Accès gratuit
Biologie Aujourd'hui
Volume 206, Numéro 4, 2012
Journée Claude Bernard 2011
Page(s) 249 - 261
Publié en ligne 19 février 2013
  • Almeida A.J., Alpar H.O., Brown M.R., Immune Response to Nasal Delivery of Antigenically Intact Tetanus Toxoid Associated with Poly(l-lactic acid) Microspheres in Rats, Rabbits and Guinea-pigs. J Pharm Pharmacol, 1993, 45, 198–203. [CrossRef] [PubMed] [Google Scholar]
  • Alonso M.J., Gupta R.K., Min C., Siber G.R., Langer R., Biodegradable microspheres as controlled-release tetanus toxoid delivery systems. Vaccine, 1994, 12, 299–306. [CrossRef] [PubMed] [Google Scholar]
  • Amidi M., Mastrobattista E., Jiskoot W., Hennink W.E., Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliver Rev, 2010, 62, 59–82. [Google Scholar]
  • Arbós P., Wirth M., Arangoa M.A., Gabor F., Irache J.M., Gantrezr AN as a new polymer for the preparation of ligand-nanoparticle conjugates. J Control Release, 2002, 83, 321–330. [CrossRef] [PubMed] [Google Scholar]
  • Azizi A., Kumar A., Diaz-Mitoma F., Mestecky J., Enhancing Oral Vaccine Potency by Targeting Intestinal M Cells. PLoS Pathog, 2010, 6, e1001147. [CrossRef] [PubMed] [Google Scholar]
  • Blanco M.D., Alonso M.J., Development and characterization of protein-loaded poly(lactide-co-glycolide) nanospheres. Eur J Pharm Biopharm, 1997, 43, 287–294. [CrossRef] [Google Scholar]
  • Brayden D.J., Oral vaccination in man using antigens in particles : current status. Eur J Pharm Sci, 2001, 14, 183–189. [CrossRef] [PubMed] [Google Scholar]
  • Correia-Pinto J.F., Csaba N., Alonso M.J., Insights and foresights of vaccine delivery systems. Int J Pharmaceut, 2012, [Google Scholar]
  • Csaba N., Sánchez A., Alonso M.J., PLGA: Poloxamer and PLGA : Poloxamine blend nanostructures as carriers for nasal gene delivery. J Control Release, 2006, 113, 164–172. [CrossRef] [PubMed] [Google Scholar]
  • Csaba N., Garcia-Fuentes M., Alonso M.J., Nanoparticles for nasal vaccination. Adv Drug Deliver Rev, 2009a, 61, 140–157. [CrossRef] [Google Scholar]
  • Csaba N., Koping-Hoggard M., Fernandez-Megia E., Novoa-Carballal R., Riguera R., Alonso M.J., Ionically Crosslinked Chitosan Nanoparticles as Gene Delivery Systems : Effect of PEGylation Degree on in vitro and in vivo Gene Transfer. J Biomed Nanotechnol, 2009b, 5, 162–171. [CrossRef] [PubMed] [Google Scholar]
  • De Koker S., Lambrecht B.N., Willart M.A., van Kooyk Y., Grooten J., Vervaet C., Remon J.P., De Geest B.G., Designing polymeric particles for antigen delivery. Chem Soc Rev, 2011, 40, 320–339. [CrossRef] [PubMed] [Google Scholar]
  • De Temmerman M.-L., Rejman J., Demeester J., Irvine D.J., Gander B., De Smedt S.C., Particulate vaccines : on the quest for optimal delivery and immune response. Drug Discov Today, 2011, 16, 569–582. [CrossRef] [PubMed] [Google Scholar]
  • des Rieux A., Fievez V., Garinot M., Schneider Y.J., Préat V., Nanoparticles as potential oral delivery systems of proteins and vaccines : a mechanistic approach. J Control Release, 2006, 116, 1–27. [CrossRef] [PubMed] [Google Scholar]
  • Feng L., Qi X.R., Zhou X.J., Maitani Y., Cong Wang S., Jiang Y., Nagai T., Pharmaceutical and immunological evaluation of a single-dose Hepatitis B vaccine using PLGA microspheres. J Control Release, 2006, 112, 35–42. [CrossRef] [PubMed] [Google Scholar]
  • Fischer S., Schlosser E., Mueller M., Csaba N., Merkle H.P., Groettrup M., Gander B., Concomitant delivery of a CTL-restricted peptide antigen and CpG ODN by PLGA microparticles induces cellular immune response. J Drug Target, 2009, 17, 652–661. [CrossRef] [PubMed] [Google Scholar]
