Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 206, Numéro 3, 2012
Page(s) 219 - 236
DOI https://doi.org/10.1051/jbio/2012021
Publié en ligne 22 novembre 2012
  • Abe K., Takeichi M., EPLIN mediates linkage of the cadherin catenin complex to F-actin and stabilizes the circumferential actin belt. Proc Natl Acad Sci USA, 2008, 105, 13–19. [CrossRef] [Google Scholar]
  • Adams C.L., Chen Y.T., Smith S.J., Nelson W.J., Mechanisms of epithelial cell-cell adhesion and cell compaction revealed by high-resolution tracking of E-cadherin-green fluorescent protein. J Cell Biol, 1998, 142, 1105–1119. [CrossRef] [PubMed] [Google Scholar]
  • Akhtar N., Hotchin N.A., RAC1 regulates adherens junctions through endocytosis of E-cadherin. Mol Biol Cell, 2001, 12, 847–862. [CrossRef] [PubMed] [Google Scholar]
  • Avizienyte E., Fincham V.J., Brunton V.G., Frame M.C., Src SH3/2 domain-mediated peripheral accumulation of Src and phospho-myosin is linked to deregulation of E-cadherin and the epithelial-mesenchymal transition. Mol Biol Cell, 2004, 15, 2794–2803. [CrossRef] [PubMed] [Google Scholar]
  • Baum B., Georgiou M., Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling. J Cell Biol, 2011, 192, 907–917. [CrossRef] [PubMed] [Google Scholar]
  • Baumgartner W., Hinterdorfer P., Ness W., Raab A., Vestweber D., Schindler H., Drenckhahn D., Cadherin interaction probed by atomic force microscopy. Proc Natl Acad Sci USA, 2000, 97, 4005–4010. [CrossRef] [Google Scholar]
  • Baumgartner W., Schutz G.J., Wiegand J., Golenhofen N., Drenckhahn D., Cadherin function probed by laser tweezer and single molecule fluorescence in vascular endothelial cells. J Cell Sci, 2003, 116, 1001–1011. [CrossRef] [PubMed] [Google Scholar]
  • Bershadsky A., Magic touch: how does cell-cell adhesion trigger actin assembly? Trends Cell Biol, 2004, 14, 589–593. [CrossRef] [PubMed] [Google Scholar]
  • Bertet C., Sulak L., Lecuit T., Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature, 2004, 429, 667–671. [CrossRef] [PubMed] [Google Scholar]
  • Bhowmick N.A., Ghiassi M., Bakin A., Aakre M., Lundquist C.A., Engel M.E., Arteaga C.L., Moses H.L., Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell, 2001, 12, 27–36. [CrossRef] [PubMed] [Google Scholar]
  • Blankenship J.T., Backovic S.T., Sanny J.S., Weitz O., Zallen J.A., Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev Cell, 2006, 11, 459–470. [CrossRef] [PubMed] [Google Scholar]
  • Boggon T.J., Murray J., Chappuis-Flament S., Wong E., Gumbiner B.M., Shapiro L., C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science, 2002, 296, 1308–1313. [CrossRef] [PubMed] [Google Scholar]
  • Braga V.M., Yap A.S., The challenges of abundance : epithelial junctions and small GTPase signalling. Curr Opin Cell Biol, 2005, 17, 466–474. [CrossRef] [PubMed] [Google Scholar]
  • Brembeck F.H., Schwarz-Romond T., Bakkers J., Wilhelm S., Hammerschmidt M., Birchmeier W., Essential role of BCL9-2 in the switch between beta-catenin’s adhesive and transcriptional functions. Genes Dev, 2004, 18, 2225–2230. [CrossRef] [PubMed] [Google Scholar]
  • Brieher W.M., Yap A.S., Gumbiner B.M., Lateral dimerization is required for the homophilic binding activity of C-cadherin. J Cell Biol, 1996, 135, 487–496. [CrossRef] [PubMed] [Google Scholar]
  • Bryant D.M., Stow J.L., The ins and outs of E-cadherin trafficking. Trends Cell Biol, 2004, 14, 427–434. [CrossRef] [PubMed] [Google Scholar]
  • Bryant D.M., Kerr M.C., Hammond L.A., Joseph S.R., Mostov K.E., Teasdale R.D., Stow J.L., EGF induces macropinocytosis and SNX1-modulated recycling of E-cadherin. J Cell Sci, 2007, 120, 1818–1828. [CrossRef] [PubMed] [Google Scholar]
  • Cano A., Perez-Moreno M.A., Rodrigo I., Locascio A., Blanco M.J., del Barrio M.G., Portillo F., Nieto M.A., The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol, 2000, 2, 76–83. [CrossRef] [PubMed] [Google Scholar]
  • Cavey M., Rauzi M., Lenne P.F., Lecuit T., A two-tiered mechanism for stabilization and immobilization of E-cadherin. Nature, 2008, 453, 751–756. [CrossRef] [PubMed] [Google Scholar]
