Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 206, Numéro 4, 2012
Journée Claude Bernard 2011
Page(s) 273 - 284
DOI https://doi.org/10.1051/jbio/2012024
Publié en ligne 19 février 2013
  • Arbab A.S., Frank J.A., Cellular MRI and its role in stem cell therapy. Regen Med, 2008, 3, 199–215. [CrossRef] [PubMed] [Google Scholar]
  • Billotey C., Wilhelm C., Devaud M., Bacri J.C., Bittoun J., Gazeau F., Cell internalization of anionic maghemite nanoparticles: Quantitative effect on magnetic resonance imaging. Magn Reson Med, 2003, 49, 646−654. [CrossRef] [PubMed] [Google Scholar]
  • Chaudeurge A., Wilhelm C., Chen-Tournoux A., Farahmand P., Bellamy V., Autret G., Larghéro J., Thiam R., Desnos T., Hagège A., Gazeau F., Clément O., Menasché P., Can magnetic targeting of magnetically-labeled endothelial progenitor circulating cells optimize intramyocardial cell retention? Cell Transplant, 2012, 21, 679–691. [CrossRef] [PubMed] [Google Scholar]
  • Cheng K., Li T.S., Malliaras K., Davis D.R., Zhang Y., Marban E., Magnetic targeting enhances engraftment and functional benefit of iron-labeled cardiosphere-derived cells in myocardial infarction. Circ Res, 2010, 106, 1570–1581. [CrossRef] [PubMed] [Google Scholar]
  • de Vries I.J., Lesterhuis W.J., Barentsz J.O., Verdijk P., van Krieken J.H., Boerman O.C., Oyen W.J., Bonenkamp J.J., Boezeman J.B., Adema, G.J., Bulte J.W., Scheenen T.W., Punt C.J., Heerschap A., Figdor C.G., Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol, 2005, 23, 1407–1413. [CrossRef] [PubMed] [Google Scholar]
  • Deux J.F., Dai J., Rivière C., Gazeau F., Méric P., Gillet B., Roger J., Pons J.N., Letourneur D., Boudghene F.P., Allaire E., Aortic aneurysms in a rat model: in vivo MR imaging of endovascular cell therapy. Radiology, 2008, 246, 185–192. [CrossRef] [PubMed] [Google Scholar]
  • Fayol D., Luciani L., Le Visage C., Gazeau F., Wilhelm C., Procédés d’agrégation et de différenciation de cellules souches magnétisées Dépôt de Brevet N1˚000122355, 1 sept 2011. [Google Scholar]
  • Fayol D., Le Visage C., Ino J., Gazeau F., Letourneur D., Wilhelm C., Design of biomimetic vascular grafts with magnetic endothelial patterning. Cell Transplant, 2012, Sous presse. [Google Scholar]
  • Frasca G., Gazeau F., Wilhelm C., Formation of a three-dimensional multicellular assembly using magnetic patterning. Langmuir, 2009, 25, 2348–2354. [CrossRef] [PubMed] [Google Scholar]
  • Gazeau F., Wilhelm C., Magnetic labeling, imaging and manipulation of endothelial progenitor cells using iron oxide nanoparticles. Future Med Chem, 2010, 2, 397−408. [CrossRef] [PubMed] [Google Scholar]
  • Gazeau F., Levy M., Wilhelm C., Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine (Lond), 2008, 3, 831–844. [CrossRef] [PubMed] [Google Scholar]
  • Hofmann A., Wenzel D., Becher U.M., Freitag D.F., Klein A.M., Eberbeck D., Schulte M., Zimmermann K., Bergemann C., Gleich B., Roell W., Weyh T., Trahms L., Nickenig G., Fleischmann B.K., Pfeifer A., Combined targeting of lentiviral vectors and positioning of transduced cells by magnetic nanoparticles. Proc Natl Acad Sci USA, 2009, 106, 44–49. [CrossRef] [Google Scholar]