  • Florence A.T., Nanoparticle uptake by the oral route : Fulfilling its potential? Drug Discov Today Technol, 2005, 2, 75–81. [CrossRef] [PubMed] [Google Scholar]
  • Garinot M., Fiévez V., Pourcelle V., Stoffelbach F., des Rieux A., Plapied L., Theate I., Freichels H., Jérôme C., Marchand-Brynaert J., Schneider Y.J., Préat V., PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J Control Release, 2007, 120, 195–204. [CrossRef] [PubMed] [Google Scholar]
  • Gates B., Ann. Lett. 2011, Bill & Melinda Gates Foundation. [Google Scholar]
  • Giudice E.L., Campbell J.D., Needle-free vaccine delivery. Adv Drug Deliver Rev, 2006, 58, 68–89. [CrossRef] [Google Scholar]
  • Gómez S., Gamazo C., Roman B.S., Ferrer M., Sanz M.L., Irache J.M., Gantrezr AN nanoparticles as an adjuvant for oral immunotherapy with allergens. Vaccine, 2007, 25, 5263–5271. [CrossRef] [PubMed] [Google Scholar]
  • González-Aramundiz J.V., Lozano M.V., Souza-Herves A., Fernandez-Megia E., Csaba N., Polyaminoacids and Polypeptides in Drug Delivery. Expert Opin Drug Del, 2012, 9, 183–201. [CrossRef] [Google Scholar]
  • Gregoriadis G., McCormack B., Obrenovic M., Saffie R., Zadi B., Perrie Y., Vaccine Entrapment in Liposomes. Methods, 1999, 19, 156–162. [CrossRef] [PubMed] [Google Scholar]
  • Hagenaars N., Verheul R.J., Mooren I., de Jong P.H., Mastrobattista E., Glansbeek H.L., Heldens J.G., van den Bosch H., Hennink W.E., Jiskoot W., Relationship between structure and adjuvanticity of N,N,N-trimethyl chitosan (TMC) structural variants in a nasal influenza vaccine. J Control Release, 2009, 140, 126–133. [CrossRef] [PubMed] [Google Scholar]
  • Hagenaars N., Mania M., de Jong P., Que I., Nieuwland R., Slütter B., Glansbeek H., Heldens J., van den Bosch H., Löwik C., Kaijzel E., Mastrobattista E., Jiskoot W., Role of trimethylated chitosan (TMC) in nasal residence time, local distribution and toxicity of an intranasal influenza vaccine. J Control Release, 2010, 144, 17–24. [CrossRef] [PubMed] [Google Scholar]
  • He X., Wang F., Jiang L., Li J., Liu S.K., Xiao Z.Y., Jin X.Q., Zhang Y.N., He Y., Li K., Guo Y.J., Sun S.H., Induction of mucosal and systemic immune response by single-dose oral immunization with biodegradable microparticles containing DNA encoding HBsAg. J Gen Virol, 2005, 86, 601–610. [CrossRef] [PubMed] [Google Scholar]
  • Hilbert A.K., Fritzsche U., Kissel T., Biodegradable microspheres containing influenza A vaccine : immune response in mice. Vaccine, 1999, 17, 1065–1073. [CrossRef] [PubMed] [Google Scholar]
  • Hirosue S., Kourtis I.C., van der Vlies A.J., Hubbell J.A., Swartz M.A., Antigen delivery to dendritic cells by poly(propylene sulfide) nanoparticles with disulfide conjugated peptides : Cross-presentation and T cell activation. Vaccine, 2010, 28, 7897–7906. [CrossRef] [PubMed] [Google Scholar]
  • Holmgren J., Czerkinsky C., Mucosal immunity and vaccines. Nat Med, 2005, 11, s45–s53. [Google Scholar]
  • Huckriede A., Bungener L., Stegmann T., Daemen T., Medema J., Palache A.M., Wilschut J., The virosome concept for influenza vaccines. Vaccine, 2005, 23, S26–S38. [CrossRef] [PubMed] [Google Scholar]
  • Jiang W., Gupta R.K., Deshpande M.C., Schwendeman S.P., Biodegradable poly(lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens. Adv Drug Deliver Rev, 2005, 57, 391–410. [CrossRef] [Google Scholar]