  • Cavey M., Lecuit T., Molecular bases of cell-cell junctions stability and dynamics. Cold Spring Harb Perspect Biol, 2009, 1, a002998. [Google Scholar]
  • Chang L.H., Chen P., Lien M.T., Ho Y.H., Lin C.M., Pan Y.T., Wei S.Y., Hsu J.C., Differential adhesion and actomyosin cable collaborate to drive Echinoid-mediated cell sorting. Development, 2011, 138, 3803–3812. [CrossRef] [PubMed] [Google Scholar]
  • Chausovsky A., Bershadsky A.D., Borisy G.G., Cadherin-mediated regulation of microtubule dynamics. Nat Cell Biol, 2000, 2, 797–804. [CrossRef] [PubMed] [Google Scholar]
  • Chen Y.T., Stewart D.B., Nelson W.J., Coupling assembly of the E-cadherin/beta-catenin complex to efficient endoplasmic reticulum exit and basal-lateral membrane targeting of E-cadherin in polarized MDCK cells. J Cell Biol, 1999, 144, 687–699. [CrossRef] [PubMed] [Google Scholar]
  • Chen X., Kojima S., Borisy G.G., Green K.J., p120 catenin associates with kinesin and facilitates the transport of cadherin-catenin complexes to intercellular junctions. J Cell Biol, 2003, 163, 547–557. [CrossRef] [PubMed] [Google Scholar]
  • Chiasson C.M., Wittich K.B., Vincent P.A., Faundez V., Kowalczyk A.P., p120-catenin inhibits VE-cadherin internalization through a Rho-independent mechanism. Mol Biol Cell, 2009, 20, 1970–1980. [CrossRef] [PubMed] [Google Scholar]
  • Choi H.J., Huber A.H., Weis W.I., Thermodynamics of beta-catenin-ligand interactions: the roles of the N- and C-terminal tails in modulating binding affinity. J Biol Chem, 2006, 281, 1027–1038. [CrossRef] [PubMed] [Google Scholar]
  • Classen A.K., Anderson K.I., Marois E., Eaton S., Hexagonal packing of Drosophila wing epithelial cells by the planar cell polarity pathway. Dev Cell, 2005, 9, 805–817. [CrossRef] [PubMed] [Google Scholar]
  • D’Souza-Schorey C., Disassembling adherens junctions: breaking up is hard to do. Trends Cell Biol, 2005, 15, 19–26. [CrossRef] [PubMed] [Google Scholar]
  • Dahmann C., Basler K., Opposing transcriptional outputs of Hedgehog signaling and engrailed control compartmental cell sorting at the Drosophila A/P boundary. Cell, 2000, 100, 411–422. [CrossRef] [PubMed] [Google Scholar]
  • Dahmann C., Oates A.C., Brand M., Boundary formation and maintenance in tissue development. Nat Rev Genet, 2011, 12, 43–55. [CrossRef] [PubMed] [Google Scholar]
  • Davis M.A., Ireton R.C., Reynolds A.B., A core function for p120-catenin in cadherin turnover. J Cell Biol, 2003, 163, 525–534. [CrossRef] [PubMed] [Google Scholar]
  • Dawes-Hoang R.E., Parmar K.M., Christiansen A.E., Phelps C.B., Brand A.H., Wieschaus E.F., folded gastrulation, cell shape change and the control of myosin localization. Development, 2005, 132, 4165–4178. [CrossRef] [PubMed] [Google Scholar]
  • de Beco S., Gueudry C., Amblard F., Coscoy S., Endocytosis is required for E-cadherin redistribution at mature adherens junctions. Proc Natl Acad Sci USA, 2009, 106, 7010–7015. [CrossRef] [Google Scholar]
  • De Vries W.N., Evsikov A.V., Haac B.E., Fancher K.S., Holbrook A.E., Kemler R., Solter D., Knowles B.B., Maternal beta-catenin and E-cadherin in mouse development. Development, 2004, 131, 4435–4445. [CrossRef] [PubMed] [Google Scholar]
  • Delanoe-Ayari H., Al Kurdi R., Vallade M., Gulino-Debrac D., Riveline D., Membrane and acto-myosin tension promote clustering of adhesion proteins. Proc Natl Acad Sci USA, 2004, 101, 2229–2234. [CrossRef] [Google Scholar]
  • Delva, E., Kowalczyk A.P., Regulation of cadherin trafficking. Traffic, 2009, 10, 259–267. [CrossRef] [PubMed] [Google Scholar]
  • Drees F., Pokutta S., Yamada S., Nelson W.J., Weis W.I., Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell, 2005, 123, 903–915. [CrossRef] [PubMed] [Google Scholar]
  • Duguay D., Foty R.A., Steinberg M.S., Cadherin-mediated cell adhesion and tissue segregation: qualitative and quantitative determinants. Dev Biol, 2003, 253, 309–323. [CrossRef] [PubMed] [Google Scholar]
  • Evans E., Yeung A., Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys J, 1989, 56, 151–160. [Google Scholar]
