Mitsialis S.A., Mutation of murine adenylate kinase 7 underlies a primary ciliary dyskinesia phenotype. Am J Respir Cell Mol Biol, 2009, 40, 305-313. [CrossRef] [PubMed] [Google Scholar]
  • Fisch C., Dupuis-Williams P., Ultrastructure of cilia and flagella - back to the future! Biol Cell, 2011, 103, 249-270. [CrossRef] [PubMed] [Google Scholar]
  • Fisher G., Kaneshiro E.S., Peters P.D., Divalent cation affinity sites in Paramecium aurelia. J Cell Biol, 1976, 69, 429-442. [CrossRef] [PubMed] [Google Scholar]
  • Flannery R.J., French D.A., Kleene S.J., Clustering of cyclic-nucleotide-gated channels in olfactory cilia. Biophys J, 2006, 91, 179-188. [Google Scholar]
  • Fliegauf M., Horvath J., von Schnakenburg C., Olbrich H., Muller D., Thumfart J., Schermer B., Pazour G.J., Neumann H.P., Zentgraf H., Benzing T., Omran H., Nephrocystin specifically localizes to the transition zone of renal and respiratory cilia and photoreceptor connecting cilia. J Am Soc Nephrol, 2006, 17, 2424-2433. [CrossRef] [PubMed] [Google Scholar]
  • Flock A., Duvall A.J., 3rd., The ultrastructure of the kinocilium of the sensory cells in the inner ear and lateral line organs. J Cell Biol, 1965, 25, 1-8. [CrossRef] [Google Scholar]
  • Flood P.R., Totland G.K., Substructure of solitary cilia in mouse kidney. Cell Tissue Res, 1977, 183, 281-290. [PubMed] [Google Scholar]
  • Flower N.E., Septate and gap junctions between the epithelial cells of an invertebrate, the mollusc Cominella maculosa. J Ultrastruct Res, 1971, 37, 259-268. [CrossRef] [PubMed] [Google Scholar]
  • Foliguet B., Puchelle E., Apical structure of human respiratory cilia. Bull Eur Physiopathol Respir, 1986, 22, 43-47. [PubMed] [Google Scholar]
  • Forest C.L., Mutational disruption of the 9+2 structure of the axoneme of Chlamydomonas flagella. J Cell Sci, 1983, 61, 423-436. [PubMed] [Google Scholar]
  • Franzén Å., Afzelius B.A., The ciliated epidermis of Xenoturbella bocki (Platyhelminthes, Xenoturbellida) with some phylogenetic considerations. Zool Scr, 1987, 16, 9-17. [CrossRef] [Google Scholar]
  • Friend D.S., Fawcett D.W., Membrane differentiations in freeze-fractured mammalian sperm. J. Cell Biol, 1974, 63, 641-664. [CrossRef] [PubMed] [Google Scholar]
  • Fujiu K., Nakayama Y., Yanagisawa A., Sokabe M., Yoshimura K., Chlamydomonas CAV2 encodes a voltage- dependent calcium channel required for the flagellar waveform conversion. Curr Biol, 2009, 19, 133-139. [CrossRef] [PubMed] [Google Scholar]
  • Gadelha C., Rothery S., Morphew M., McIntosh J.R., Severs N.J., Gull K., Membrane domains and flagellar pocket boundaries are influenced by the cytoskeleton in African trypanosomes. Proc Natl Acad Sci USA, 2009, 106, 17425-17430. [CrossRef] [Google Scholar]
  • Gallagher B.C., Primary cilia of the corneal endothelium. Am J Anat, 1980, 159, 475-484. [CrossRef] [PubMed] [Google Scholar]
  • Geimer S., Melkonian M., The ultrastructure of the Chlamydomonas reinhardtii basal apparatus: identifi-cation of an early marker of radial asymmetry inherent in the basal body. J Cell Sci, 2004, 117, 2663-2674. [CrossRef] [PubMed] [Google Scholar]
  • Geimer S., Melkonian M., Centrin scaffold in Chlamydomonas reinhardtii revealed by immunoelectron microscopy. Eukaryot Cell, 2005, 4, 1253-1263. [CrossRef] [PubMed] [Google Scholar]
  • Gherman A., Davis E.E., Katsanis N., The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia. Nat Genet, 2006, 38, 961-962. [CrossRef] [PubMed] [Google Scholar]
  • Gibbons I.R., Structural asymmetry in cilia and flagella. Nature, 1961, 190, 1128-1129. [CrossRef] [PubMed] [Google Scholar]
  • Gibbons I.R., Grimstone A.V., On flagellar structure in certain flagellates. J Biophys Biochem Cytol, 1960, 7, 697-716. [CrossRef] [PubMed] [Google Scholar]
  • Giddings T.H., Jr., Meehl J.B., Pearson C.G., Winey M., Electron tomography and immuno-labeling of Tetrahymena thermophila basal bodies. Methods Cell Biol, 2010, 96, 117-141. [CrossRef] [PubMed] [Google Scholar]