  • Johansen P., Moon L., Tamber H., Merkle H.P., Gander B., Sesardic D., Immunogenicity of single-dose diphtheria vaccines based on PLA/PLGA microspheres in guinea pigs. Vaccine, 1999, 18, 209–215. [CrossRef] [PubMed] [Google Scholar]
  • Jones K.S., Biomaterials as vaccine adjuvants. Biotechnol Progr, 2008, 24, 807–814. [CrossRef] [Google Scholar]
  • Kreuter J., Speiser P.P., New adjuvants on a polymethylmethacrylate base. Infect Immun, 1976, 13, 204–210. [PubMed] [Google Scholar]
  • Li X., Sloat B.R., Yanasarn N., Cui Z., Relationship between the size of nanoparticles and their adjuvant activity : Data from a study with an improved experimental design. Eur J Pharm Biopharm, 2011, 78, 107–116. [CrossRef] [PubMed] [Google Scholar]
  • Lindblad E.B., Aluminium adjuvants-in retrospect and prospect. Vaccine, 2004, 22, 3658–3668. [CrossRef] [PubMed] [Google Scholar]
  • Makidon P.E., Bielinska A.U., Nigavekar S.S., Janczak K.W., Knowlton J., Scott A.J., Mank N., Cao Z.Y., Rathinavelu S., Beer M.R., Wilkinson J.E., Blanco L.P., Landers J.J., Baker J.R. Jr., Pre-Clinical Evaluation of a Novel Nanoemulsion-Based Hepatitis B Mucosal Vaccine. PLoS ONE, 2008, 3, e2954. [CrossRef] [PubMed] [Google Scholar]
  • Makidon P.E., Nigavekar S.S., Bielinska A.U., Mank N., Shetty A.M., Suman J., Knowlton J., Myc A., Rook T., Baker J.R., Characterization of Stability and Nasal Delivery Systems for Immunization with Nanoemulsion-Based Vaccines. J Aerosol Med Pulm D, 2010, 23, 77–89. [CrossRef] [Google Scholar]
  • Malliaros J., Quinn C., Arnold F.H., Pearse M.J., Drane D.P., Stewart T.J., Macfarlan R.I., Association of antigens to ISCOMATRIXadjuvant using metal chelation leads to improved CTL responses. Vaccine, 2004, 22, 3968–3975. [CrossRef] [PubMed] [Google Scholar]
  • Mangal S., Pawar D., Garg N.K., Jain A.K., Vyas S.P., Rao D.S., Jaganathan K.S., Pharmaceutical and immunological evaluation of mucoadhesive nanoparticles based delivery system(s) administered intranasally. Vaccine, 2011, 29, 4953–4962. [CrossRef] [PubMed] [Google Scholar]
  • MartínezGómez J.M., Csaba N., Fischer S., Sichelstiel A., Kündig T.M., Gander B., Johansen P., Surface coating of PLGA microparticles with protamine enhances their immunological performance through facilitated phagocytosis. J Control Release, 2008, 130, 161–167. [CrossRef] [PubMed] [Google Scholar]
  • Matthias D.M., Robertson J., Garrison M.M., Newland S., Nelson C., Freezing temperatures in the vaccine cold chain : A systematic literature review. Vaccine, 2007, 25, 3980–3986. [CrossRef] [PubMed] [Google Scholar]
  • Mishra N., Tiwari S., Vaidya B., Agrawal G.P., Vyas S.P., Lectin anchored PLGA nanoparticles for oral mucosal immunization against Hepatitis B. J Drug Target, 2010, 19, 67–78. [CrossRef] [PubMed] [Google Scholar]
  • Mottram P.L., Leong D., Crimeen-Irwin B., Gloster S., Xiang S.D., Meanger J., Ghildyal R., Vardaxis N., Plebanski M., Type 1 and 2 Immunity Following Vaccination Is Influenced by Nanoparticle Size : Formulation of a Model Vaccine for Respiratory Syncytial Virus. Mol Pharm, 2006, 4, 73–84. [CrossRef] [Google Scholar]
  • O’Hagan D.T., The intestinal uptake of particles and the implications for drug and antigen delivery. J Anat, 1996, 189, 477–482. [PubMed] [Google Scholar]
  • O’Hagan D.T., De Gregorio E., The path to a successful vaccine adjuvant – “The long and winding road”. Drug Discov Today, 2009, 14, 541–551. [CrossRef] [PubMed] [Google Scholar]