  • Fernandez-Gonzalez R., Simoes Sde M., Roper J.C., Eaton S., Zallen J.A., Myosin II dynamics are regulated by tension in intercalating cells. Dev Cell, 2009, 17, 736–743. [Google Scholar]
  • Forster D., Luschnig S., Src42A-dependent polarized cell shape changes mediate epithelial tube elongation in Drosophila. Nat Cell Biol, 2012 [Google Scholar]
  • Foty R.A., Steinberg M.S., The differential adhesion hypothesis: a direct evaluation. Dev Biol, 2005, 278, 255–263. [CrossRef] [PubMed] [Google Scholar]
  • Foty R.A., Pfleger C.M., Forgacs G., Steinberg M.S., Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development, 1996, 122, 1611–1620. [PubMed] [Google Scholar]
  • Fox D.T., Homem C.C., Myster S.H., Wang F., Bain E.E., Peifer M., Rho1 regulates Drosophila adherens junctions independently of p120ctn. Development, 2005, 132, 4819–4831. [CrossRef] [PubMed] [Google Scholar]
  • Fujita Y., Krause G., Scheffner M., Zechner D., Leddy H.E., Behrens J., Sommer T., Birchmeier W., Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol, 2002, 4, 222–231. [CrossRef] [PubMed] [Google Scholar]
  • Galletta B.J., Mooren O.L., Cooper J.A., Actin dynamics and endocytosis in yeast and mammals. Curr Opin Biotechnol, 2010, 21, 604–610. [CrossRef] [PubMed] [Google Scholar]
  • Gavard J., Gutkind J.S., VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol, 2006, 8, 1223–1234. [CrossRef] [PubMed] [Google Scholar]
  • Georgiou M., Marinari E., Burden J., Baum B., Cdc42, Par6, and aPKC regulate Arp2/3-mediated endocytosis to control local adherens junction stability. Curr Biol, 2008, 18, 1631–1638. [CrossRef] [PubMed] [Google Scholar]
  • Gibson M.C., Patel A.B., Nagpal R., Perrimon N., The emergence of geometric order in proliferating metazoan epithelia. Nature, 2006, 442, 1038–1041. [CrossRef] [PubMed] [Google Scholar]
  • Gloushankova N.A., Alieva N.A., Krendel M.F., Bonder E.M., Feder H.H., Vasiliev J.M., Gelfand I.M., Cell-cell contact changes the dynamics of lamellar activity in nontransformed epitheliocytes but not in their ras-transformed descendants. Proc Natl Acad Sci USA, 1997, 94, 879–883. [CrossRef] [Google Scholar]
  • Gorfinkiel N., Blanchard G.B., Dynamics of actomyosin contractile activity during epithelial morphogenesis. Curr Opin Cell Biol, 2011, 23, 531–539. [CrossRef] [PubMed] [Google Scholar]
  • Green K.J., Getsios S., Troyanovsky S., Godsel L.M., Intercellular junction assembly, dynamics, and homeostasis. Cold Spring Harb Perspect Biol, 2010, 2, a000125. [CrossRef] [PubMed] [Google Scholar]
  • Gumbiner B.M., Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol, 2005, 6, 622–634. [CrossRef] [PubMed] [Google Scholar]
  • Harris K.P., Tepass U., Cdc42 and Par proteins stabilize dynamic adherens junctions in the Drosophila neuroectoderm through regulation of apical endocytosis. J Cell Biol, 2008, 183, 1129–1143. [CrossRef] [PubMed] [Google Scholar]
  • Harris T.J., Tepass U., Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol, 2010, 11, 502–514. [CrossRef] [PubMed] [Google Scholar]
  • Harrison O.J., Jin X., Hong S., Bahna F., Ahlsen G., Brasch J., Wu Y., Vendome J., Felsovalyi K., Hampton C.M., Troyanovsky R.B., Ben-Shaul A., Frank J., Troyanovsky S.M., Shapiro L., Honig B., The extracellular architecture of adherens junctions revealed by crystal structures of type I cadherins. Structure, 2011, 19, 244–256. [CrossRef] [PubMed] [Google Scholar]
  • Haussinger D., Ahrens T., Aberle T., Engel J., Stetefeld J., Grzesiek S., Proteolytic E-cadherin activation followed by solution NMR and X-ray crystallography. EMBO J, 2004, 23, 1699–1708. [CrossRef] [PubMed] [Google Scholar]
  • Hayashi T., Carthew R.W., Surface mechanics mediate pattern formation in the developing retina. Nature, 2004, 431, 647–652. [CrossRef] [PubMed] [Google Scholar]
  • Hinck L., Nathke I.S., Papkoff J., Nelson W.J., Dynamics of cadherin/catenin complex formation: novel protein interactions and pathways of complex assembly. J Cell Biol, 1994, 125, 1327–1340. [CrossRef] [PubMed] [Google Scholar]