  • Gilula N.B., Satir P., The ciliary necklace. A ciliary membrane specialization. J Cell Biol, 1972, 53, 494-509. [CrossRef] [PubMed] [Google Scholar]
  • Ginger M.L., Portman N., McKean P.G. Swimming with protists: perception, motility and flagellum assembly. Nat Rev Microbiol, 2008, 6, 838-850. [CrossRef] [PubMed] [Google Scholar]
  • Gluenz E., Hoog J.L., Smith A.E., Dawe H.R., Shaw M.K., Gull K., Beyond 9+0: noncanonical axoneme structures characterize sensory cilia from protists to humans. Faseb J, 2010, 24, 3117-3121. [CrossRef] [PubMed] [Google Scholar]
  • Graser S., Stierhof Y.D., Lavoie S.B., Gassner O.S., Lamla S., Le Clech M., Nigg E.A., Cep164, a novel centriole appendage protein required for primary cilium formation. J Cell Biol, 2007, 179, 321-330. [CrossRef] [PubMed] [Google Scholar]
  • Heuser T., Raytchev M., Krell J., Porter M.E., Nicastro D., The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. J Cell Biol, 2009, 187, 921-933. [CrossRef] [PubMed] [Google Scholar]
  • Hildebrandt F., Zhou W., Nephronophthisis-associated ciliopathies. J Am Soc Nephrol, 2007, 18, 1855-1871. [CrossRef] [PubMed] [Google Scholar]
  • Hill K.L., Biology and mechanism of trypanosome cell motility. Eukaryot Cell, 2003, 2, 200-208. [Google Scholar]
  • Hoeng J.C., Dawson S.C., House S.A., Sagolla M.S., Pham J.K., Mancuso J.J., Lowe J., Cande W.Z., High-resolution crystal structure and in vivo function of a kinesin-2 homologue in Giardia intestinalis. Mol Biol Cell, 2008, 19, 3124-3137. [CrossRef] [PubMed] [Google Scholar]
  • Horst C.J., Forestner D.M., Besharse J.C., Cytoskeletal-membrane interactions: a stable interaction between cell surface glycoconjugates and doublet microtubules of the photoreceptor connecting cilium. J Cell Biol, 1987, 105, 2973-2987. [CrossRef] [PubMed] [Google Scholar]
  • Horst C.J., Johnson L.V., Besharse J.C., Transmembrane assemblage of the photoreceptor connecting cilium and motile cilium transition zone contain a common immunologic epitope. Cell Motil Cytoskelet, 1990, 17, 329-344. [CrossRef] [Google Scholar]
  • Hozumi A., Satouh Y., Ishibe D., Kaizu M., Konno A., Ushimaru Y., Toda T., Inaba K., Local database and the search program for proteomic analysis of sperm proteins in the ascidian Ciona intestinalis. Biochem Biophys Res Commun, 2004, 319, 1241-1246. [CrossRef] [PubMed] [Google Scholar]
  • Hu Q., Milenkovic L., Jin H., Scott M.P., Nachury M.V., Spiliotis E.T., Nelson W.J., A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science, 2010, 329, 436-439. [CrossRef] [PubMed] [Google Scholar]
  • Hunnicutt G.R., Kosfiszer M.G., Snell W.J., Cell body and flagellar agglutinins in Chlamydomonas reinhardtii: the cell body plasma membrane is a reservoir for agglutinins whose migration to the flagella is regulated by a functional barrier. J Cell Biol, 1990, 111, 1605-1616. [CrossRef] [PubMed] [Google Scholar]
  • Ihara M., Kinoshita A., Yamada S., Tanaka H., Tanigaki A., Kitano A., Goto M., Okubo K., Nishiyama H., Ogawa O., Takahashi C., Itohara S., Nishimune Y., Noda M., Kinoshita M., Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa. Dev Cell, 2005, 8, 343-352. [CrossRef] [PubMed] [Google Scholar]
  • Inaba K., Molecular basis of sperm flagellar axonemes: structural and evolutionary aspects. Ann N Y Acad Sci, 2007, 1101, 506-526. [CrossRef] [PubMed] [Google Scholar]
  • Inglis P.N., Boroevich K.A., Leroux M.R., Piecing together a ciliome. Trends Genet, 2006, 22, 491-500. [CrossRef] [PubMed] [Google Scholar]
  • Inoue S., Hogg J.C., Freeze-etch study of the tracheal epithelium of normal guinea pigs with particular reference to intercellular junctions. J Ultrastruct Res, 1977, 61, 89-99. [CrossRef] [PubMed] [Google Scholar]
  • Insinna C., Besharse J.C., Intraflagellar transport and the sensory outer segment of vertebrate photoreceptors. Dev Dyn, 2008, 237, 1982-1992. [CrossRef] [PubMed] [Google Scholar]
  • Ishikawa H., Kubo A., Tsukita S., Tsukita S., Odf2-deficient mother centrioles lack distal/subdistal appendages and the ability to generate primary cilia. Nat Cell Biol, 2005, 7, 517-524. [CrossRef] [PubMed] [Google Scholar]
