Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 208, Numéro 3, 2014
Page(s) 237 - 249
Section Prix de thèse 2014 de la Fédération Réaumur des Sciences de la Vie
DOI https://doi.org/10.1051/jbio/2014027
Publié en ligne 5 décembre 2014
  • Abzhanov A., Protas M., Grant B., Grant P., Tabin C., Bmp4 and morphological variation of beaks in Darwin’s finches. Science, 2004, 305, 1462–1465. [CrossRef] [PubMed] [Google Scholar]
  • Arendt J., Reznick D., Convergence and parallelism reconsidered: what have we learned about the genetics of adaptation? Trends Ecol Evol, 2008, 23, 26–32. [CrossRef] [PubMed] [Google Scholar]
  • Arnoult L., Su K.F.Y., Manoel D., Minervino C., Magrina J., Gompel N., Prud’homme B., Emergence and Diversification of Fly Pigmentation Through Evolution of a Gene Regulatory Module. Science, 2013, 339, 1423–1426. [CrossRef] [PubMed] [Google Scholar]
  • Barrett R., Hoekstra H., Molecular spandrels: tests of adaptation at the genetic level. Nat Rev Genet, 2011, 12, 767–780. [CrossRef] [PubMed] [Google Scholar]
  • Barrett R.D., Rogers S.M., Schluter D., Natural selection on a major armor gene in threespine stickleback. Science, 2008, 322, 255–257. [CrossRef] [PubMed] [Google Scholar]
  • Barton N., Keightley P., Understanding quantitative genetic variation. Nat Rev Genet, 2002, 3, 11–21. [CrossRef] [PubMed] [Google Scholar]
  • Blount Z., Borland C., Lenski R., Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc Natl Acad Sci USA, 2008, 105, 7899–7906. [CrossRef] [Google Scholar]
  • Blount Z.D., Barrick J.E., Davidson C.J., Lenski R.E., Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature, 2012, 489, 513–518. [CrossRef] [PubMed] [Google Scholar]
  • Brakefield P., Gates J., Keys D., Kesbeke F., Wijngaarden P., Monteiro A., French V, Carroll S., Development, plasticity and evolution of butterfly eyespot patterns. Nature, 1996, 384, 236–242. [CrossRef] [PubMed] [Google Scholar]
  • Brandon R., The units of selection revisited: the modules of selection. Biol Philos, 1999, 14, 167–180. [CrossRef] [Google Scholar]
  • Breen M., Kemena C., Vlasov P., Notredame C., Epistasis as the primary factor in molecular evolution. Nature, 2012, 490, 535-538. [CrossRef] [PubMed] [Google Scholar]
  • Bridgham J.T., Ortlund E.A., Thornton J.W., An epistatic ratchet constrains the direction of glucocorticoid receptor evolution. Nature, 2009, 461, 515–519. [CrossRef] [PubMed] [Google Scholar]
  • Carroll S., Evolution at two levels: on genes and form. PLoS Biol, 2005, 3, e245. [CrossRef] [PubMed] [Google Scholar]
  • Carroll S.B., Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell, 2008, 134, 25–36. [CrossRef] [Google Scholar]
  • Colosimo P.F., Hosemann K.E., Balabhadra S., Villarreal G., Dickson M., Grimwood J., Schmutz J., Myers R.M., Schluter D., Kingsley D.M., Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles. Science, 2005, 307, 1928–1933. [CrossRef] [PubMed] [Google Scholar]
  • Consortium T.H.G., Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature, 2012, 487, 94–98. [PubMed] [Google Scholar]
  • Conte G., Arnegard M., The probability of genetic parallelism and convergence in natural populations. Proc Biol Sci, 2012, 279, 5039–5047. [CrossRef] [PubMed] [Google Scholar]
  • Davidson E.H., Erwin D.H., Gene regulatory networks and the evolution of animal body plans. Science, 2006, 311, 796–800. [CrossRef] [PubMed] [Google Scholar]
  • Davidson E.H., Levine M.S., Properties of developmental gene regulatory networks. Proc Natl Acad Sci USA, 2008, 105, 20063–20066. [CrossRef] [Google Scholar]
  • Dean A., Thornton J., Mechanistic approaches to the study of evolution: the functional synthesis. Nat Rev Genet, 2007, 8, 675–688. [CrossRef] [PubMed] [Google Scholar]