  • Hirano S., Nose A., Hatta K., Kawakami A., Takeichi M., Calcium-dependent cell-cell adhesion molecules (cadherins): subclass specificities and possible involvement of actin bundles. J Cell Biol, 1987, 105, 2501–2510. [CrossRef] [PubMed] [Google Scholar]
  • Homem C.C., Peifer M., Diaphanous regulates myosin and adherens junctions to control cell contractility and protrusive behavior during morphogenesis. Development, 2008, 135, 1005–1018. [CrossRef] [PubMed] [Google Scholar]
  • Huber A.H., Weis W.I., The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin. Cell, 2001, 105, 391-402. [CrossRef] [PubMed] [Google Scholar]
  • Huber A.H., Stewart D.B., Laurents D.V., Nelson W.J., Weis W.I., The cadherin cytoplasmic domain is unstructured in the absence of beta-catenin. A possible mechanism for regulating cadherin turnover. J Biol Chem, 2001, 276, 12301–12309. [CrossRef] [PubMed] [Google Scholar]
  • Hulpiau P., van Roy F., Molecular evolution of the cadherin superfamily. Int J Biochem Cell Biol, 2009, 41, 349–369. [CrossRef] [PubMed] [Google Scholar]
  • Ishiyama N., Lee S.H., Liu S., Li G.Y., Smith M.J., Reichardt L.F., Ikura M., Dynamic and static interactions between p120 catenin and E-cadherin regulate the stability of cell-cell adhesion. Cell, 2010, 141, 117–128. [CrossRef] [PubMed] [Google Scholar]
  • Itoh T., Erdmann K.S., Roux A., Habermann B., Werner H., De Camilli P., Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins. Dev Cell, 2005, 9, 791–804. [CrossRef] [PubMed] [Google Scholar]
  • Ivanov A.I., Nusrat A., Parkos C.A., Endocytosis of epithelial apical junctional proteins by a clathrin-mediated pathway into a unique storage compartment. Mol Biol Cell, 2004, 15, 176–188. [CrossRef] [PubMed] [Google Scholar]
  • Izumi G., Sakisaka T., Baba T., Tanaka S., Morimoto K., Takai Y., Endocytosis of E-cadherin regulated by Rac and Cdc42 small G proteins through IQGAP1 and actin filaments. J Cell Biol, 2004, 166, 237–248. [CrossRef] [PubMed] [Google Scholar]
  • Kaido M., Wada H., Shindo M., Hayashi S., Essential requirement for RING finger E3 ubiquitin ligase Hakai in early embryonic development of Drosophila. Genes Cells, 2009, 14, 1067–1077. [CrossRef] [PubMed] [Google Scholar]
  • Kaksonen M., Toret C.P., Drubin D.G., Harnessing actin dynamics for clathrin-mediated endocytosis. Nat Rev Mol Cell Biol, 2006, 7, 404–414. [CrossRef] [PubMed] [Google Scholar]
  • Kartenbeck J., Schmelz M., Franke W.W., Geiger B., Endocytosis of junctional cadherins in bovine kidney epithelial (MDBK) cells cultured in low Ca2+ ion medium. J Cell Biol, 1991, 113, 881–892. [CrossRef] [PubMed] [Google Scholar]
  • Kasza K.E., Zallen J.A., Dynamics and regulation of contractile actin-myosin networks in morphogenesis. Curr Opin Cell Biol, 2011, 23, 30–38. [Google Scholar]
  • Kelly B.T., McCoy A.J., Spate K., Miller S.E., Evans P.R., Honing S., Owen D.J., A structural explanation for the binding of endocytic dileucine motifs by the AP2 complex. Nature, 2008, 456, 976–979. [CrossRef] [PubMed] [Google Scholar]
  • Kirchhausen T., Imaging endocytic clathrin structures in living cells. Trends Cell Biol, 2009, 19, 596–605. [Google Scholar]
  • Krendel M., Gloushankova N.A., Bonder E.M., Feder H.H., Vasiliev J.M., Gelfand I.M., Myosin-dependent contractile activity of the actin cytoskeleton modulates the spatial organization of cell-cell contacts in cultured epitheliocytes. Proc Natl Acad Sci USA, 1999, 96, 9666–9670. [CrossRef] [Google Scholar]
  • Krieg M., Arboleda-Estudillo Y., Puech P.H., Kafer J., Graner F., Muller D. J., Heisenberg C.P., Tensile forces govern germ-layer organization in zebrafish. Nat Cell Biol, 2008, 10, 429–436. [CrossRef] [PubMed] [Google Scholar]
  • Ladoux B., Anon E., Lambert M., Rabodzey A., Hersen P., Buguin A., Silberzan P., Mege R.M., Strength dependence of cadherin-mediated adhesions. Biophys J, 2010, 98, 534–542. [CrossRef] [PubMed] [Google Scholar]
  • Lamaze C., Chuang T.H., Terlecky L.J., Bokoch G.M., Schmid S.L., Regulation of receptor-mediated endocytosis by Rho and Rac. Nature, 1996, 382, 177–179. [CrossRef] [PubMed] [Google Scholar]
