Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 207, Numéro 1, 2013
Page(s) 1 - 17
DOI https://doi.org/10.1051/jbio/2013001
Publié en ligne 23 mai 2013
  • Allan A.M., Liang X., Luo Y., Pak C., Li X., Szulwach K.E., Chen D., Jin P., Zhao X., The loss of methyl-CpG binding protein 1 leads to autism-like behavioral deficits. Hum Mol Genet, 2008, 17, 2047–2057. [CrossRef] [PubMed] [Google Scholar]
  • Amir R.E., Van den Veyver I.B., Schultz R., Malicki D.M., Tran C.Q., Dahle E.J., Philippi A., Timar L., Percy A.K., Motil K.J., Lichtarge O., Smith E.O., Glaze D.G., Zoghbi H.Y., Influence of mutation type and X chromosome inactivation on Rett syndrome phenotypes. Ann Neurol, 2000, 47, 670–679. [CrossRef] [PubMed] [Google Scholar]
  • Ballas N., Lioy D.T., Grunseich C., Mandel G., Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat Neurosci, 2009, 12, 311–317. [CrossRef] [PubMed] [Google Scholar]
  • Ballestar E., Yusufzai T.M., Wolffe A.P., Effects of Rett syndrome mutations of the methyl-CpG binding domain of the transcriptional repressor MeCP2 on selectivity for association with methylated DNA. Biochemistry, 2000, 39, 7100–7106. [CrossRef] [PubMed] [Google Scholar]
  • Baylin S.B., Jones P.A., A decade of exploring the cancer epigenome – biological and translational implications. Nat Rev Cancer, 2011, 11, 726–734. [CrossRef] [PubMed] [Google Scholar]
  • Benes F.M., Lim B., Subburaju S., Site-specific regulation of cell cycle and DNA repair in post-mitotic GABA cells in schizophrenic versus bipolars. Proc Natl Acad Sci USA, 2009, 106, 11731–11736. [CrossRef] [Google Scholar]
  • Berger J., Sansom O., Clarke A., Bird A., MBD2 is required for correct spatial gene expression in the gut. Mol Cell Biol, 2007, 27, 4049–4057. [CrossRef] [PubMed] [Google Scholar]
  • Bogdanović O., Veenstra G.J.C., DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma, 2009, 118, 549–565. [CrossRef] [PubMed] [Google Scholar]
  • Borrelli E., Nestler E.J., Allis C.D., Sassone-Corsi P., Decoding the epigenetic language of neuronal plasticity. Neuron, 2008, 60, 961–974. [Google Scholar]
  • Bostick M., Kim J.K., Estève P.-O., Clark A., Pradhan S., Jacobsen S.E., UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science, 2007, 317, 1760–1764. [CrossRef] [PubMed] [Google Scholar]
  • Caballero I.M., Hendrich B., MeCP2 in neurons: closing in on the causes of Rett syndrome. Hum Mol Genet, 2005, 14, 19–26. [CrossRef] [PubMed] [Google Scholar]
  • Carney R.M., Wolpert C.M., Ravan S.A., Shahbazian M., Ashley-Koch A., Cuccaro M.L., Vance J.M., Pericak-Vance M.A., Identification of MeCP2 mutations in a series of females with autistic disorder. Pediatr Neurol, 2003, 28, 205–211. [CrossRef] [PubMed] [Google Scholar]
  • Cassel S., Carouge D., Gensburger C., Anglard P., Burgun C., Dietrich J.-B., Aunis D., Zwiller J., Fluoxetine and cocaine induce the epigenetic factors MeCP2 and MBD1 in adult rat brain. Mol Pharmacol, 2006, 70, 487–492. [CrossRef] [PubMed] [Google Scholar]
  • Chahrour M., Jung S.Y., Shaw C., Zhou X., Wong S.T.C., Qin J., Zoghbi H.Y., MeCP2, a key contributor to neurological disease, activates and represses transcription. Science, 2008, 320, 1224–1229. [CrossRef] [PubMed] [Google Scholar]
  • Chen R.Z., Akbarian S., Tudor M., Jaenisch R., Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet, 2001, 27, 327–331. [CrossRef] [PubMed] [Google Scholar]