  • Ishikawa T., Sakakibara H., Oiwa K., The architecture of outer dynein arms in situ. J Mol Biol, 2007, 368, 1249-1258. [CrossRef] [PubMed] [Google Scholar]
  • Jarvik J.W., Suhan J.P., The role of the flagellar transition region: inferences from the analysis of a Chlamydomonas mutant with defective transition region structures. J Cell Sci, 1991, 99, 731-740. [Google Scholar]
  • Jauregui A.R., Nguyen K.C., Hall D.H., Barr M.M., The Caenorhabditis elegans nephrocystins act as global modifiers of cilium structure. J Cell Biol, 2008, 180, 973-988. [CrossRef] [PubMed] [Google Scholar]
  • Jeffery P.K., Reid L., New observations of rat airway epithelium: a quantitative and electron microscopic study. J Anat, 1975, 120, 295-320. [PubMed] [Google Scholar]
  • Jensen C.G., Poole C.A., McGlashan S.R., Marko M., Issa Z.I., Vujcich K.V., Bowser S.S., Ultrastructural, tomographic and confocal imaging of the chondrocyte primary cilium in situ. Cell Biol Int, 2004, 28, 101-110. [CrossRef] [PubMed] [Google Scholar]
  • Jiang S.T., Chiou Y.Y., Wang E., Chien Y.L., He H.H., Tsai F.J., Lin C.Y., Tsai S.P., Li H., Essential Role of Nephrocystin in Photoreceptor Intraflagellar Transport in Mouse. Hum Mol Genet, 2009, 18, 1566-1577. [CrossRef] [PubMed] [Google Scholar]
  • Johnson U.G., Porter K.R., Fine structure of cell division in Chlamydomonas reinhardi. Basal bodies and microtubules. J Cell Biol, 1968, 38, 403-425. [CrossRef] [PubMed] [Google Scholar]
  • Kerjaschki D., Horander H., The development of mouse olfactory vesicles and their cell contacts: a freeze-etching study. J Ultrastruct Res, 1976, 54, 420-444. [CrossRef] [PubMed] [Google Scholar]
  • Kilburn C.L., Pearson C.G., Romijn E.P., Meehl J.B., Giddings T.H., Jr., Culver B.P., Yates J.R., 3rd., Winey M., New Tetrahymena basal body protein components identify basal body domain structure. J Cell Biol, 2007, 178, 905-912. [CrossRef] [PubMed] [Google Scholar]
  • Kim J., Krishnaswami S.R., Gleeson J.G., CEP290 interacts with the centriolar satellite component PCM-1 and is required for Rab8 localization to the primary cilium. Hum Mol Genet, 2008, 17, 3796-3805. [CrossRef] [PubMed] [Google Scholar]
  • King S.M., Axonemal dyneins winch the cilium. Nat Struct Mol Biol, 2010, 17, 673-674. [Google Scholar]
  • Koyfman A.Y., Schmid M.F., Gheiratmand L., Fu C.J., Khant H.A., Huang D., He C.Y., Chiu W., Structure of Trypanosoma brucei flagellum accounts for its bihelical motion. Proc Natl Acad Sci USA, 2011, 108, 11105-11108. [CrossRef] [Google Scholar]
  • Kubo A., Yuba-Kubo A., Tsukita S., Tsukita S., Amagai M., Sentan: a novel specific component of the apical structure of vertebrate motile cilia. Mol Biol Cell, 2008, 19, 5338-5346. [CrossRef] [PubMed] [Google Scholar]
  • Kuhn C., 3rd., Engleman W., The structure of the tips of mammalian respiratory cilia. Cell Tissue Res, 1978, 186, 491-498. [PubMed] [Google Scholar]
  • Kwitny S., Klaus A.V., Hunnicutt G.R., The annulus of the mouse sperm tail is required to establish a membrane diffusion barrier that is engaged during the late steps of spermiogenesis. Biol Reprod, 2010, 82, 669-678. [CrossRef] [PubMed] [Google Scholar]
  • Lacomble S., Vaughan S., Gadelha C., Morphew M.K., Shaw M.K., McIntosh J.R., Gull K., Three-dimensional cellular architecture of the flagellar pocket and associated cytoskeleton in trypanosomes revealed by electron microscope tomography. J Cell Sci, 2009, 122, 1081-1090. [CrossRef] [PubMed] [Google Scholar]
  • Laligne C., Klotz C., de Loubresse N.G., Lemullois M., Hori M., Laurent F.X., Papon J.F., Louis B., Cohen J., Koll F., Bug22p, a conserved centrosomal/ciliary protein also present in higher plants, is required for an effective ciliary stroke in Paramecium. Eukaryot Cell, 2010, 9, 645-655. [CrossRef] [PubMed] [Google Scholar]
  • Lam X., Gieseke C., Knoll M., Talbot P., Assay and importance of adhesive interaction between hamster (Mesocricetus auratus) oocyte-cumulus complexes and the oviductal epithelium. Biol Reprod, 2000, 62, 579-588. [CrossRef] [PubMed] [Google Scholar]