  • Landsberg K.P., Farhadifar R., Ranft J., Umetsu D., Widmann T.J., Bittig T., Said A., Julicher F., Dahmann C., Increased cell bond tension governs cell sorting at the Drosophila anteroposterior compartment boundary. Curr Biol, 2009, 19, 1950–1955. [CrossRef] [PubMed] [Google Scholar]
  • Langevin J., Morgan M.J., Sibarita J.B., Aresta S., Murthy M., Schwarz T., Camonis J., Bellaiche Y., Drosophila exocyst components Sec5, Sec6, and Sec15 regulate DE-Cadherin trafficking from recycling endosomes to the plasma membrane. Dev Cell, 2005, 9, 365–376. [CrossRef] [PubMed] [Google Scholar]
  • Le T.L., Yap A.S., Stow J.L., Recycling of E-cadherin : a potential mechanism for regulating cadherin dynamics. J Cell Biol, 1999, 146, 219–232. [PubMed] [Google Scholar]
  • Leckband D.E., le Duc Q., Wang N., de Rooij J., Mechanotransduction at cadherin-mediated adhesions. Curr Opin Cell Biol, 2011, 23, 523–530. [CrossRef] [PubMed] [Google Scholar]
  • Lecuit T., Le Goff L., Orchestrating size and shape during morphogenesis. Nature, 2007, 450, 189–192. [CrossRef] [PubMed] [Google Scholar]
  • Lecuit T., Lenne P.F., Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat Rev Mol Cell Biol, 2007, 8, 633–644. [Google Scholar]
  • Leibfried A., Fricke R., Morgan M.J., Bogdan S., Bellaiche Y., Drosophila Cip4 and WASp define a branch of the Cdc42-Par6-aPKC pathway regulating E-cadherin endocytosis. Curr Biol, 2008, 18, 1639–1648. [CrossRef] [PubMed] [Google Scholar]
  • Leung S.M., Rojas R., Maples C., Flynn C., Ruiz W.G., Jou T.S., Apodaca G., Modulation of endocytic traffic in polarized Madin-Darby canine kidney cells by the small GTPase RhoA. Mol Biol Cell, 1999, 10, 4369–4384. [CrossRef] [PubMed] [Google Scholar]
  • Levayer R., Lecuit T., Biomechanical regulation of contractility: spatial control and dynamics. Trends Cell Biol, 2012, 22, 61–81. [Google Scholar]
  • Levayer R., Pelissier-Monier A., Lecuit T., Spatial regulation of Dia and Myosin-II by RhoGEF2 controls initiation of E-cadherin endocytosis during epithelial morphogenesis. Nat Cell Biol, 2011, 13, 529–540. [CrossRef] [PubMed] [Google Scholar]
  • Lickert H., Bauer A., Kemler R., Stappert J., Casein kinase II phosphorylation of E-cadherin increases E-cadherin/beta-catenin interaction and strengthens cell-cell adhesion. J Biol Chem, 2000, 275, 5090–5095. [CrossRef] [PubMed] [Google Scholar]
  • Lock J.G., Stow J.L., Rab11 in recycling endosomes regulates the sorting and basolateral transport of E-cadherin. Mol Biol Cell, 2005, 16, 1744–1755. [CrossRef] [PubMed] [Google Scholar]
  • Lye C.M., Sanson B., Tension and epithelial morphogenesis in Drosophila early embryos. Curr Top Dev Biol, 2011, 95, 145–187. [CrossRef] [PubMed] [Google Scholar]
  • Martin A.C., Pulsation and stabilization: contractile forces that underlie morphogenesis. Dev Biol, 2010, 341, 114–125. [CrossRef] [PubMed] [Google Scholar]
  • Martin A.C., Gelbart M., Fernandez-Gonzalez R., Kaschube M., Wieschaus E.F., Integration of contractile forces during tissue invagination. J Cell Biol, 2010, 188, 735–749. [CrossRef] [PubMed] [Google Scholar]
  • Mary S., Charrasse S., Meriane M., Comunale F., Travo P., Blangy A., Gauthier-Rouvière C., Biogenesis of N-cadherin-dependent cell-cell contacts in living fibroblasts is a microtubule-dependent kinesin-driven mechanism. Mol Biol Cell, 2002, 13, 285–301. [CrossRef] [PubMed] [Google Scholar]
  • McMahon H.T., Boucrot E., Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol, 2011, 12, 517–533. [CrossRef] [PubMed] [Google Scholar]
  • Meng W., Mushika Y., Ichii T., Takeichi M., Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell-cell contacts. Cell, 2008, 135, 948–959. [CrossRef] [PubMed] [Google Scholar]
  • Miyashita Y., Ozawa M., Increased internalization of p120-uncoupled E-cadherin and a requirement for a dileucine motif in the cytoplasmic domain for endocytosis of the protein. J Biol Chem, 2007, 282, 11540–11548. [CrossRef] [PubMed] [Google Scholar]