  • Chen W.G., Chang Q., Lin Y., Meissner A., West A.E., Griffith E.C., Jaenisch R., Greenberg M.E., Derepression of BDNF Transcription Involves Calcium-Dependent Phosphorylation of MeCP2. Science, 2003, 302, 885–889. [CrossRef] [PubMed] [Google Scholar]
  • Cohen S., Gabel H.W., Hemberg M., Hutchinson A.N., Sadacca L.A., Ebert D.H., Harmin D.A., Greenberg R.S., Verdine V.K., Zhou Z., Wetsel W.C., West A.E., Greenberg M.E., Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function. Neuron, 2011, 72, 72–85. [CrossRef] [PubMed] [Google Scholar]
  • Collins A.L., Levenson J.M., Vilaythong A.P., Richman R., Armstrong D.L., Noebels J.L., DavidSweatt J., Zoghbi H.Y., Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum Mol Genet, 2004, 13, 2679–2689. [CrossRef] [PubMed] [Google Scholar]
  • Cortese R., Lewin J., Bäckdahl L., Krispin M., Wasserkort R., Eckhardt F., Beck S., Genome-Wide Screen for Differential DNA Methylation Associated with Neural Cell Differentiation in Mouse. PLoS One, 2011, 6, e26002. [CrossRef] [PubMed] [Google Scholar]
  • Derecki N.C., Cronk J.C., Lu Z., Xu E., Abbott S.B.G., Guyenet P.G., Kipnis J., Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature, 2012, 484, 105–109. [CrossRef] [PubMed] [Google Scholar]
  • Ehrlich M., Gama-Sosa M.A., Huang L.H., Midgett R.M., Kuo K.C., McCune R.A., Gehrke C., Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res, 1982, 10, 2709–2721. [CrossRef] [PubMed] [Google Scholar]
  • Elliott E., Ezra-Nevo G., Regev L., Neufeld-Cohen A., Chen A., Resilience to social stress coincides with functional DNA methylation of the Crf gene in adult mice. Nat Neurosci, 2010, 13, 1351–1353. [CrossRef] [PubMed] [Google Scholar]
  • Endres M., Fan G., Meisel A., Dirnagl U., Jaenisch R., Effects of cerebral ischemia in mice lacking DNA methyltransferase 1 in post-mitotic neurons. Neuroreport, 2001, 12, 3763–3766. [CrossRef] [PubMed] [Google Scholar]
  • Fan G., Hutnick L., Methyl-CpG binding proteins in the nervous system. Cell Res, 2005, 15, 255–261. [CrossRef] [PubMed] [Google Scholar]
  • Fan G., Beard C., Chen R.Z., Csankovszki G., Sun Y., Siniaia M., Biniszkiewicz D., Bates B., Lee P.P., Kuhn R., Trumpp A., Poon C., Wilson C.B., Jaenisch R., DNA hypomethylation perturbs the function and survival of CNS neurons in postnatal animals. J Neurosci, 2001, 21, 788–797. [PubMed] [Google Scholar]
  • Feng J., Zhou Y., Campbell S.L., Le T., Li E., Sweatt J.D., Silva A.J., Fan G., Dnmt1 and Dnmt3a are required for the maintenance of DNA methylation and synaptic function in adult forebrain neurons. Nat Neurosci, 2010, 13, 423–430. [CrossRef] [PubMed] [Google Scholar]
  • Fournier A., Sasai N., Nakao M., Defossez P.-A., The role of methyl-binding proteins in chromatin organization and epigenome maintenance. Brief Funct Genomics, 2012, 11, 251–264. [CrossRef] [PubMed] [Google Scholar]
  • Fraga M.F., Ballestar E., Paz M.F., Ropero S., Setien F., Ballestar M.L., Heine-Suñer D., Cigudosa J.C., Urioste M., Benitez J., Boix-Chornet M., Sanchez-Aguilera A., Ling C., Carlsson E., Poulsen P., Vaag A., Stephan Z., Spector T.D., Wu Y.-Z., Plass C., Esteller M., Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA, 2005, 102, 10604–10609. [Google Scholar]
  • Frauer C., Hoffmann T., Bultmann S., Casa V., Cardoso M.C., Antes I., Leonhardt H., Recognition of 5-Hydroxymethylcytosine by the Uhrf1 SRA Domain. PLoS One, 2011, 6, e21306. [CrossRef] [PubMed] [Google Scholar]