  • Ino K., Ito A., Honda H., Cell patterning using magnetite nanoparticles and magnetic force. Biotechnol Bioeng, 2007, 97, 1309–1317. [CrossRef] [PubMed] [Google Scholar]
  • Ito A., Ino K., Hayashida M., Kobayashi T., Matsunuma H., Kagami H., Ueda M., Honda H., Novel methodology for fabrication of tissue-engineered tubular constructs using magnetite nanoparticles and magnetic force. Tissue Eng, 2005, 11, 1553–1561. [Google Scholar]
  • Levy M., Lagarde F., Maraloiu V.A., Blanchin M.G., Gendron F., Wilhelm C., Gazeau F., Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties. Nanotechnology, 2010, 21, 395103. [CrossRef] [PubMed] [Google Scholar]
  • Levy M., Luciani N., Alloyeau D., Elgrabli D., Deveaux V., Pechoux C., Chat S., Wang G., Vats N., Gendron F., Factor C., Lotersztajn S., Luciani A., Wilhelm C., Gazeau F., Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials, 2011a, 32, 3988−3999. [CrossRef] [PubMed] [Google Scholar]
  • Levy M., Wilhelm C., Luciani N., Devaux V., Gendron F., Luciani A., Devaud M., Gazeau F., Nanomagnetism reveals the intracellular clustering of nanoparticles in the organism. Nanoscale, 2011b, 3, 4402–4410. [CrossRef] [PubMed] [Google Scholar]
  • Marion S., Wilhelm C., Voigt H., Bacri, J.-C., Guillén N., Overexpression of myosin IB in living Entamoeba histolytica enhances cytoplasm viscosity and reduces phagocytosis. J Cell Sci, 2004, 117, 3271–3279. [Google Scholar]
  • Pamme N., Wilhelm C., Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip, 2006, 6, 974–980. [CrossRef] [PubMed] [Google Scholar]
  • Poirier-Quinot M., Frasca G., Wilhelm C., Luciani N., Ginefri J.C., Darrasse L., Letourneur D., Le Visage C., Gazeau F., High resolution 1.5T magnetic resonance imaging for tissue engineering constructs: a non invasive tool to assess 3D scaffold architecture and cell seeding. Tissue Eng Part C Methods, 2010, 16, 185−200. [Google Scholar]
  • Polyak B., Fishbein I., Chorny M., Alferiev I., Williams D., Yellen B., Friedman G., Levy R.J., High field gradient targeting of magnetic nanoparticle-loaded endothelial cells to the surfaces of steel stents. Proc Natl Acad Sci USA, 2008, 105, 698–703. [CrossRef] [Google Scholar]
  • Riegler J., Lau K.D., Garcia-Prieto A., Price A.N., Richards T., Pankhurst Q.A., Lythgoe M.F., Magnetic cell delivery for peripheral arterial disease: A theoretical framework. Med Phys, 2011, 38, 3932–3943. [Google Scholar]
  • Rivière C., Boudghene F.P., Gazeau F., Roger J., Pons J.N., Laissy J.P., Allaire E., Michel J.B., Letourneur D., Deux J.F., Iron oxide nanoparticle-labeled rat smooth muscle cells: cardiac MR imaging for cell graft monitoring and quantitation. Radiology, 2005, 235, 959–967. [CrossRef] [PubMed] [Google Scholar]
  • Rivière C., Marion S., Guillen N., Bacri J.C., Gazeau F., Wilhelm C., Signaling through the phosphatidylinositol 3-kinase regulates mechanotaxis induced by local low magnetic forces in Entamoeba histolytica. J Biomech, 2007, 40, 64–77. [CrossRef] [PubMed] [Google Scholar]