  • Miyashita Y., Ozawa M., A dileucine motif in its cytoplasmic domain directs beta-catenin-uncoupled E-cadherin to the lysosome. J Cell Sci, 2007, 120, 4395–4406. [CrossRef] [PubMed] [Google Scholar]
  • Monier B., Pelissier-Monier A., Sanson B., Establishment and maintenance of compartmental boundaries: role of contractile actomyosin barriers. Cell Mol Life Sci, 2011, 68, 1897–1910. [CrossRef] [PubMed] [Google Scholar]
  • Myster S.H., Cavallo R., Anderson C.T., Fox D.T., Peifer M., Drosophila p120catenin plays a supporting role in cell adhesion but is not an essential adherens junction component. J Cell Biol, 2003, 160, 433–449. [CrossRef] [PubMed] [Google Scholar]
  • Nelson K.S., Khan Z., Molnar I., Mihaly J., Kaschube M., Beitel G.J., Drosophila Src regulates anisotropic apical surface growth to control epithelial tube size. Nat Cell Biol, 2012 [Google Scholar]
  • Overduin M., Harvey T.S., Bagby S., Tong K.I., Yau P., Takeichi M., Ikura M., Solution structure of the epithelial cadherin domain responsible for selective cell adhesion. Science, 1995, 267, 386–389. [CrossRef] [PubMed] [Google Scholar]
  • Pacquelet A., Lin L., Rorth P., Binding site for p120/delta-catenin is not required for Drosophila E-cadherin function in vivo. J Cell Biol, 2003, 160, 313–319. [CrossRef] [PubMed] [Google Scholar]
  • Palacios F., Price L., Schweitzer J., Collard J.G., D’Souza-Schorey C., An essential role for ARF6-regulated membrane traffic in adherens junction turnover and epithelial cell migration. EMBO J, 2001, 20, 4973–4986. [CrossRef] [PubMed] [Google Scholar]
  • Palacios F., Schweitzer J.K., Boshans R.L., D’Souza-Schorey C., ARF6-GTP recruits Nm23-H1 to facilitate dynamin-mediated endocytosis during adherens junctions disassembly. Nat Cell Biol, 2002, 4, 929–936. [CrossRef] [PubMed] [Google Scholar]
  • Palacios F., Tushir J.S., Fujita Y., D’Souza-Schorey C., Lysosomal targeting of E-cadherin: a unique mechanism for the down-regulation of cell-cell adhesion during epithelial to mesenchymal transitions. Mol Cell Biol, 2005, 25, 389–402. [CrossRef] [PubMed] [Google Scholar]
  • Perret E., Benoliel A.M., Nassoy P., Pierres A., Delmas V., Thiery J.P., Bongrand P., Feracci H., Fast dissociation kinetics between individual E-cadherin fragments revealed by flow chamber analysis. EMBO J, 2002, 21, 2537–2546. [CrossRef] [PubMed] [Google Scholar]
  • Pettitt J., Cox E.A., Broadbent I.D., Flett A., Hardin J., The Caenorhabditis elegans p120 catenin homologue, JAC-1, modulates cadherin-catenin function during epidermal morphogenesis. J Cell Biol, 2003, 162, 15–22. [CrossRef] [PubMed] [Google Scholar]
  • Piedra J., Miravet S., Castano J., Palmer H.G., Heisterkamp N., Garcia de Herreros A., Dunach M., p120 Catenin-associated Fer and Fyn tyrosine kinases regulate beta-catenin Tyr-142 phosphorylation and beta-catenin-alpha-catenin interaction. Mol Cell Biol, 2003, 23, 2287–2297. [CrossRef] [PubMed] [Google Scholar]
  • Plateau J., Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires, 1873, Gauthier-Villars, Paris [Google Scholar]
  • Pokutta S., Weis W.I., Structure and mechanism of cadherins and catenins in cell-cell contacts. Annu Rev Cell Dev Biol, 2007, 23, 237–261. [CrossRef] [PubMed] [Google Scholar]
  • Pokutta S., Herrenknecht K., Kemler R., Engel J., Conformational changes of the recombinant extracellular domain of E-cadherin upon calcium binding. Eur J Biochem, 1994, 223, 1019–1026. [CrossRef] [PubMed] [Google Scholar]
  • Quintin S., Gally C., Labouesse M., Epithelial morphogenesis in embryos: asymmetries, motors and brakes. Trends Genet, 2008, 24, 221–230. [CrossRef] [PubMed] [Google Scholar]
  • Rauzi M., Vérant P., Lecuit T., Lenne P.F., Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nat Cell Biol, 2008, 10, 1401–1410. [CrossRef] [PubMed] [Google Scholar]
  • Rauzi M., Lenne P.F., Lecuit T., Planar polarized actomyosin contractile flows control epithelial junction remodelling. Nature, 2010, 468, 1110–1114. [CrossRef] [PubMed] [Google Scholar]