  • Lechtreck K.F., Teltenkotter A., Grunow A., A 210 kDa protein is located in a membrane-microtubule linker at the distal end of mature and nascent basal bodies. J Cell Sci, 1999, 112, 1633-1644. [PubMed] [Google Scholar]
  • LeCluyse E.L., Dentler W.L., Asymmetrical microtubule capping structures in frog palate cilia. J Ultrastruct Res, 1984, 86, 75-85. [CrossRef] [PubMed] [Google Scholar]
  • LeCluyse E.L., Frost S.K., Dentler W.L., Development and ciliation of the palate in two frogs, Bombina and Xenopus, a comparative study. Tissue Cell, 1985, 17, 853-864. [Google Scholar]
  • Leopold P.L., O'Mahony M.J., Lian X.J., Tilley A.E., Harvey B.G., Crystal R.G., Smoking is associated with shortened airway cilia. PLoS One, 2009, 4, e8157. [CrossRef] [PubMed] [Google Scholar]
  • Lindemann C.B., Lesich K.A., Flagellar and ciliary beating: the proven and the possible. J Cell Sci, 2010, 123, 519-528. [CrossRef] [PubMed] [Google Scholar]
  • Liu A., Wang B., Niswander L.A., Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development, 2005, 132, 3103-3111. [CrossRef] [PubMed] [Google Scholar]
  • Lohret T.A., Zhao L., Quarmby L.M., Cloning of Chlamydomonas p60 katanin and localization to the site of outer doublet severing during deflagellation. Cell Motil Cytoskeleton, 1999, 43, 221-231. [CrossRef] [PubMed] [Google Scholar]
  • Lundin K., Schander C., Ultrastructure of gill cilia and ciliary rootlets of Chaetoderma nitidulum Lovén 1844 (Mollusca, Chaetodermomorpha). Acta Zool, 1999, 80, 185-191. [CrossRef] [Google Scholar]
  • Lupetti P., Lanzavecchia S., Mercati D., Cantele F., Dallai R., Mencarelli C., Three-dimensional reconstruction of axonemal outer dynein arms in situ by electron tomography. Cell Motil Cytoskelet, 2005, 62, 69-83. [CrossRef] [Google Scholar]
  • Manton I., Observations with the Electron Microscope on the Cell Structure of the Antheridium and Spermatozoid of Sphagnum. J Exp Bot, 1957, 8, 382-400. [CrossRef] [Google Scholar]
  • Manton I., Clarke B., An electron microscope study of the spermatozoid of Sphagnum. J Exp Bot, 1952, 3, 265-275. [CrossRef] [Google Scholar]
  • Maricchiolo G., Laura R., Genovese L., Guerrera M.C., Micale V., Muglia U., Fine structure of spermatozoa in the blackspot sea bream Pagellus bogaraveo (Brunnich, 1768) with some considerations about the centriolar complex. Tissue Cell, 2010, 42, 88-96. [Google Scholar]
  • Marshall W.F., Rosenbaum J.L., Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control. J Cell Biol, 2001, 155, 405-414. [CrossRef] [PubMed] [Google Scholar]
  • Matsuzaki O., Bakin R.E., Cai X., Menco B.P., Ronnett G.V., Localization of the olfactory cyclic nucleotide-gated channel subunit 1 in normal, embryonic and regenerating olfactory epithelium. Neuroscience, 1999, 94, 131-140. [CrossRef] [PubMed] [Google Scholar]
  • McEwen B.F., Radermacher M., Rieder C.L., Frank J., Tomographic three-dimensional reconstruction of cilia ultrastructure from thick sections. Proc Natl Acad Sci USA, 1986, 83, 9040-9044. [CrossRef] [Google Scholar]
  • McEwen B.F., Marko M., Hsieh C.E., Mannella C., Use of frozen-hydrated axonemes to assess imaging parameters and resolution limits in cryoelectron tomography. J Struct Biol, 2002, 138, 47-57. [CrossRef] [PubMed] [Google Scholar]
  • McEwen D.P., Koenekoop R.K., Khanna H., Jenkins P.M., Lopez I., Swaroop A., Martens J.R., Hypomorphic CEP290/NPHP6 mutations result in anosmia caused by the selective loss of G proteins in cilia of olfactory sensory neurons. Proc Natl Acad Sci USA, 2007, 104, 15917-15922. [Google Scholar]
  • McGlashan S.R., Knight M.M., Chowdhury T.T., Joshi P., Jensen C.G., Kennedy S., Poole C.A., Mechanical loading modulates chondrocyte primary cilia incidence and length. Cell Biol Int, 2010, 34, 441-446. [CrossRef] [PubMed] [Google Scholar]
  • Meehl J.B., Giddings T.H., Jr., Winey M., High pressure freezing, electron microscopy, and immuno-electron microscopy of Tetrahymena thermophila basal bodies. Methods Mol Biol, 2009, 586, 227-241. [CrossRef] [PubMed] [Google Scholar]