  • Fuks F., Hurd P.J., Wolf D., Nan X., Bird A.P., Kouzarides T., The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem, 2003, 278, 4035–4040. [CrossRef] [PubMed] [Google Scholar]
  • Fumagalli F., Molteni R., Racagni G., Riva M.A., Stress during development: Impact on neuroplasticity and relevance to psychopathology. Prog Neurobiol, 2007, 81, 197–217. [CrossRef] [PubMed] [Google Scholar]
  • Fyffe S.L., Neul J.L., Samaco R.C., Chao H.-T., Ben-Shachar S., Moretti P., McGill B.E., Goulding E.H., Sullivan E., Tecott L.H., Zoghbi H.Y., Deletion of Mecp2 in Sim1-expressing neurons reveals a critical role for MeCP2 in feeding behavior, aggression, and the response to stress. Neuron, 2008, 59, 947–958. [CrossRef] [PubMed] [Google Scholar]
  • Gibbons R.J., McDowell T.L., Raman S., O’Rourke D.M., Garrick D., Ayyub H., Higgs D.R., Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation. Nat Genet, 2000, 24, 368–371. [CrossRef] [PubMed] [Google Scholar]
  • Gluckman P.D., Hanson M.A., Cooper C., Thornburg K.L., Effect of in utero and early-life conditions on adult health and disease. N Engl J Med, 2008, 359, 61–73. [Google Scholar]
  • Goll M.G., Bestor T.H., Eukaryotic cytosine methyltransferases. Annu Rev Biochem, 2005, 74, 481–514. [CrossRef] [PubMed] [Google Scholar]
  • Gräff J., Franklin T.B., Mansuy I.M., Epigenetics and memory. Biol Aujourd’hui, 2010, 204, 131–137. [CrossRef] [EDP Sciences] [Google Scholar]
  • Guo J.U., Ma D.K., Mo H., Ball M.P., Jang M.-H., Bonaguidi M.A., Balazer J.A., Eaves H.L., Xie B., Ford E., Zhang K., Ming G., Gao Y., Song H., Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci, 2011a, 14, 1345–1351. [CrossRef] [PubMed] [Google Scholar]
  • Guo J.U., Su Y., Zhong C., Ming G., Song H., Hydroxylation of 5-Methylcytosine by TET1 Promotes Active DNA Demethylation in the Adult Brain. Cell, 2011b, 145, 423–434. [CrossRef] [PubMed] [Google Scholar]
  • Guy J., Hendrich B., Holmes M., Martin J.E., Bird A., A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet, 2001, 27, 322–326. [CrossRef] [PubMed] [Google Scholar]
  • Hagberg B., Aicardi J., Dias K., Ramos O., A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett’s syndrome: report of 35 cases. Ann Neurol, 1983, 14, 471–479. [CrossRef] [PubMed] [Google Scholar]
  • Hendrich B., Guy J., Ramsahoye B., Wilson V.A., Bird A., Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev, 2001, 15, 710–723. [CrossRef] [PubMed] [Google Scholar]
  • Hutchins A.S., Mullen A.C., Lee H.W., Sykes K.J., High F.A., Hendrich B.D., Bird A.P., Reiner S.L., Gene silencing quantitatively controls the function of a developmental trans-activator. Mol Cell, 2002, 10, 81–91. [CrossRef] [PubMed] [Google Scholar]
  • Hutnick L.K., Golshani P., Namihira M., Xue Z., Matynia A., Yang X.W., Silva A.J., Schweizer F.E., Fan G., DNA hypomethylation restricted to the murine forebrain induces cortical degeneration and impairs postnatal neuronal maturation. Hum Mol Genet, 2009, 18, 2875–2888. [CrossRef] [PubMed] [Google Scholar]
  • Huttlin E.L., Jedrychowski M.P., Elias J.E., Goswami T., Rad R., Beausoleil S.A., Villén J., Haas W., Sowa M.E., Gygi S.P., A tissue-specific atlas of mouse protein phosphorylation and expression. Cell, 2010, 143, 1174–1189. [CrossRef] [PubMed] [Google Scholar]