  • O’Hagan D.T., Singh M., Ulmer J.B., Microparticle-based technologies for vaccines. Methods, 2006, 40, 10–19. [CrossRef] [PubMed] [Google Scholar]
  • Okamoto S., Yoshii H., Ishikawa T., Akagi T., Akashi M., Takahashi M., Yamanishi K., Mori Y., Single dose of inactivated Japanese encephalitis vaccine with poly(γ-glutamic acid) nanoparticles provides effective protection from Japanese encephalitis virus. Vaccine, 2008, 26, 589–594. [CrossRef] [PubMed] [Google Scholar]
  • Paolicelli P., Prego C., Sanchez A., Alonso M.J., Surface-modified PLGA-based nanoparticles that can efficiently associate and deliver virus-like particles. Nanomedicine, 2010, 5, 843–853. [CrossRef] [Google Scholar]
  • Peek L.J., Middaugh C.R., Berkland C., Nanotechnology in vaccine delivery. Adv Drug Deliver Rev, 2008, 60, 915–928. [Google Scholar]
  • Perrie Y., Mohammed A.R., Kirby D.J., McNeil S.E., Bramwell V.W., Vaccine adjuvant systems : Enhancing the efficacy of sub-unit protein antigens. Int J Pharm, 2008, 364, 272–280. [CrossRef] [PubMed] [Google Scholar]
  • Plotkin S.A., Plotkin S.L., The development of vaccines : how the past led to the future. Nat Rev Micro, 2011, 9, 889–893. [CrossRef] [Google Scholar]
  • Prego C., Torres D., Fernandez-Megia E., Novoa-Carballal R., Quiñoá E., Alonso M.J., Chitosan-PEG nanocapsules as new carriers for oral peptide delivery : effect of chitosan pegylation degree. J Control Release, 2006, 111, 299–308. [CrossRef] [PubMed] [Google Scholar]
  • Prego C., Paolicelli P., Díaz B., Vicente S., Sánchez A., González-Fernández Á., Alonso M.J., Chitosan-based nanoparticles for improving immunization against Hepatitis B infection. Vaccine, 2010, 28, 2607–2614. [CrossRef] [PubMed] [Google Scholar]
  • Preis I., Langer R.S., A single-step immunization by sustained antigen release. J Immunol Methods, 1979, 28, 193–197. [CrossRef] [PubMed] [Google Scholar]
  • Raghuvanshi R.S., Katare Y.K., Lalwani K., Ali M.M., Singh O., Panda A.K., Improved immune response from biodegradable polymer particles entrapping tetanus toxoid by use of different immunization protocol and adjuvants. Int J Pharm, 2002, 245, 109–121. [CrossRef] [PubMed] [Google Scholar]
  • Reed S.G., Bertholet S., Coler R.N., Friede M., New horizons in adjuvants for vaccine development. Trends Immunol, 2009, 30, 23–32. [CrossRef] [PubMed] [Google Scholar]
  • Rezaei-Mokarram M., Csaba N., Fernandez-Megia E., Novoa Carballal R., Riguera R., Alonso M.J., Chitosan and chitosan-PEG nanoparticles : new carriers for nasal vaccine delivery. Proc 3rd World Conference on Drug Absorption, Transport and Delivery, Clinical Significance and Delivery, EUFEPS, 2005, 94. [Google Scholar]
  • Riedel S., Edward Jenner and the history of smallpox and vaccination. Baylor Univ Medl Center Proc, 2005, 18, 21–25. [Google Scholar]
  • Sanchez A., Gupta R.K., Alonso M.J., Siber G.R., Langer R., Pulsed controlled-release system for potential use in vaccine delivery. J Pharm Sci, 1996, 85, 547–552. [CrossRef] [PubMed] [Google Scholar]
  • Santander-Ortega M., Csaba N., González L., Bastos-González D., Ortega-Vinuesa J., Alonso M., Protein-loaded PLGA–PEO blend nanoparticles : encapsulation, release and degradation characteristics. Colloid & Polymer Science, 2010, 288, 141–150. [CrossRef] [Google Scholar]
  • Sayın B., Somavarapu S., Li X.W., Thanou M., Sesardic D., Alpar H.O., Şenel S., Mono-N-carboxymethyl chitosan (MCC) and N-trimethyl chitosan (TMC) nanoparticles for non-invasive vaccine delivery. Int J Pharm, 2008, 363, 139–148. [CrossRef] [PubMed] [Google Scholar]