  • Mencarelli C., Lupetti P., Dallai R., New insights into the cell biology of insect axonemes. Int Rev Cell Mol Biol, 2008, 268, 95-145. [CrossRef] [PubMed] [Google Scholar]
  • Menco M., Qualitative and quantitative freeze-fracture studies on olfactory and respiratory epithelial surfaces of frog, ox, rat, and dog. IV. Ciliogenesis and ciliary necklaces (including high-voltage observations). Cell Tissue Res, 1980, 212, 1-16. [PubMed] [Google Scholar]
  • Menco B.P., Dodd G.H., Davey M., Bannister L.H., Presence of membrane particles in freeze-etched bovine olfactory cilia. Nature, 1976, 263, 597-599. [CrossRef] [PubMed] [Google Scholar]
  • Menco B.P., Bruch R.C., Dau B., Danho W., Ultrastructural localization of olfactory transduction components: the G protein subunit Golf alpha and type III adenylyl cyclase. Neuron, 1992, 8, 441-453. [CrossRef] [PubMed] [Google Scholar]
  • Mesland D.A., Hoffman J.L., Caligor E., Goodenough U.W., Flagellar tip activation stimulated by membrane adhesions in Chlamydomonas gametes. J Cell Biol, 1980, 84, 599-617. [CrossRef] [PubMed] [Google Scholar]
  • Messaoudi C., de Loubresse N.G., Boudier T., Dupuis-Williams P., Marco S., Multiple-axis tomography: applications to basal bodies from Paramecium tetraurelia. Biol Cell, 2006, 98, 415-425. [CrossRef] [PubMed] [Google Scholar]
  • Miller J.M., Wang W., Balczon R., Dentler W.L., Ciliary microtubule capping structures contain a mammalian kinetochore antigen. J Cell Biol, 1990, 110, 703-714. [CrossRef] [PubMed] [Google Scholar]
  • Miragall F., Breipohl W., Bhatnagar K.P., Ultrastructural investigation on the cell membranes of the vomeronasal organ in the rat: a freeze-etching study. Cell Tissue Res, 1979, 200, 397-408. [PubMed] [Google Scholar]
  • Miyoshi K., Kasahara K., Miyazaki I., Asanuma M., Lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Biochem Biophys Res Commun, 2009, 388, 757-762. [CrossRef] [PubMed] [Google Scholar]
  • Morita Y., Kinoshita K., Wakisaka S., Makihara S., Claws of cilia: further observation of ciliated epithelium in neurenteric cyst. Virchows Arch A Pathol Anat Histopathol, 1991, 418, 263-265. [CrossRef] [PubMed] [Google Scholar]
  • Movassagh T., Bui K.H., Sakakibara H., Oiwa K., Ishikawa T., Nucleotide-induced global conformational changes of flagellar dynein arms revealed by in situ analysis. Nat Struct Mol Biol, 2010, 17, 761-767. [Google Scholar]
  • Musgrave A., Wildt P., Etten I., Pijst H., Scholma C., Kooyman R., Homan W., Ende H., Evidence for a functional membrane barrier in the transition zone between the flagellum and cell body of Chlamydomonas eugametos gametes. Planta, 1986, 167, 544-553. [CrossRef] [PubMed] [Google Scholar]
  • Myles D.G., Primakoff P., Koppel D.E., A localized surface protein of guinea pig sperm exhibits free diffusion in its domain. J Cell Biol, 1984, 98, 1905-1909. [CrossRef] [PubMed] [Google Scholar]
  • Naitoh Y., Kaneko H., ATP-Mg-reactivated Triton-extracted models of Paramecium. Science, 1972, 176, 523-524. [CrossRef] [PubMed] [Google Scholar]
  • Nicastro D. Cryo-electron microscope tomography to study axonemal organization. Methods Cell Biol, 2009, 91, 1-39. [CrossRef] [PubMed] [Google Scholar]
  • Nicastro D., McIntosh J.R., Baumeister W., 3D structure of eukaryotic flagella in a quiescent state revealed by cryo-electron tomography. Proc Natl Acad Sci USA, 2005, 102, 15889-15894. [CrossRef] [Google Scholar]
  • Nicastro D., Schwartz C., Pierson J., Gaudette R., Porter M.E., McIntosh J.R., The molecular architecture of axonemes revealed by cryoelectron tomography. Science, 2006, 313, 944-948. [CrossRef] [PubMed] [Google Scholar]
  • Nicastro D., Fu X., Heuser T., Tso A., Porter M.E., Linck R.W., Cryo-electron tomography reveals conserved features of doublet microtubules in flagella. Proc Natl Acad Sci USA, 2011, 108, E845-853. [CrossRef] [Google Scholar]