  • Iwata A., Nagashima Y., Matsumoto L., Suzuki T., Yamanaka T., Date H., Deoka K., Nukina N., Tsuji S., Intranuclear degradation of polyglutamine aggregates by the ubiquitin-proteasome system. J Biol Chem, 2009, 284, 9796–9803. [CrossRef] [PubMed] [Google Scholar]
  • Jentarra G.M., Olfers S.L., Rice S.G., Srivastava N., Homanics G.E., Blue M., Naidu S., Narayanan V., Abnormalities of cell packing density and dendritic complexity in the MeCP2 A140V mouse model of Rett syndrome/X-linked mental retardation. BMC Neurosci, 2010, 11, 19. [CrossRef] [PubMed] [Google Scholar]
  • Jones P.A., Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet, 2012, 13, 484–492. [CrossRef] [PubMed] [Google Scholar]
  • Joulie M., Miotto B., Defossez P.-A., Mammalian methyl-binding proteins: what might they do? Bioessays, 2010, 32, 1025–1032. [CrossRef] [PubMed] [Google Scholar]
  • Kaneda M., Okano M., Hata K., Sado T., Tsujimoto N., Li E., Sasaki H., Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature, 2004, 429, 900–903. [CrossRef] [PubMed] [Google Scholar]
  • Kim J.B., Greber B., Araúzo-Bravo M.J., Meyer J., Park K.I., Zaehres H., Schöler H.R., Direct reprogramming of human neural stem cells by OCT4. Nature, 2009, 461, 649–643. [CrossRef] [PubMed] [Google Scholar]
  • Kishi N., Macklis J.D., MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions. Mol Cell Neurosci, 2004, 27, 306–321. [CrossRef] [PubMed] [Google Scholar]
  • Klein C.J., Botuyan M.-V., Wu Y., Ward C.J., Nicholson G.A., Hammans S., Hojo K., Yamanishi H., Karpf A.R., Wallace D.C., Simon M., Lander C., Boardman L.A., Cunningham J.M., Smith G.E., Litchy W.J., Boes B., Atkinson E.J., Middha S., B Dyck P.J., Parisi J.E., Mer G., Smith D.I., Dyck P.J., Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. Nat Genet, 2011, 43, 595–600. [CrossRef] [PubMed] [Google Scholar]
  • Klug M., Heinz S., Gebhard C., Schwarzfischer L., Krause S.W., Andreesen R., Rehli M., Active DNA demethylation in human postmitotic cells correlates with activating histone modifications, but not transcription levels. Genome Biol, 2010, 11, R63. [CrossRef] [PubMed] [Google Scholar]
  • Kriaucionis S., Heintz N., The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science, 2009, 324, 929–930. [CrossRef] [PubMed] [Google Scholar]
  • Lawson-Yuen A., Liu D., Han L., Jiang Z.I., Tsai G.E., Basu A.C., Picker J., Feng J., Coyle J.T., Ube3a mRNA and protein expression are not decreased in Mecp2R168X mutant mice. Brain Res, 2007, 1180, 1–6. [CrossRef] [PubMed] [Google Scholar]
  • Li E., Bestor T.H., Jaenisch R., Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell, 1992, 69, 915–926. [CrossRef] [PubMed] [Google Scholar]
  • Li H., Zhong X., Chau K.F., Williams E.C., Chang Q., Loss of Activity-Induced Phosphorylation of MeCP2 Enhances Synaptogenesis, LTP, and Spatial Memory. Nat Neurosci, 2011, 14, 1001–1008. [CrossRef] [PubMed] [Google Scholar]
  • Li X., Barkho B.Z., Luo Y., Smrt R.D., Santistevan N.J., Liu C., Kuwabara T., Gage F.H., Zhao X., Epigenetic regulation of the stem cell mitogen Fgf-2 by Mbd1 in adult neural stem/progenitor cells. J Biol Chem, 2008, 283, 27644–27652. [CrossRef] [PubMed] [Google Scholar]
  • Lioy D.T., Garg S.K., Monaghan C.E., Raber J., Foust K.D., Kaspar B.K., Hirrlinger P.G., Kirchhoff F., Bissonnette J.M., Ballas N., Mandel G., A role for glia in the progression of Rett’s syndrome. Nature, 2011, 475, 497–500. [CrossRef] [PubMed] [Google Scholar]