  • Rodewald R., Newman S.B., Karnovsky M.J., Contraction of isolated brush borders from the intestinal epithelium. J Cell Biol, 1976, 70, 541–554. [CrossRef] [PubMed] [Google Scholar]
  • Roura S., Miravet S., Piedra J., Garcia de Herreros A., Dunach M., Regulation of E-cadherin/Catenin association by tyrosine phosphorylation. J Biol Chem, 1999, 274, 36734–36740. [CrossRef] [PubMed] [Google Scholar]
  • Sahai E., Marshall C.J., ROCK and Dia have opposing effects on adherens junctions downstream of Rho. Nat Cell Biol, 2002, 4, 408–415. [CrossRef] [PubMed] [Google Scholar]
  • Schottenfeld J., Song Y., Ghabrial A.S., Tube continued: morphogenesis of the Drosophila tracheal system. Curr Opin Cell Biol, 2010, 22, 633–639. [CrossRef] [PubMed] [Google Scholar]
  • Segev, N., Coordination of intracellular transport steps by GTPases. Semin Cell Dev Biol, 2011, 22, 33–38. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Shapiro L., Fannon A.M., Kwong P.D., Thompson A., Lehmann M.S., Grubel G., Legrand J.F., Als-Nielsen J., Colman D.R., Hendrickson W.A., Structural basis of cell-cell adhesion by cadherins. Nature, 1995, 374, 327–337. [CrossRef] [PubMed] [Google Scholar]
  • Shaye D.D., Casanova J., Llimargas M., Modulation of intracellular trafficking regulates cell intercalation in the Drosophila trachea. Nat Cell Biol, 2008, 10, 964–970. [CrossRef] [PubMed] [Google Scholar]
  • Shewan A.M., Maddugoda M., Kraemer A., Stehbens S.J., Verma S., Kovacs E.M., Yap A.S., Myosin 2 is a key Rho kinase target necessary for the local concentration of E-cadherin at cell-cell contacts. Mol Biol Cell, 2005, 16, 4531–4542. [CrossRef] [PubMed] [Google Scholar]
  • Shindo M., Wada H., Kaido M., Tateno M., Aigaki T., Tsuda L., Hayashi S., Dual function of Src in the maintenance of adherens junctions during tracheal epithelial morphogenesis. Development, 2008, 135, 1355–1364. [CrossRef] [PubMed] [Google Scholar]
  • Simoes Sde M., Blankenship J.T., Weitz O., Farrell D.L., Tamada M., Fernandez-Gonzalez R., Zallen J.A., Rho-kinase directs Bazooka/Par-3 planar polarity during Drosophila axis elongation. Dev Cell, 2010, 19, 377–388. [CrossRef] [PubMed] [Google Scholar]
  • Smutny M., Cox H.L., Leerberg J.M., Kovacs E.M., Conti M.A., Ferguson C., Hamilton N.A., Parton R.G., Adelstein R.S., Yap A.S., Myosin II isoforms identify distinct functional modules that support integrity of the epithelial zonula adherens. Nat Cell Biol, 2010, 12, 696–702. [CrossRef] [PubMed] [Google Scholar]
  • Stehbens S.J., Paterson A.D., Crampton M.S., Shewan A.M., Ferguson C., Akhmanova A., Parton R.G., Yap A.S., Dynamic microtubules regulate the local concentration of E-cadherin at cell-cell contacts. J Cell Sci, 2006, 119, 1801–1811. [CrossRef] [PubMed] [Google Scholar]
  • Steinberg M.S., Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science, 1963, 141, 401–408. [CrossRef] [PubMed] [Google Scholar]
  • Takeichi M., Hatta K., Nose A., Nagafuchi A., Identification of a gene family of cadherin cell adhesion molecules. Cell Differ Dev, 1988, 25 Suppl, 91–94. [CrossRef] [PubMed] [Google Scholar]
  • Tamada M., Farrell D.L., Zallen J.A., Abl regulates planar polarized junctional dynamics through beta-catenin tyrosine phosphorylation. Dev Cell, 2012, 22, 309–319. [CrossRef] [PubMed] [Google Scholar]
  • Tepass U., Hartenstein V., The development of cellular junctions in the Drosophila embryo. Dev Biol, 1994, 161, 563–596. [CrossRef] [PubMed] [Google Scholar]
  • Tepass U., Tanentzapf G., Ward R., Fehon R., Epithelial cell polarity and cell junctions in Drosophila. Annu Rev Genet, 2001, 35, 747–784. [CrossRef] [PubMed] [Google Scholar]
  • Thiery J.P., Acloque H., Huang R.Y., Nieto M.A., Epithelial-mesenchymal transitions in development and disease. Cell, 2009, 139, 871–890. [CrossRef] [PubMed] [Google Scholar]
  • Thompson, D.A., On Growth and Form, 1917, Cambridge University Press, Cambridge [Google Scholar]
  • Togashi H., Kominami K., Waseda M., Komura H., Miyoshi J., Takeichi M., Takai Y., Nectins establish a checkerboard-like cellular pattern in the auditory epithelium. Science, 2011, 333, 1144–1147. [CrossRef] [PubMed] [Google Scholar]