  • Nogales-Cadenas R., Abascal F., Diez-Perez J., Carazo J.M., Pascual-Montano A., CentrosomeDB: a human centrosomal proteins database. Nucleic Acids Res, 2009, 37, D175-180. [CrossRef] [PubMed] [Google Scholar]
  • Nonaka S., Tanaka Y., Okada Y., Takeda S., Harada A., Kanai Y., Kido M., Hirokawa N., Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell, 1998, 95, 829-837. [CrossRef] [PubMed] [Google Scholar]
  • Norwood J.T., Hein C.E., Halbert S.A., Anderson R.G., Polycationic macromolecules inhibit cilia-mediated ovum transport in the rabbit oviduct. Proc Natl Acad Sci USA, 1978, 75, 4413-4416. [CrossRef] [Google Scholar]
  • O'Toole E.T., Giddings T.H., Jr., Dutcher S.K., Understanding microtubule organizing centers by comparing mutant and wild-type structures with electron tomography. Methods Cell Biol, 2007, 79, 125-143. [CrossRef] [PubMed] [Google Scholar]
  • Parker J.D., Hilton L.K., Diener D.R., Rasi M.Q., Mahjoub M.R., Rosenbaum J.L., Quarmby L.M., Centrioles are freed from cilia by severing prior to mitosis. Cytoskeleton (Hoboken), 2010, 67, 425-430. [CrossRef] [PubMed] [Google Scholar]
  • Pazour G.J., Dickert B.L., Vucica Y., Seeley E.S., Rosenbaum J.L., Witman G.B., Cole D.G., Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol, 2000, 151, 709-718. [CrossRef] [PubMed] [Google Scholar]
  • Pedersen L.B., Rosenbaum J.L., Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr Top Dev Biol, 2008, 85, 23-61. [CrossRef] [PubMed] [Google Scholar]
  • Pedersen L.B., Geimer S., Sloboda R.D., Rosenbaum J.L., The microtubule plus end-tracking protein EB1 is localized to the flagellar tip and basal bodies in Chlamydomonas reinhardtii. Curr Biol, 2003, 13, 1969-1974. [CrossRef] [PubMed] [Google Scholar]
  • Pedersen L.B., Miller M.S., Geimer S., Leitch J.M., Rosenbaum J.L., Cole D.G., Chlamydomonas IFT172 is encoded by FLA11, interacts with CrEB1, and regulates IFT at the flagellar tip. Curr Biol, 2005, 15, 262-266. [CrossRef] [PubMed] [Google Scholar]
  • Pigino G., Geimer S., Lanzavecchia S., Paccagnini E., Cantele F., Diener D.R., Rosenbaum J.L., Lupetti P., Electron-tomographic analysis of intraflagellar transport particle trains in situ. J Cell Biol, 2009, 187, 135-148. [CrossRef] [PubMed] [Google Scholar]
  • Plattner H., Ciliary granule plaques: membrane-intercalated particle aggregates associated with Ca2+-binding sites in paramecium. J Cell Sci, 1975, 18, 257-269. [PubMed] [Google Scholar]
  • Plattner H., Miller F., Bachmann L., Membrane specializations in the form of regular membrane-to-membrane attachment sites in Paramecium. A correlated freeze-etching and ultrathin-sectioning analysis. J Cell Sci, 1973, 13, 687-719. [PubMed] [Google Scholar]
  • Porter M.E., Sale W.S., The 9+2 axoneme anchors multiple inner arm dyneins and a network of kinases and phospha-tases that control motility. J Cell Biol, 2000, 151, F37-42. [CrossRef] [PubMed] [Google Scholar]
  • Portman R.W., LeCluyse E.L., Dentler W.L., Development of microtubule capping structures in ciliated epithelial cells. J Cell Sci, 1987, 87, 85-94. [PubMed] [Google Scholar]
  • Praetorius H.A., Spring K.R., Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol, 2001, 184, 71-79. [CrossRef] [PubMed] [Google Scholar]
  • Quarmby L.M., Cellular deflagellation. Int Rev Cytol, 2004, 233, 47-91. [CrossRef] [PubMed] [Google Scholar]
  • Randall J.T., Jackson S.F., Fine structure and function in Stentor polymorphous. J Biophys Biochem Cytol, 1958, 4, 807-830. [CrossRef] [PubMed] [Google Scholar]
  • Rasi M.Q., Parker J.D., Feldman J.L., Marshall W.F., Quarmby L.M., Katanin knockdown supports a role for microtubule severing in release of basal bodies before mitosis in Chlamydomonas. Mol Biol Cell, 2009, 20, 379-388. [CrossRef] [PubMed] [Google Scholar]
  • Reese T.S., Olfactory cilia in the frog. J Cell Biol, 1965, 25, 209-230. [CrossRef] [PubMed] [Google Scholar]
  • Rigort A., Bauerlein F.J., Leis A., Gruska M., Hoffmann C., Laugks T., Bohm U., Eibauer M., Gnaegi H., Baumeister W., Plitzko J.M., Micromachining tools and correlative approaches for cellular cryo-electron tomography. J Struct Biol, 2010, 172, 169-179. [CrossRef] [PubMed] [Google Scholar]
