Accès gratuit
Numéro |
Biologie Aujourd'hui
Volume 207, Numéro 3, 2013
|
|
---|---|---|
Page(s) | 201 - 217 | |
DOI | https://doi.org/10.1051/jbio/2013016 | |
Publié en ligne | 13 décembre 2013 |
- Acloque H., Ocaña O.H., Matheu A., Rizzoti K., Wise C., Lovell-Badge R., Nieto M.A., Reciprocal repression between Sox3 and snail transcription factors defines embryonic territories at gastrulation. Dev Cell, 2011, 21, 546–558. [CrossRef] [PubMed] [Google Scholar]
- Amit M., Carpenter M.K., Inokuma M.S., Chiu C.P., Harris C.P., Waknitz M.A., Itskovitz-Eldor J., Thomson J.A., Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol, 2000, 15, 227, 271–278. [Google Scholar]
- Arnold S.J., Robertson E.J., Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat Rev Mol Cell Biol, 2009, 10, 91–103. [CrossRef] [PubMed] [Google Scholar]
- Avilion A.A., Nicolis S.K., Pevny L.H., Perez L., Vivian N., Lovell-Badge R., Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev, 2003, 17, 126–140. [CrossRef] [PubMed] [Google Scholar]
- Barreto G., Schäfer A., Marhold J., Stach D., Swaminathan S.K., Handa V., Döderlein G., Maltry N., Wu W., Lyko F., Niehrs C., Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature, 2007, 445, 671–675. [CrossRef] [PubMed] [Google Scholar]
- Belting H.G., Wendik B., Lunde K., Leichsenring M., Mössner R., Driever W., Onichtchouk D., Pou5f1 contributes to dorsoventral patterning by positive regulation of vox and modulation of fgf8a expression. Dev Biol, 2011, 356, 323–336. [CrossRef] [PubMed] [Google Scholar]
- Bhutani N., Brady J.J., Damian M., Sacco A., Corbel S.Y., Blau H.M., Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature, 2010, 463, 1042–1047. [CrossRef] [PubMed] [Google Scholar]
- Boiani M., Schöler H.R., Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol, 2005, 6, 872–884. [CrossRef] [PubMed] [Google Scholar]
- Boyer L.A., Lee T.I., Cole M.F., Johnstone S.E., Levine S.S., Zucker J.P., Guenther M.G., Kumar R.M., Murray H.L., Jenner R.G., Gifford D.K., Melton D.A., Jaenisch R., Young R.A., Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 2005, 122, 947–956. [CrossRef] [PubMed] [Google Scholar]
- Briggs R., King T.J., Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci USA, 1952, 38, 455–463. [CrossRef] [Google Scholar]
- Brons I.G., Smithers L.E., Trotter M.W., Rugg-Gunn P., Sun B., Chuva de Sousa Lopes S.M., Howlett S.K., Clarkson A., Ahrlund-Richter L., Pedersen R.A., Vallier L., Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature, 2007, 448, 191–195. [CrossRef] [PubMed] [Google Scholar]
- Byrne J.A., Simonsson S., Western P.S., Gurdon J.B., Nuclei of adult mammalian somatic cells are directly reprogrammed to oct-4 stem cell gene expression by amphibian oocytes. Curr Biol, 2005, 13, 1206–1213. [CrossRef] [PubMed] [Google Scholar]
- Camp E., Sánchez-Sánchez A.V., García-España A., Desalle R., Odqvist L., Enrique O’Connor J., Mullor J.L., Nanog regulates proliferation during early fish development. Stem Cells, 2009, 27, 2081–2091. [CrossRef] [PubMed] [Google Scholar]
- Canham M.A., Sharov A.A., Ko M.S., Brickman J.M., Functional heterogeneity of embryonic stem cells revealed through translational amplification of an early endodermal transcript. PLoS Biol, 2010, 8, e1000379. [CrossRef] [PubMed] [Google Scholar]