  • Lister R., Pelizzola M., Dowen R.H., Hawkins R.D., Hon G., Tonti-Filippini J., Nery J.R., Lee L., Ye Z., Ngo Q.-M., Edsall L., Antosiewicz-Bourget J., Stewart R., Ruotti V., Millar A.H., Thomson J.A., Ren B., Ecker J.R., Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 2009, 462, 315–322. [CrossRef] [PubMed] [Google Scholar]
  • Liu C., Teng Z.-Q., Santistevan N.J., Szulwach K.E., Guo W., Jin P., Zhao X., Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell, 2010, 6, 433–444. [CrossRef] [PubMed] [Google Scholar]
  • Lubin F.D., Roth T.L., Sweatt J.D., Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J Neurosci, 2008, 28, 10576–10586. [CrossRef] [PubMed] [Google Scholar]
  • Luikenhuis S., Giacometti E., Beard C.F., Jaenisch R., Expression of MeCP2 in postmitotic neurons rescues Rett syndrome in mice. Proc Natl Acad Sci USA, 2004, 101, 6033–6038. [CrossRef] [Google Scholar]
  • Ma D.K., Jang M.-H., Guo J.U., Kitabatake Y., Chang M., Pow-Anpongkul N., Flavell R.A., Lu B., Ming G., Song H., Neuronal Activity-Induced Gadd45b Promotes Epigenetic DNA Demethylation and Adult Neurogenesis. Science, 2009, 323, 1074–1077. [CrossRef] [PubMed] [Google Scholar]
  • MacDonald J.L., Verster A., Berndt A., Roskams A.J., MBD2 and MeCP2 regulate distinct transitions in the stage-specific differentiation of olfactory receptor neurons. Mol Cell Neurosci, 2010, 44, 55–67. [CrossRef] [PubMed] [Google Scholar]
  • Maezawa I., Jin L.-W., Rett syndrome microglia damage dendrites and synapses by the elevated release of glutamate. J Neurosci, 2010, 30, 5346–5356. [CrossRef] [PubMed] [Google Scholar]
  • Martin G.M., Epigenetic drift in aging identical twins. Proc Natl Acad Sci USA, 2005, 102, 10413–10414. [CrossRef] [Google Scholar]
  • Martín Caballero I., Hansen J., Leaford D., Pollard S., Hendrich B.D., The Methyl-CpG Binding Proteins Mecp2, Mbd2 and Kaiso Are Dispensable for Mouse Embryogenesis, but Play a Redundant Function in Neural Differentiation. PLoS One, 2009, 4, e4315. [CrossRef] [PubMed] [Google Scholar]
  • Martinowich K., Hattori D., Wu H., Fouse S., He F., Hu Y., Fan G., Sun Y.E., DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science, 2003, 302, 890–893. [CrossRef] [PubMed] [Google Scholar]
  • McGowan P.O., Sasaki A., D’Alessio A.C., Dymov S., Labonté B., Szyf M., Turecki G., Meaney M.J., Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci, 2009, 12, 342–348. [CrossRef] [PubMed] [Google Scholar]
  • Millar C.B., Guy J., Sansom O.J., Selfridge J., MacDougall E., Hendrich B., Keightley P.D., Bishop S.M., Clarke A.R., Bird A., Enhanced CpG Mutability and Tumorigenesis in MBD4-Deficient Mice. Science, 2002, 297, 403–405. [CrossRef] [PubMed] [Google Scholar]
  • Miller C.A., Sweatt J.D., Covalent modification of DNA regulates memory formation. Neuron, 2007, 53, 857–869. [CrossRef] [PubMed] [Google Scholar]
  • Miller C.A., Gavin C.F., White J.A., Parrish R.R., Honasoge A., Yancey C.R., Rivera I.M., Rubio M.D., Rumbaugh G., Sweatt J.D., Cortical DNA methylation maintains remote memory. Nat Neurosci, 2010, 13, 664–666. [CrossRef] [PubMed] [Google Scholar]
  • Mohn F., Weber M., Rebhan M., Roloff T.C., Richter J., Stadler M.B., Bibel M., Schübeler D., Lineage-Specific Polycomb Targets and de novo DNA Methylation Define Restriction and Potential of Neuronal Progenitors. Mol Cell, 2008, 30, 755–766. [CrossRef] [PubMed] [Google Scholar]