  • Rivière C., Lecoeur C., Wilhelm C., Pechoux C., Combrisson H., Yiou R., Gazeau F., The MRI assessment of intraurethrally-delivered muscle precursor cells using anionic magnetic nanoparticles. Biomaterials, 2009, 30, 6920–6928. [CrossRef] [PubMed] [Google Scholar]
  • Robert D., Fayol D., Le Visage C., Frasca G., Brulé S., Ménager C., Gazeau F., Letourneur D., Wilhelm C., Magnetic micro-manipulations to probe the local physical properties of porous scaffolds and to confine stem cells. Biomaterials, 2010, 31, 1586–1595. [CrossRef] [PubMed] [Google Scholar]
  • Robert D., Pamme N., Conjeaud H., Gazeau F., Iles A., Wilhelm C., Cell sorting by endocytotic capacity in a microfluidic magnetophoresis device. Lab Chip, 2011, 11, 1902–1910. [CrossRef] [PubMed] [Google Scholar]
  • Smirnov P., Gazeau F., Lewin M., Bacri J.C., Siauve N., Vayssettes C., Cuénod C.A., Clément O., In vivo cellular imaging of magnetically labeled hybridomas in the spleen with a 1.5-T clinical MRI system. Magn Reson Med, 2004, 52, 73–79. [CrossRef] [PubMed] [Google Scholar]
  • Smirnov P., Gazeau F., Beloeil J.C., Doan B.T., Wilhelm C., Gillet B., Single-cell detection by gradient echo 9.4 T MRI: a parametric study. Contrast Media Mol Imaging, 2006a, 1, 165–174. [CrossRef] [PubMed] [Google Scholar]
  • Smirnov P., Lavergne E., Gazeau F., Lewin M., Boissonnas A., Doan B.T., Gillet B., Combadière C., Combadière B., Clément O., In vivo cellular imaging of lymphocyte trafficking by MRI: A tumor model approach to cell-based anticancer therapy. Magn Reson Med, 2006b, 56, 498–508. [CrossRef] [PubMed] [Google Scholar]
  • Smirnov P., Poirier-Quinot M., Wilhelm C., Lavergne E., Ginefri J.C., Combadière B., Clément O., Darrasse L., Gazeau F., In vivo single cell detection of tumor-infiltrating lymphocytes with a clinical 1.5 Tesla MRI system. Magn Reson Med, 2008, 60, 1292–1297. [CrossRef] [PubMed] [Google Scholar]
  • Wilhelm C., Out-of-equilibrium microrheology inside living cells. Phys Rev Lett, 2008, 101, 028101. [Google Scholar]
  • Wilhelm C., Gazeau F., Universal cell labelling with anionic magnetic nanoparticles. Biomaterials, 2008, 29, 3161–3174. [CrossRef] [PubMed] [Google Scholar]
  • Wilhelm C., Gazeau F., Roger J., Pons J.N., Bacri J.C., Interaction of anionic superparamagnetic nanoparticles with cells: kinetic analyses of membrane adsorption and subsequent internalization. Langmuir, 2002a, 18, 8148–8155. [CrossRef] [Google Scholar]
  • Wilhelm C., Gazeau F., Bacri J.C., Magnetophoresis and ferromagnetic resonance of magnetically labeled cells. Eur Biophys J, 2002b, 31, 118–125. [CrossRef] [PubMed] [Google Scholar]
  • Wilhelm C., Billotey C., Roger J., Pons J.N., Bacri J.C., Gazeau F., Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials, 2003a, 24, 1001–1011. [CrossRef] [PubMed] [Google Scholar]
  • Wilhelm C., Cebers A., Bacri J.C., Gazeau F., Deformation of intracellular endosomes under a magnetic field. Eur Biophys J, 2003b, 32, 655–660. [Google Scholar]
  • Wilhelm C., Gazeau F., Bacri J.C., Rotational magnetic endosome microrheology: viscoelastic architecture inside living cells. Phys Rev E Stat Nonlin Soft Matter Phys, 2003c, 67, 06190801–06190812. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.