- Cao Y., Regulation of germ layer formation by pluripotency factors during embryogenesis. Cell Biosci, 2013, 3, 15. [CrossRef] [PubMed] [Google Scholar]
- Cao Y., Knöchel S., Donow C., Miethe J., Kaufmann E., Knöchel W., The POU factor Oct-25 regulates the Xvent-2B gene and counteracts terminal differentiation in Xenopus embryos. J Biol Chem, 2004, 279, 43735−43743. [CrossRef] [PubMed] [Google Scholar]
- Chambers I., Colby D., Robertson M., Nichols J., Lee S., Tweedie S., Smith A., Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 2003, 113, 643–655. [CrossRef] [PubMed] [Google Scholar]
- Chambers I., Silva J., Colby D., Nichols J., Nijmeijer B., Robertson M., Vrana J., Jones K., Grotewold L., Smith A., Nanog safeguards pluripotency and mediates germline development. Nature, 2007, 450, 1230–1234. [CrossRef] [PubMed] [Google Scholar]
- Chambers I., Tomlinson S.R., The transcriptional foundation of pluripotency. Development, 2009, 136, 2311−2322. [CrossRef] [PubMed] [Google Scholar]
- Chia N.Y., Chan Y.S., Feng B., Lu X., Orlov Y.L., Moreau D., Kumar P., Yang L., Jiang J., Lau M.S., Huss M., Soh B.S., Kraus P., Li P., Lufkin T., Lim B., Clarke N.D., Bard F., Ng H.H., A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity. Nature, 2010, 468, 316–320. [CrossRef] [PubMed] [Google Scholar]
- Davis R.L., Weintraub H., Lassar A.B., Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell, 1987, 51, 987–1000. [CrossRef] [PubMed] [Google Scholar]
- De Luze A., Sachs L., Demeneix B., Thyroid hormone-dependent transcriptional regulation of exogenous genes transferred into Xenopus tadpole muscle in vivo. Proc Natl Acad Sci USA, 1993, 90, 7322–7326. [CrossRef] [Google Scholar]
- Dixon J.E., Allegrucci C., Redwood C., Kump K., Bian Y., Chatfield J., Chen Y.H., Sottile V., Voss S.R., Alberio R., Johnson A.D., Axolotl Nanog activity in mouse embryonic stem cells demonstrates that ground state pluripotency is conserved from urodele amphibians to mammals. Development, 2010, 137, 2973–2980. [CrossRef] [PubMed] [Google Scholar]
- Enver T., Pera M., Peterson C., Andrews P.W., Stem cell states, fates and the rules of attraction. Cell Stem Cell, 2009, 4, 387–397. [CrossRef] [PubMed] [Google Scholar]
- Evans M.J., Kaufman M.H., Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981, 292, 154–156. [CrossRef] [PubMed] [Google Scholar]
- Feng B., Jiang J., Kraus P., Ng J.H., Heng J.C., Chan Y.S., Yaw L.P., Zhang W., Loh Y.H., Han J., Vega V.B., Cacheux-Rataboul V., Lim B., Lufkin T., Ng H.H., Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nat Cell Biol, 2009, 11, 197–203. [CrossRef] [PubMed] [Google Scholar]
- Gilbert S.F., Epigenetic Landscaping: Waddington’s use of cell fate bifurcation diagrams. Biology and Phylosophy, 1991, 6, 135–154. [CrossRef] [Google Scholar]
- Gurdon J.B., Melton D.A., Nuclear reprogramming in cells. Science, 2008, 322, 1811–1815. [CrossRef] [PubMed] [Google Scholar]
- Hanna J., Saha K., Pando B., van Zon J., Lengner C.J., Creyghton M.P., van Oudenaarden A., Jaenisch R., Direct cell reprogramming is a stochastic process amenable to acceleration. Nature, 2009, 462, 595–601. [CrossRef] [PubMed] [Google Scholar]
- Hansis C., Barreto G., Maltry N., Niehrs C., Nuclear reprogramming of human somatic cells by Xenopus egg extract requires BRG1. Curr Biol, 2004, 14, 1475–1480. [CrossRef] [PubMed] [Google Scholar]