  • Ringo D.L., Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J Cell Biol, 1967, 33, 543-571. [CrossRef] [PubMed] [Google Scholar]
  • Roayaie K., Crump J.G., Sagasti A., Bargmann C.I., The G alpha protein ODR-3 mediates olfactory and nociceptive function and controls cilium morphogenesis in C. elegans olfactory neurons. Neuron, 1998, 20, 55-67. [CrossRef] [PubMed] [Google Scholar]
  • Rohlich P., The sensory cilium of retinal rods is analogous to the transitional zone of motile cilia. Cell Tissue Res, 1975, 161, 421-430. [PubMed] [Google Scholar]
  • Rosenbaum J.L., Child F.M., Flagellar regeneration in protozoan flagellates. J Cell Biol, 1967, 34, 345-364. [CrossRef] [PubMed] [Google Scholar]
  • Rosenbaum J.L., Witman G.B. Intraflagellar transport. Nat Rev Mol Cell Biol, 2002, 3, 813-825. [CrossRef] [PubMed] [Google Scholar]
  • Roth L.E., Shigenaka Y., The Structure and Formation of Cilia and Filaments in Rumen Protozoa. J Cell Biol, 1964, 20, 249-270. [CrossRef] [PubMed] [Google Scholar]
  • Sale W.S., Satir P., Splayed Tetrahymena cilia. A system for analyzing sliding and axonemal spoke arrangements. J Cell Biol, 1976, 71, 589-605. [CrossRef] [PubMed] [Google Scholar]
  • Sale W.S., Satir P., The termination of the central microtubules from the cilia of Tetrahymena pyriformis. Cell Biol Int Rep, 1977, 1, 45-49. [CrossRef] [PubMed] [Google Scholar]
  • Sanders M.A., Salisbury J.L., Centrin-mediated microtubule severing during flagellar excision in Chlamydomonas reinhardtii. J Cell Biol, 1989, 108, 1751-1760. [CrossRef] [PubMed] [Google Scholar]
  • Sanders M.A., Salisbury J.L., Centrin plays an essential role in microtubule severing during flagellar excision in Chlamydomonas reinhardtii. J Cell Biol, 1994, 124, 795-805. [CrossRef] [PubMed] [Google Scholar]
  • Sapiro R., Kostetskii I., Olds-Clarke P., Gerton G.L., Radice G.L., Strauss I.J., Male infertility, impaired sperm motility, and hydrocephalus in mice deficient in sperm-associated antigen 6. Mol Cell Biol, 2002, 22, 6298-6305. [CrossRef] [PubMed] [Google Scholar]
  • Satir P., Studies on cilia. 3. Further studies on the cilium tip and a “sliding filament” model of ciliary motility. J Cell Biol, 1968, 39, 77-94. [CrossRef] [PubMed] [Google Scholar]
  • Satir P., Christensen S.T., Overview of structure and function of mammalian cilia. Annu Rev Physiol, 2007, 69, 377-400. [CrossRef] [PubMed] [Google Scholar]
  • Satir B., Sale W.S., Satir P., Membrane renewal after dibucaine deciliation of Tetrahymena. Freeze-fracture technique, cilia, membrane structure. Exp Cell Res, 1976, 97, 83-91. [CrossRef] [PubMed] [Google Scholar]
  • Sattler C.A., Staehelin L.A., Ciliary membrane differentiations in Tetrahymena pyriformis. Tetrahymena has four types of cilia. J Cell Biol, 1974, 62, 473-490. [CrossRef] [PubMed] [Google Scholar]
  • Sayer J.A., Otto E.A., O'Toole J.F., Nurnberg G., Kennedy M.A., Becker C., Hennies H.C., Helou J., Attanasio M., Fausett B.V., Utsch B., Khanna H., Liu Y., Drummond I., Kawakami I., Kusakabe T., Tsuda M., Ma L., Lee H., Larson R.G., Allen S.J., Wilkinson C.J., Nigg E.A., Shou C., Lillo C., Williams D.S., Hoppe B., Kemper M.J., Neuhaus T., Parisi M.A., Glass I.A., Petry M., Kispert A., Gloy J., Ganner A., Walz G., Zhu X., Goldman D., Nurnberg P., Swaroop A., Leroux M.R., Hildebrandt F., The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat Genet, 2006, 38, 674-681. [CrossRef] [PubMed] [Google Scholar]
  • Silflow C.D., Liu B., LaVoie M., Richardson E.A., Palevitz B.A., Gamma-tubulin in Chlamydomonas: characterization of the gene and localization of the gene product in cells. Cell Motil Cytoskelet, 1999, 42, 285-297. [CrossRef] [Google Scholar]
  • Sloboda R.D., Howard L., Localization of EB1, IFT polypeptides, and kinesin-2 in Chlamydomonas flagellar axonemes via immunogold scanning electron microscopy. Cell Motil Cytoskelet, 2007, 64, 446-460. [CrossRef] [Google Scholar]