  • Tominaga J., Fukunaga Y., Abelardo E., Nagafuchi A., Defining the function of beta-catenin tyrosine phosphorylation in cadherin-mediated cell-cell adhesion. Genes Cells, 2008, 13, 67–77. [CrossRef] [PubMed] [Google Scholar]
  • Traub L.M., Tickets to ride: selecting cargo for clathrin-regulated internalization. Nat Rev Mol Cell Biol, 2009, 10, 583–596. [CrossRef] [PubMed] [Google Scholar]
  • Troyanovsky, S., Cadherin dimers in cell-cell adhesion. Eur J Cell Biol, 2005, 84, 225–233. [CrossRef] [PubMed] [Google Scholar]
  • Troyanovsky R.B., Sokolov E., Troyanovsky S.M., Adhesive and lateral E-cadherin dimers are mediated by the same interface. Mol Cell Biol, 2003, 23, 7965–7972. [CrossRef] [PubMed] [Google Scholar]
  • Vicente-Manzanares M., Ma X., Adelstein R.S., Horwitz A.R., Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol, 2009, 10, 778–790. [Google Scholar]
  • Wirtz-Peitz F., Zallen J.A., Junctional trafficking and epithelial morphogenesis. Curr Opin Genet Dev, 2009, 19, 350–356. [CrossRef] [PubMed] [Google Scholar]
  • Wolfe B.L., Trejo J., Clathrin-dependent mechanisms of G protein-coupled receptor endocytosis. Traffic, 2007, 8, 462–470. [CrossRef] [PubMed] [Google Scholar]
  • Xiao K., Allison D.F., Buckley K.M., Kottke M.D., Vincent P.A., Faundez V., Kowalczyk A.P., Cellular levels of p120 catenin function as a set point for cadherin expression levels in microvascular endothelial cells. J Cell Biol, 2003, 163, 535–545. [CrossRef] [PubMed] [Google Scholar]
  • Xiao K., Garner J., Buckley K.M., Vincent P.A., Chiasson C.M., Dejana E., Faundez V., Kowalczyk A.P., p120-Catenin regulates clathrin-dependent endocytosis of VE-cadherin. Mol Biol Cell, 2005, 16, 5141–5151. [CrossRef] [PubMed] [Google Scholar]
  • Yamada S., Nelson W.J., Localized zones of Rho and Rac activities drive initiation and expansion of epithelial cell-cell adhesion. J Cell Biol, 2007, 178, 517–527. [CrossRef] [PubMed] [Google Scholar]
  • Yamada S., Pokutta S., Drees F., Weis W.I., Nelson W.J., Deconstructing the cadherin-catenin-actin complex. Cell, 2005, 123, 889–901. [CrossRef] [PubMed] [Google Scholar]
  • Yang J., Weinberg R.A., Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell, 2008, 14, 818–829. [CrossRef] [PubMed] [Google Scholar]
  • Yap A.S., Brieher W.M., Pruschy M., Gumbiner B.M., Lateral clustering of the adhesive ectodomain: a fundamental determinant of cadherin function. Curr Biol, 1997, 7, 308–315. [CrossRef] [PubMed] [Google Scholar]
  • Yap A.S., Crampton M.S., Hardin J., Making and breaking contacts: the cellular biology of cadherin regulation. Curr Opin Cell Biol, 2007, 19, 508–514. [CrossRef] [PubMed] [Google Scholar]
  • Yonemura S., Wada Y., Watanabe T., Nagafuchi A., Shibata M., Alpha-Catenin as a tension transducer that induces adherens junction development. Nat Cell Biol, 2010, 12, 533–542. [CrossRef] [PubMed] [Google Scholar]
  • Yoshida C., Takeichi M., Teratocarcinoma cell adhesion: identification of a cell-surface protein involved in calcium-dependent cell aggregation. Cell, 1982, 28, 217–224. [CrossRef] [PubMed] [Google Scholar]
  • Yoshida-Noro C., Suzuki N., Takeichi M., Molecular nature of the calcium-dependent cell-cell adhesion system in mouse teratocarcinoma and embryonic cells studied with a monoclonal antibody. Dev Biol, 1984, 101, 19–27. [CrossRef] [PubMed] [Google Scholar]
  • Zallen J.A., Wieschaus E., Patterned gene expression directs bipolar planar polarity in Drosophila. Dev Cell, 2004, 6, 343–355. [CrossRef] [PubMed] [Google Scholar]
  • Zhang J., Betson M., Erasmus J., Zeikos K., Bailly M., Cramer L.P., Braga V.M., Actin at cell-cell junctions is composed of two dynamic and functional populations. J Cell Sci, 2005, 118, 5549–5562. [CrossRef] [PubMed] [Google Scholar]
  • Zhang Y., Sivasankar S., Nelson W.J., Chu S., Resolving cadherin interactions and binding cooperativity at the single-molecule level. Proc Natl Acad Sci USA, 2009, 106, 109–114. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.