- Hart A.H., Hartley L., Ibrahim M., Robb L., Identification, cloning and expression analysis of the pluripotency promoting Nanog genes in mouse and human. Dev Dyn, 2004, 230, 187–198. [CrossRef] [PubMed] [Google Scholar]
- Heasman J., Patterning the early Xenopus embryo. Development, 2006, 133, 1205–1217. [CrossRef] [PubMed] [Google Scholar]
- Henningfeld K.A., Friedle H., Rastegar S., Knöchel W., Autoregulation of Xvent-2B, direct interaction and functional cooperation of Xvent-2 and Smad1. J Biol Chem, 2002, 277, 2097–2103. [CrossRef] [PubMed] [Google Scholar]
- Holland L.Z., Schubert M., Holland N.D., Neuman T., Evolutionary conservation of the presumptive neural plate markers AmphiSox1/2/3 and AmphiNeurogenin in the invertebrate chordate amphioxus. Dev Biol, 2000, 226, 18–33. [CrossRef] [PubMed] [Google Scholar]
- Hong Y., Winkler C., Schartl M., Pluripotency and differentiation of embryonic stem cell lines from the medakafish (Oryzias latipes). Mech Dev, 1996, 60, 33–44. [CrossRef] [PubMed] [Google Scholar]
- Huangfu D., Maehr R., Guo W., Eijkelenboom A., Snitow M., Chen A.E., Melton D.A., Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol, 2008, 26, 795–797. [CrossRef] [PubMed] [Google Scholar]
- Iovino N., Cavalli G., Rolling ES cells down the Waddington landscape with Oct4 and Sox2. Cell, 2011, 145, 815–817. [CrossRef] [PubMed] [Google Scholar]
- Ivanova N., Dobrin R., Lu R., Kotenko I., Levorse J., DeCoste C., Schafer X., Lun Y., Lemischka I.R., Dissecting self-renewal in stem cells with RNA interference. Nature, 2006, 442, 533–538. [CrossRef] [PubMed] [Google Scholar]
- Jullien J., Astrand C., Halley-Stott R.P., Garrett N., Gurdon J.B., Characterization of somatic cell nuclear reprogramming by oocytes in which a linker histone is required for pluripotency gene reactivation. Proc Natl Acad Sci USA, 2010, 107, 5483–5488. [CrossRef] [Google Scholar]
- Kalmar T., Lim C., Hayward P., Muñoz-Descalzo S., Nichols J., Garcia-Ojalvo J., Martinez Arias A., Regulated fluctuations in nanog expression mediate cell fate decisions in embryonic stem cells. PLoS Biol, 2009, 7, e1000149. [CrossRef] [PubMed] [Google Scholar]
- Kaneko K., Sato K., Michiue T., Okabayashi K., Ohnuma K., Danno H., Asashima M., Developmental potential for morphogenesis in vivo and in vitro. J Exp Zool (Mol Dev Evol), 2008, 310B, 492–503. [CrossRef] [Google Scholar]
- Khan A., Nakamoto A., Tai M., Saito S., Nakayama Y., Kawamura A., Takeda H., Yamasu K., Mesendoderm specification depends on the function of Pou2, the class V POU-type transcription factor, during zebrafish embryogenesis. Dev Growth Differ, 2012, 54, 686–701. [CrossRef] [PubMed] [Google Scholar]
- Kim J., Chu J., Shen X., Wang J., Orkin S.H., An extended transcriptional network for pluripotency of embryonic stem cells. Cell, 2008, 132, 1049–1061. [CrossRef] [PubMed] [Google Scholar]
- Kim J.B., Greber B., Araúzo-Bravo M.J., Meyer J., Park K.I., Zaehres H., Schöler H.R., Direct reprogramming of human neural stem cells by OCT4. Nature, 2009, 461, 649–3. [CrossRef] [PubMed] [Google Scholar]
- Kirschner M.W., Gerhart J., The plausibility of life: Resolving Darwin’s dilemma. Yale University Press, 2005. [Google Scholar]