  • Smith D.S., Njogu A.R., Cayer M., Jarlfors U., Observations on freeze-fractured membranes of a Trypanosome. Tissue Cell, 1974, 6, 223-241. [Google Scholar]
  • Snow J.J., Ou G., Gunnarson A.L., Walker M.R., Zhou H.M., Brust-Mascher I., Scholey J.M., Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons. Nat Cell Biol, 2004, 6, 1109-1113. [CrossRef] [PubMed] [Google Scholar]
  • Sorokin S., Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J Cell Biol, 1962, 15, 363-377. [CrossRef] [PubMed] [Google Scholar]
  • Sotelo J.R., Trujillo-Cenoz O., Electron microscope study on the development of ciliary components of the neural epithelium of the chick embryo. Z Zellforsch Mikrosk Anat, 1958, 49, 1-12. [CrossRef] [PubMed] [Google Scholar]
  • Stannard W., Rutman A., Wallis C., O'Callaghan C., Central microtubular agenesis causing primary ciliary dyskinesia. Am J Respir Crit Care Med, 2004, 169, 634-637. [CrossRef] [PubMed] [Google Scholar]
  • Steels J.D., Estey M.P., Froese C.D., Reynaud D., Pace-Asciak C., Trimble W.S., Sept12 is a component of the mammalian sperm tail annulus. Cell Motil Cytoskelet, 2007, 64, 794-807. [CrossRef] [Google Scholar]
  • Sui H., Downing K.H., Molecular architecture of axonemal microtubule doublets revealed by cryo-electron tomography. Nature, 2006, 442, 475-478. [CrossRef] [PubMed] [Google Scholar]
  • Suprenant K.A., Dentler W.L., Release of intact microtubule-capping structures from Tetrahymena cilia. J Cell Biol, 1988, 107, 2259-2269. [CrossRef] [PubMed] [Google Scholar]
  • Tani E., Ikeda K., Nishiura M., Higashi N., Specialized intercellular junctions and ciliary necklace in rat brain. Cell Tissue Res, 1974, 151, 57-68. [PubMed] [Google Scholar]
  • Toure A., Lhuillier P., Gossen J.A., Kuil C.W., Lhote D., Jégou B., Escalier D., Gacon G., The testis anion transporter 1 (Slc26a8) is required for sperm terminal differentiation and male fertility in the mouse. Hum Mol Genet, 2007, 16, 1783-1793. [CrossRef] [PubMed] [Google Scholar]
  • Tsao C.C., Gorovsky M.A., Tetrahymena IFT122A is not essential for cilia assembly but plays a role in returning IFT proteins from the ciliary tip to the cell body. J Cell Sci, 2008, 121, 428-436. [CrossRef] [PubMed] [Google Scholar]
  • Verghese E., Ricardo S.D., Weidenfeld R., Zhuang J., Hill P.A., Langham R.G., Deane J.A., Renal primary cilia lengthen after acute tubular necrosis. J Am Soc Nephrol, 2009, 20, 2147-2153. [CrossRef] [PubMed] [Google Scholar]
  • Vieira O.V., Gaus K., Verkade P., Fullekrug J., Vaz W.L., Simons K., FAPP2, cilium formation, and compartmentalization of the apical membrane in polarized Madin-Darby canine kidney (MDCK) cells. Proc Natl Acad Sci USA, 2006, 103, 18556-18561. [CrossRef] [Google Scholar]
  • Weiss R.L., Goodenough D.A., Goodenough U.W., Membrane differentiations at sites specialized for cell fusion. J Cell Biol, 1977, 72, 144-160. [CrossRef] [PubMed] [Google Scholar]
  • Wilsman N.J., Farnum C.E., Reed-Aksamit D.K., Incidence and morphology of equine and murine chondrocytic cilia. Anat Rec, 1980, 197, 355-361. [CrossRef] [PubMed] [Google Scholar]
  • Wolf M.T., Hildebrandt F. Nephronophthisis. Pediatr Nephrol, 2010, [Google Scholar]
  • Wolf K.W, Kyburg J., The restructuring of the flagellar base and the flagellar necklace during spermatogenesis of Ephestia kuehniella Z. (Pyralidae, Lepidoptera). Cell Tissue Res, 1989, 256, 77-86. [Google Scholar]
  • Woolley D.M., Nickels S.N., Microtubule termination patterns in mammalian sperm flagella. J Ultrastruct Res, 1985, 90, 221-234. [CrossRef] [PubMed] [Google Scholar]
  • Woolley D., Gadelha C., Gull K. Evidence for a sliding-resistance at the tip of the trypanosome flagellum. Cell Motil Cytoskelet, 2006, 63, 741-746. [CrossRef] [Google Scholar]
  • Wright K.A., Nematode chemosensilla: form and function. J Nematol, 1983, 15, 151-158. [PubMed] [Google Scholar]
  • Wunderlich F., Speth V., Membranes in Tetrahymena. I. The cortical pattern. J Ultrastruct Res, 1972, 41, 258-269. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.