  • Muotri A.R., Marchetto M.C.N., Coufal N.G., Oefner R., Yeo G., Nakashima K., Gage F.H., L1 retrotransposition in neurons is modulated by MeCP2. Nature, 2010, 468, 443–446. [CrossRef] [PubMed] [Google Scholar]
  • Murgatroyd C., Patchev A.V., Wu Y., Micale V., Bockmühl Y., Fischer D., Holsboer F., Wotjak C.T., Almeida O.F.X., Spengler D., Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci, 2009, 12, 1559–1566. [CrossRef] [PubMed] [Google Scholar]
  • Narayan P.J., Dragunow M., High content analysis of histone acetylation in human cells and tissues. J Neurosci Methods, 2010, 193, 54–61. [CrossRef] [PubMed] [Google Scholar]
  • Nelson E.D., Kavalali E.T., Monteggia L.M., Activity-Dependent Suppression of Miniature Neurotransmission through the Regulation of DNA Methylation. J Neurosci, 2008, 28, 395–406. [CrossRef] [PubMed] [Google Scholar]
  • Nguyen S., Meletis K., Fu D., Jhaveri S., Jaenisch R., Ablation of de novo DNA methyltransferase Dnmt3a in the nervous system leads to neuromuscular defects and shortened lifespan. Dev Dyn, 2007, 236, 1663–1676. [CrossRef] [PubMed] [Google Scholar]
  • O’Driscoll C., Kaufmann W.E., Bressler J., Relationship between Mecp2 and NFκb signaling during neural differentiation of P19 cells. Brain Res, 2013, 1490, 35–42. [CrossRef] [PubMed] [Google Scholar]
  • Okano M., Bell D.W., Haber D.A., Li E., DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 1999, 99, 247–257. [CrossRef] [PubMed] [Google Scholar]
  • Oliveira A.M.M., Hemstedt T.J., Bading H., Rescue of aging-associated decline in Dnmt3a2 expression restores cognitive abilities. Nat Neurosci, 2012, 15, 1111–1113. [CrossRef] [PubMed] [Google Scholar]
  • Popp C., Dean W., Feng S., Cokus S.J., Andrews S., Pellegrini M., Jacobsen S.E., Reik W., Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature, 2010, 463, 1101–1105. [CrossRef] [PubMed] [Google Scholar]
  • Prioleau M.-N., CpG Islands: Starting Blocks for Replication and Transcription. PLoS Genet, 2009, 5, e1000454. [CrossRef] [PubMed] [Google Scholar]
  • Prokhortchouk A., Sansom O., Selfridge J., Caballero I.M., Salozhin S., Aithozhina D., Cerchietti L., Meng F.G., Augenlicht L.H., Mariadason J.M., Hendrich B., Melnick A., Prokhortchouk E., Clarke A., Bird A., Kaiso-deficient mice show resistance to intestinal cancer. Mol Cell Biol, 2006, 26, 199–208. [CrossRef] [PubMed] [Google Scholar]
  • Provençal N., Suderman M.J., Guillemin C., Massart R., Ruggiero A., Wang D., Bennett A.J., Pierre P.J., Friedman D.P., Côté S.M., Hallett M., Tremblay R.E., Suomi S.J., Szyf M., The Signature of Maternal Rearing in the Methylome in Rhesus Macaque Prefrontal Cortex and T Cells. J Neurosci, 2012, 32, 15626–15642. [CrossRef] [PubMed] [Google Scholar]
  • Rothbart S.B., Krajewski K., Nady N., Tempel W., Xue S., Badeaux A.I., Barsyte-Lovejoy D., Martinez J.Y., Bedford M.T., Fuchs S.M., Arrowsmith C.H., Strahl B.D., Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Nat Struct Mol Biol, 2012, 19, 1155–1160. [CrossRef] [PubMed] [Google Scholar]
  • Saavedra-Rodríguez L., Feig L.A., Chronic Social Instability Induces Anxiety and Defective Social Interactions Across Generations. Biol Psychiatry, 2013, 73, 44–53. [CrossRef] [PubMed] [Google Scholar]