- Kopp J.L., Ormsbee B.D., Desler M., Rizzino A., Small increases in the level of Sox2 trigger the differentiation of mouse embryonic stem cells. Stem Cells, 2008, 26, 903–911. [CrossRef] [PubMed] [Google Scholar]
- Korkola J.E., Houldsworth J., Chadalavada R.S., Olshen A.B., Dobrzynski D., Reuter V.E., Bosl G.J., Chaganti R.S., Down-regulation of stem cell genes, including those in a 200-kb gene cluster at 12p13.31, is associated with in vivo differentiation of human male germ cell tumors. Cancer Res, 2006, 66, 820–827. [CrossRef] [PubMed] [Google Scholar]
- Koziol M.J., Garrett N., Gurdon J.B., Tpt1 activates transcription of oct4 and nanog in transplanted somatic nuclei. Curr Biol, 2007, 17, 801–807. [CrossRef] [PubMed] [Google Scholar]
- Kunath T., Saba-El-Leil M.K., Almousailleakh M., Wray J., Meloche S., Smith A., FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development, 2007, 134, 2895–2902. [CrossRef] [PubMed] [Google Scholar]
- Lavial F., Acloque H., Bertocchini F., Macleod D.J., Boast S., Bachelard E., Montillet G., Thenot S., Sang H.M., Stern C.D., Samarut J., Pain B., The Oct4 homologue PouV and Nanog regulate pluripotency in chicken embryonic stem cells. Development, 2007, 134, 3549–3563. [CrossRef] [PubMed] [Google Scholar]
- Loh Y.H., Wu Q., Chew J.L., Vega V.B., Zhang W., Chen X., Bourque G., George J., Leong B., Liu J., Wong K.Y., Sung K.W., Lee C.W., Zhao X.D., Chiu K.P., Lipovich L., Kuznetsov V.A., Robson P., Stanton L.W., Wei C.L., Ruan Y., Lim B., Ng H.H., The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet, 2006, 38, 431–440. [CrossRef] [PubMed] [Google Scholar]
- Loh K.M., Lim B., A precarious balance: pluripotency factors as lineage specifiers. Cell Stem Cell, 2011, 8, 363−369. [CrossRef] [PubMed] [Google Scholar]
- Lowe C.J., Wu M., Salic A., Evans L., Lander E., Stange-Thomann N., Gruber C.E., Gerhart J., Kirschner M., Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell, 2003, 113, 853–865. [CrossRef] [PubMed] [Google Scholar]
- MacArthur B.D., Ma’ayan A., Lemischka I.R., Systems biology of stem cell fate and cellular reprogramming. Nat Rev Mol Cell Biol, 2009, 10, 672–681. [PubMed] [Google Scholar]
- Marks H., Kalkan T., Menafra R., Denissov S., Jones K., Hofemeister H., Nichols J., Kranz A., Francis Stewart A., Smith A., Stunnenberg H.G., The transcriptional and epigenomic foundations of ground state pluripotency. Cell, 2012, 149, 590–604. [CrossRef] [PubMed] [Google Scholar]
- Martin G.R., Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA, 1981, 78, 7634–7638. [Google Scholar]
- Mitsui K., Tokuzawa Y., Itoh H., Segawa K., Murakami M., Takahashi K., Maruyama M., Maeda M., Yamanaka S., The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 2003, 113, 631–642. [CrossRef] [PubMed] [Google Scholar]
- Moretti P.A., Davidson A.J., Baker E., Lilley B., Zon L.I., D’Andrea R.J., Molecular cloning of a human Vent-like homeobox gene. Genomics, 2001, 76, 21–29. [CrossRef] [PubMed] [Google Scholar]
- Morrison G.M., Brickman J.M., Conserved roles for Oct4 homologues in maintaining multipotency during early vertebrate development. Development, 2006, 133, 2011–2022. [CrossRef] [PubMed] [Google Scholar]
- Murata K., Kouzarides T., Bannister A.J., Gurdon J.B., Histone H3 lysine 4 methylation is associated with the transcriptional reprogramming efficiency of somatic nuclei by oocytes. Epigenetics Chromatin, 2010, 3, 4. [CrossRef] [PubMed] [Google Scholar]