  • Schwendeman S.P., Costantino H.R., Gupta R.K., Tobío M., Chang A.C., Alonso M.J., Siber G.R., Langer R., Strategies for stabilising tetanus toxoid towards the development of a single-dose tetanus vaccine. Dev Biol Stand, 1996, 87, 293–306. [PubMed] [Google Scholar]
  • Shen H., Ackerman A.L., Cody V., Giodini A., Hinson E.R., Cresswell P., Edelson R.L., Saltzman W.M., Hanlon D.J., Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology, 2006, 117, 78–88. [CrossRef] [PubMed] [Google Scholar]
  • Skwarczynski M., Toth I., Peptide-Based Subunit Nanovaccines. Curr Drug Delivery, 2011, 8, 282–289. [CrossRef] [Google Scholar]
  • Steinhagen F., Kinjo T., Bode C., Klinman D.M., TLR-based immune adjuvants. Vaccine, 2011, 29, 3341–3355. [CrossRef] [PubMed] [Google Scholar]
  • Tobío M., Gref R., Sánchez A., Langer R., Alonso M.J., Stealth PLA-PEG Nanoparticles as Protein Carriers for Nasal Administration. Pharm Res, 1998, 15, 270–275. [CrossRef] [PubMed] [Google Scholar]
  • Tobío M., Nolley J., Guo Y., McIver J., Alonso M.J., A Novel System Based on a Poloxamer/ PLGA Blend as a Tetanus Toxoid Delivery Vehicle. Pharm Res, 1999, 16, 682–688. [CrossRef] [PubMed] [Google Scholar]
  • Tobío M., Sánchez A., Vila A., Soriano I., Evora C., Vila-Jato J.L., Alonso M.J., The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration. Colloids Surf B : Biointerfaces, 2000, 18, 315–323. [CrossRef] [Google Scholar]
  • Vicente S., Díaz B., Sanchez A., González-Fernández A., Alonso M.J., Polysaccharide-based nanocapsules as vehicles for nasal immunization against Hepatitis B. 2nd Pharm Sci Fair, 2009, 8–12 June, Nice, France. [Google Scholar]
  • Vicente S., Díaz-Freitas B., Sanchéz A., González-Fernández A., Alonso M.J., Adjuvant formulations based on polysaccharidic nanocapsules as potential single-dose vaccines. In Bill & Mellinda Gates Foundation Congress, 2010a , Seattle, USA. [Google Scholar]
  • Vicente S., Prego C., Csaba N., Alonso M.J., From single-dose vaccine delivery systems to nanovaccines. J Drug Deliv Sci Tec, 2010b, 20, 267–276. [Google Scholar]
  • Vila A., Sánchez A., Tobío M., Calvo P., Alonso M.J., Design of biodegradable particles for protein delivery. J Control Release, 2002, 78, 15–24. [CrossRef] [PubMed] [Google Scholar]
  • Vila A., Gill H., McCallion O., Alonso M.J., Transport of PLA-PEG particles across the nasal mucosa : effect of particle size and PEG coating density. J Control Release, 2004a, 98, 231–244. [Google Scholar]
  • Vila A., Sánchez A., Janes K., Behrens I., Kissel T., Jato J.L.V., Alonso M.J., Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Eur J Pharm Biopharm, 2004b, 57, 123–131. [CrossRef] [PubMed] [Google Scholar]
  • von Hoegen P., Synthetic biomimetic supra molecular Biovector(SMBV) particles for nasal vaccine delivery. Adv Drug Deliver Rev, 2001, 51, 113–125. [CrossRef] [Google Scholar]
  • WHO (2005). GIVS – Global Immunization Vision and Strategy 2006–2015 (World Health Organization (WHO) and UNICEF). [Google Scholar]
  • WHO, UNICEF, and Bank W., State of the world’s vaccines and immunization, 2009, 3rd edition, World Health Organization, Geneva. [Google Scholar]
  • Xiang S.D., Scholzen A., Minigo G., David C., Apostolopoulos V., Mottram P.L., Plebanski M., Pathogen recognition and development of particulate vaccines : Does size matter? Methods, 2006, 40, 1–9. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.