  • Samaco R.C., Mandel-Brehm C., Chao H.-T., Ward C.S., Fyffe-Maricich S.L., Ren J., Hyland K., Thaller C., Maricich S.M., Humphreys P., Greer J.J., Percy A., Glaze D.G., Zoghbi H.Y., Neul J.L., Loss of MeCP2 in aminergic neurons causes cell-autonomous defects in neurotransmitter synthesis and specific behavioral abnormalities. Proc Natl Acad Sci USA, 2009, 106, 21966–21971. [CrossRef] [Google Scholar]
  • Samaco R.C., McGraw C.M., Ward C.S., Sun Y., Neul J.L., Zoghbi H.Y., Female Mecp2+/− mice display robust behavioral deficits on two different genetic backgrounds providing a framework for pre-clinical studies. Hum Mol Genet, 2013, 22, 96–109. [CrossRef] [PubMed] [Google Scholar]
  • Sansom O.J., Berger J., Bishop S.M., Hendrich B., Bird A., Clarke A.R., Deficiency of Mbd2 suppresses intestinal tumorigenesis. Nat Genet, 2003, 34, 145–147. [CrossRef] [PubMed] [Google Scholar]
  • Sen G.L., Reuter J.A., Webster D.E., Zhu L., Khavari P.A., DNMT1 maintains progenitor function in self-renewing somatic tissue. Nature, 2010, 463, 563–567. [CrossRef] [PubMed] [Google Scholar]
  • Shahbazian M.D., Zoghbi H.Y., Rett syndrome and MeCP2: linking epigenetics and neuronal function. Am J Hum Genet, 2002, 71, 1259–1272. [CrossRef] [PubMed] [Google Scholar]
  • Sharif J., Muto M., Takebayashi S., Suetake I., Iwamatsu A., Endo T.A., Shinga J., Mizutani-Koseki Y., Toyoda T., Okamura K., Tajima S., Mitsuya K., Okano M., Koseki H., The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature, 2007, 450, 908–912. [CrossRef] [PubMed] [Google Scholar]
  • Skene P.J., Illingworth R.S., Webb S., Kerr A.R.W., James K.D., Turner D.J., Andrews R., Bird A.P., Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell, 2010, 37, 457–468. [CrossRef] [PubMed] [Google Scholar]
  • Suzuki M.M., Bird A., DNA methylation landscapes : provocative insights from epigenomics. Nat Rev Genet, 2008, 9, 465–476. [Google Scholar]
  • Takizawa T., Nakashima K., Namihira M., Ochiai W., Uemura A., Yanagisawa M., Fujita N., Nakao M., Taga T., DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev Cell, 2001, 1, 749–758. [CrossRef] [PubMed] [Google Scholar]
  • Tao J., Hu K., Chang Q., Wu H., Sherman N.E., Martinowich K., Klose R.J., Schanen C., Jaenisch R., Wang W., Sun Y.E., Phosphorylation of MeCP2 at Serine 80 regulates its chromatin association and neurological function. Proc Natl Acad Sci USA, 2009, 106, 4882–4887. [CrossRef] [Google Scholar]
  • Tittle R.K., Sze R., Ng A., Nuckels R.J., Swartz M.E., Anderson R.M., Bosch J., Stainier D.Y.R., Eberhart J.K., Gross J.M., Uhrf1 and Dnmt1 are required for development and maintenance of the zebrafish lens. Dev Biol, 2011, 350, 50–63. [CrossRef] [PubMed] [Google Scholar]
  • Ueda Y., Okano M., Williams C., Chen T., Georgopoulos K., Li E., Roles for Dnmt3b in mammalian development: a mouse model for the ICF syndrome. Development, 2006, 133, 1183–1192. [CrossRef] [PubMed] [Google Scholar]
  • Van Esch H., Bauters M., Ignatius J., Jansen M., Raynaud M., Hollanders K., Lugtenberg D., Bienvenu T., Jensen L.R., Gecz J., Moraine C., Marynen P., Fryns J.-P., Froyen G., Duplication of the MECP2 region is a frequent cause of severe mental retardation and progressive neurological symptoms in males. Am J Hum Genet, 2005, 77, 442–453. [CrossRef] [PubMed] [Google Scholar]