- Ng R.K., Gurdon J.B., Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription. Nat Cell Biol, 2008, 10, 102–109. [CrossRef] [PubMed] [Google Scholar]
- Nichols J., Smith A., Naive and primed pluripotent states. Cell Stem Cell, 2009, 4, 487–492. [CrossRef] [PubMed] [Google Scholar]
- Nichols J., Zevnik B., Anastassiadis K., Niwa H., Klewe-Nebenius D., Chambers I., Scholer H., Smith A., Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 1998, 95, 379–391. [CrossRef] [PubMed] [Google Scholar]
- Nichols J., Silva J., Roode M., Smith A., Suppression of Erk signaling promotes ground state pluripotency in the mouse embryo. Development, 2009, 136, 3215−3222. [CrossRef] [PubMed] [Google Scholar]
- Niwa H., Burdon T., Chambers I., Smith A., Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev, 1998, 12, 2048–2060. [CrossRef] [PubMed] [Google Scholar]
- Niwa H., Miyazaki J., Smith A.G., Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet, 2000, 24, 372–376. [CrossRef] [PubMed] [Google Scholar]
- Niwa H., Ogawa K., Shimosato D., Adachi K., A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature, 2009, 460, 118–122. [CrossRef] [PubMed] [Google Scholar]
- Okamoto K., Okazawa H., Okuda A., Sakai M., Muramatsu M., Hamada H., A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell, 1990, 60, 461–472. [CrossRef] [PubMed] [Google Scholar]
- Okita K., Ichisaka T., Yamanaka S., Generation of germline-competent induced pluripotent stem cells. Nature, 2007, 448, 313–317. [CrossRef] [PubMed] [Google Scholar]
- Okuda Y., Ogura E., Kondoh H., Kamachi Y., B1 SOX coordinate cell specification with patterning and morphogenesis in the early zebrafish embryo. PLoS Genet, 2010, 6, e1000936. [CrossRef] [PubMed] [Google Scholar]
- Onal P., Grün D., Adamidi C., Rybak A., Solana J., Mastrobuoni G., Wang Y., Rahn H.P., Chen W., Kempa S., Ziebold U., Rajewsky N., Gene expression of pluripotency determinants is conserved between mammalian and planarian stem cells. EMBO J, 2012, 31, 2755–2769. [CrossRef] [PubMed] [Google Scholar]
- Onichtchouk D., Pou5f1/oct4 in pluripotency control: insights from zebrafish. Genesis, 2012, 50, 75–85. [CrossRef] [PubMed] [Google Scholar]
- Onichtchouk D., Glinka A., Niehrs C., Requirement for Xvent-1 and Xvent-2 gene function in dorsoventral patterning of Xenopus mesoderm. Development, 1998, 125, 1447–1456. [PubMed] [Google Scholar]
- Onichtchouk D., Geier F., Polok B., Messerschmidt D.M., Mössner R., Wendik B., Song S., Taylor V., Timmer J., Driever W., Zebrafish Pou5f1-dependent transcriptional networks in temporal control of early development. Mol Syst Biol, 2010, 6, 354. [CrossRef] [PubMed] [Google Scholar]
- Pain B., Clark M.E., Shen M., Nakazawa H., Sakurai M., Samarut J., Etches R.J., Long-term in vitro culture and characterisation of avian embryonic stem cells with multiple morphogenetic potentialities. Development, 1996, 122, 2339–2348. [PubMed] [Google Scholar]
- Qian L., Huang Y., Spencer C.I., Foley A., Vedantham V., Liu L., Conway S.J., Fu J.D., Srivastava D., In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature, 2012, 485, 593−598. [CrossRef] [PubMed] [Google Scholar]
- Rawat V.P., Arseni N., Ahmed F., Mulaw M.A., Thoene S., Heilmeier B., Sadlon T., D’Andrea R.J., Hiddemann W., Bohlander S.K., Buske C., Feuring-Buske M., The vent-like homeobox gene VENTX promotes human myeloid differentiation and is highly expressed in acute myeloid leukemia. Proc Natl Acad Sci USA, 2010, 107, 16946–16951. [CrossRef] [Google Scholar]
- Redmer T., Diecke S., Grigoryan T., Quiroga-Negreira A., Birchmeier W., Besser D., E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming. EMBO Rep, 2011, 12, 720–726. [CrossRef] [PubMed] [Google Scholar]
- Rogers C.D., Harafuji N., Archer T., Cunningham D.D., Casey E.S., Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives. Mech Dev, 2009, 126, 42–55. [CrossRef] [PubMed] [Google Scholar]
- Scerbo P., Girardot F., Vivien C., Markov G.V., Luxardi G., Demeneix B., Kodjabachian L., Coen L., Ventx factors function as Nanog-like guardians of developmental potential in Xenopus. PLoS One, 2012, 7, e36855. [CrossRef] [PubMed] [Google Scholar]
- Scholer H.R., Balling R., Hatzopoulos A.K., Suzuki N., Gruss P., Octamer binding proteins confer transcriptional activity in early mouse embryogenesis. EMBO J, 1989, 8, 2551–2557. [PubMed] [Google Scholar]
- Shih Y.H., Kuo C.L., Hirst C.S., Dee C.T., Liu Y.R., Laghari Z.A., Scotting P.J., SoxB1 transcription factors restrict organizer gene expression by repressing multiple events downstream of Wnt signalling. Development, 2010, 137, 2671–2681. [CrossRef] [PubMed] [Google Scholar]
- Silva J., Barrandon O., Nichols J., Kawaguchi J., Theunissen T.W., Smith A., Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol, 2008, 6, e253. [CrossRef] [PubMed] [Google Scholar]
- Silva J., Nichols J., Theunissen T.W., Guo G., Van Oosten A.L., Barrandon O., Wray J., Yamanaka S., Chambers I., Smith A., Nanog is the gateway to the pluripotent ground state. Cell, 2009, 138, 722–737. [CrossRef] [PubMed] [Google Scholar]
- Singh A.M., Reynolds D., Cliff T., Ohtsuka S., Mattheyses A.L., Sun Y., Menendez L., Kulik M., Dalton S., Signaling network crosstalk in human pluripotent cells: a Smad2/3-regulated switch that controls the balance between self-renewal and differentiation. Cell Stem Cell, 2010, 10, 312–326. [CrossRef] [Google Scholar]
- Sridharan R., Tchieu J., Mason M.J., Yachechko R., Kuoy E., Horvath S., Zhou Q., Plath K., Role of the murine reprogramming factors in the induction of pluripotency. Cell, 2009, 23, 364–377. [CrossRef] [PubMed] [Google Scholar]
- Suzuki A., Raya A., Kawakami Y., Morita M., Matsui T., Nakashima K., Gage F.H., Rodríguez-Esteban C., Izpisúa Belmonte J.C., Nanog binds to Smad1 and blocks bone morphogenetic protein-induced differentiation of embryonic stem cells. Proc Natl Acad Sci USA, 2006, 103, 10294–10299. [CrossRef] [Google Scholar]
- Tachibana M., Sparman M., Ramsey C., Ma H., Lee H.S., Penedo M.C., Mitalipov S., Generation of chimeric rhesus monkeys. Cell, 2012, 148, 285–295. [CrossRef] [PubMed] [Google Scholar]
- Takahashi K., Yamanaka S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 26, 663–676. [CrossRef] [PubMed] [Google Scholar]
- Tam P.P.L., Loebel D.A., Gene function in mouse embryogenesis: get set for gastrulation. Nat Rev Genet, 2007, 8, 368–381. [CrossRef] [PubMed] [Google Scholar]
- Thomson J.A., Itskovitz-Eldor J., Shapiro S.S., Waknitz M.A., Swiergiel J.J., Marshall V.S., Jones J.M., Embryonic stem cell lines derived from human blastocysts. Science, 1998, 282, 1145–1147. [CrossRef] [PubMed] [Google Scholar]