  • Velasco G., Hubé F., Rollin J., Neuillet D., Philippe C., Bouzinba-Segard H., Galvani A., Viegas-Péquignot E., Francastel C., Dnmt3b recruitment through E2F6 transcriptional repressor mediates germ-line gene silencing in murine somatic tissues. Proc Natl Acad Sci USA, 2010, 107, 9281–9286. [CrossRef] [Google Scholar]
  • Watson P., Black G., Ramsden S., Barrow M., Super M., Kerr B., Clayton-Smith J., Angelman syndrome phenotype associated with mutations in MECP2, a gene encoding a methyl CpG binding protein. J Med Genet, 2001, 38, 224–228. [CrossRef] [PubMed] [Google Scholar]
  • Weaver I.C.G., Champagne F.A., Brown S.E., Dymov S., Sharma S., Meaney M.J., Szyf M., Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J Neurosci, 2005, 25, 11045–11054. [CrossRef] [PubMed] [Google Scholar]
  • Weber M., La méthylation de l’ADN, un acteur-clé de la pluripotence. Médecine/Sciences, 2011, 27, 483–485. [Google Scholar]
  • Wu H., Coskun V., Tao J., Xie W., Ge W., Yoshikawa K., Li E., Zhang Y., Sun Y.E., Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science, 2010, 329, 444–448. [CrossRef] [PubMed] [Google Scholar]
  • Wu S.C., Zhang Y., Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol, 2010, 11, 607–620. [CrossRef] [PubMed] [Google Scholar]
  • Wu Z., Huang K., Yu J., Le T., Namihira M., Liu Y., Zhang J., Xue Z., Cheng L., Fan G., Dnmt3a regulates both proliferation and differentiation of mouse neural stem cells. J Neurosci Res, 2012, 90, 1883–1891. [CrossRef] [PubMed] [Google Scholar]
  • Yasui D.H., Peddada S., Bieda M.C., Vallero R.O., Hogart A., Nagarajan R.P., Thatcher K.N., Farnham P.J., Lasalle J.M., Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes. Proc Natl Acad Sci USA, 2007, 104, 19416–19421. [CrossRef] [Google Scholar]
  • Yazdani M., Deogracias R., Guy J., Poot R.A., Bird A., Barde Y.-A., Disease modeling using embryonic stem cells: MeCP2 regulates nuclear size and RNA synthesis in neurons. Stem Cells, 2012, 30, 2128–2139. [CrossRef] [PubMed] [Google Scholar]
  • Young J.I., Hong E.P., Castle J.C., Crespo-Barreto J., Bowman A.B., Rose M.F., Kang D., Richman R., Johnson J.M., Berget S., Zoghbi H.Y., Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proc Natl Acad Sci USA, 2005, 102, 17551–17558. [CrossRef] [Google Scholar]
  • Zeng J., Konopka G., Hunt B.G., Preuss T.M., Geschwind D., Yi S.V., Divergent whole-genome methylation maps of human and chimpanzee brains reveal epigenetic basis of human regulatory evolution. Am J Hum Genet, 2012, 91, 455–465. [CrossRef] [PubMed] [Google Scholar]
  • Zhao X., Ueba T., Christie B.R., Barkho B., McConnell M.J., Nakashima K., Lein E.S., Eadie B.D., Willhoite A.R., Muotri A.R., Summers R.G., Chun J., Lee K.-F., Gage F.H., Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc Natl Acad Sci USA, 2003, 100, 6777–6782. [CrossRef] [Google Scholar]
  • Zhou Z., Hong E.J., Cohen S., Zhao W.-N., Ho H.-Y.H., Schmidt L., Chen W.G., Lin Y., Savner E., Griffith E.C., Hu L., Steen J.A.J., Weitz C.J., Greenberg M.E., Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron, 2006, 52, 255–269. [CrossRef] [PubMed] [Google Scholar]
  • Zocchi L., Sassone-Corsi P., Joining the dots: from chromatin remodeling to neuronal plasticity. Curr Opin Neurobiol, 2010, 20, 432–440. [CrossRef] [PubMed] [Google Scholar]
  • Zocchi L., Sassone-Corsi P., SIRT1-mediated deacetylation of MeCP2 contributes to BDNF expression. Epigenetics, 2012, 7, 695–700. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.