- Thomson M., Liu S.J., Zou L.N., Smith Z., Meissner A., Ramanathan S., Pluripotency factors in embryonic stem cells regulate differentiation into germ layers. Cell, 2011, 145, 875–889. [CrossRef] [PubMed] [Google Scholar]
- Vallier L., Mendjan S., Brown S., Chng Z., Teo A., Smithers L.E., Trotter M.W., Cho C.H., Martinez A., Rugg-Gunn P., Brons G., Pedersen R.A., Activin/Nodal signalling maintains pluripotency by controlling Nanog expression. Development, 2009, 136, 1339–1349. [CrossRef] [PubMed] [Google Scholar]
- Vivien C., Scerbo P., Girardot F., Le Blay K., Demeneix B.A., Coen L., Non-viral expression of mouse Oct4, Sox2, and Klf4 transcription factors efficiently reprograms tadpole muscle fibers in vivo. J Biol Chem, 2012, 287, 7427–7435. [CrossRef] [PubMed] [Google Scholar]
- Waddington C.H., The Strategy of the Genes, 1957, George Allen & Unwin Press, London. [Google Scholar]
- Wang W., Yang J., Liu H., Lu D., Chen X., Zenonos Z., Campos L.S., Rad R., Guo G., Zhang S., Bradley A., Liu P., Rapid and efficient reprogramming of somatic cells to induced pluripotent stem cells by retinoic acid receptor gamma and liver receptor homolog 1. Proc Natl Acad Sci USA, 2011, 108, 18283–18288. [CrossRef] [Google Scholar]
- Wang Z., Oron E., Nelson B., Razis S., Ivanova N., Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell, 2012, 10, 440–454. [CrossRef] [PubMed] [Google Scholar]
- Wray J., Kalkan T., Gomez-Lopez S., Eckardt D., Cook A., Kemler R., Smith A., Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nat Cell Biol, 2011, 13, 838–845. [CrossRef] [PubMed] [Google Scholar]
- Xie D., Chen C.C., Ptaszek L.M., Xiao S., Cao X., Fang F., Ng H.H., Lewin H.A., Cowan C., Zhong S., Rewirable gene regulatory networks in the preimplantation embryonic development of three mammalian species. Genome Res, 2010, 20, 804–815. [CrossRef] [PubMed] [Google Scholar]
- Xu C., Fan Z.P., Müller P., Fogley R., DiBiase A., Trompouki E., Unternaehrer J., Xiong F., Torregroza I., Evans T., Megason S.G., Daley G.Q., Schier A.F., Young R.A., Zon L.I., Nanog-like regulates endoderm formation through the Mxtx2-Nodal pathway. Dev Cell, 2012, 22, 625–638. [CrossRef] [PubMed] [Google Scholar]
- Yamaguchi T.P., Heads or tails: Wnts and anterior-posterior patterning. Curr Biol, 2001, 11, 713–724. [CrossRef] [Google Scholar]
- Ying Q.L., Nichols J., Chambers I., Smith A., BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell, 2003, 115, 281–292. [CrossRef] [PubMed] [Google Scholar]
- Yu J., Vodyanik M.A., Smuga-Otto K., Antosiewicz-Bourget J., Frane J.L., Tian S., Nie J., Jonsdottir G.A., Ruotti V., Stewart R., Slukvin I.I., Thomson J.A., Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007, 318, 1917–1920. [CrossRef] [PubMed] [Google Scholar]
- Zhang C., Basta T., Jensen E.D., Klymkowsky M.W., The beta-catenin/VegT regulated early zygotic gene Xnr5 is a direct target of Sox3 regulation. Development, 2003, 130, 5609–5624. [CrossRef] [PubMed] [Google Scholar]
- Zhao J., Lambert G., Meijer A.H., Rosa F.M., The transcription factor Vox represses endoderm development by interacting with Casanova and Pou2. Development, 2013, 140, 1090–1099. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.