  • Drapeau M., A novel hypothesis on the biochemical role of the Drosophila Yellow protein. Biochem Biophys Res Com, 2003, 311, 1–3. [CrossRef] [Google Scholar]
  • Elmer K., Meyer A., Adaptation in the age of ecological genomics: insights from parallelism and convergence. Trends Ecol Evol, 2011, 26, 298–306. [CrossRef] [PubMed] [Google Scholar]
  • Gompel N., Carroll S., Genetic mechanisms and constraints governing the evolution of correlated traits in drosophilid flies. Nature, 2003, 424, 931–935. [CrossRef] [PubMed] [Google Scholar]
  • Gompel N., Prud’homme B., Wittkopp P.J., Kassner V.A., Carroll S.B., Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in Drosophila. Nature, 2005, 433, 481–487. [CrossRef] [PubMed] [Google Scholar]
  • Gompel N., Prud’homme B., The causes of repeated genetic evolution. Dev Biol, 2009, 332, 36–47. [CrossRef] [PubMed] [Google Scholar]
  • Gould S., Lewontin R., The Spandrels of San Marco and the Panglossian Paradigm: A Critique of the Adaptationist Programme. Proc R Soc Lond B Bio Sci, 1979, 205, 581-598. [CrossRef] [Google Scholar]
  • Hendrickson H., Rainey P., Evolution: How the unicorn got its horn. Nature, 2012, 489, 504-505. [CrossRef] [PubMed] [Google Scholar]
  • Hoekstra H.E., Coyne J.A., The locus of evolution : Evo Devo and the genetic adaptation. Evolution, 2007, 61, 995–1016. [CrossRef] [PubMed] [Google Scholar]
  • Hohenlohe P., Bassham S., Etter P., Stiffler N., Johnson E., Cresko W., Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet, 2010, 6, e1000862. [CrossRef] [PubMed] [Google Scholar]
  • Hsu P.D., Lander E.S., Zhang F., Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014, 157, 1262–1278. [CrossRef] [PubMed] [Google Scholar]
  • Jacob F., Evolution and tinkering. Science, 1977, 196, 1161–1166. [CrossRef] [PubMed] [Google Scholar]
  • Jacob F., Le Jeu des possibles: Essai sur la diversité du vivant. 1981, Fayard, Paris. [Google Scholar]
  • Jeong S., Rokas A., Carroll S.B., Regulation of body pigmentation by the Abdominal-B Hox protein and its gain and loss in Drosophila evolution. Cell, 2006, 125, 1387–1399. [Google Scholar]
  • Jeong S., Rebeiz M., Andolfatto P., Werner T., True J., Carroll S.B., The evolution of gene regulation underlies a morphological difference between two Drosophila sister species. Cell, 2008, 132, 783–793. [Google Scholar]
  • Kopp A., Duncan I., Godt D., Carroll S.B., Genetic control and evolution of sexually dimorphic characters in Drosophila. Nature, 2000, 408, 553–559. [CrossRef] [PubMed] [Google Scholar]
  • Kopp A., Metamodels and phylogenetic replication: a systematic approach to the evolution of developmental pathways. Evolution, 2009, 63, 2771–2789. [CrossRef] [PubMed] [Google Scholar]
  • Laubichler M., Maienschein J., From embryology to evo-devo: a history of developmental evolution. 2007, MIT Press, Cambridge. [Google Scholar]
  • Lewontin R.C., Adaptation. Sci Am, 1978, 239, 212–218, 220, 222 passim. [CrossRef] [PubMed] [Google Scholar]
  • Liu Y, Cotton J.A., Shen B., Han X., Rossiter S.J., Zhang S., Convergent sequence evolution between echolocating bats and dolphins. Curr Biol, 2010, 20, R53–54. [CrossRef] [PubMed] [Google Scholar]
  • López-Fanjul C., García-Dorado A., The fuel of evolution. Heredity, 2011, 106, 535–536. [CrossRef] [PubMed] [Google Scholar]
  • Lynch V.J., Wagner G.P., Resurrecting the role of transcription factor change in developmental evolution. Evolution, 2008, 62, 2131–2154. [CrossRef] [PubMed] [Google Scholar]
  • Mackay T., Richards S., Stone E., Barbadilla A., Ayroles J., Zhu D., Casillas S., Han Y., Magwire M., Cridland J., The Drosophila melanogaster genetic reference panel. Nature, 2012, 482, 173–178. [CrossRef] [PubMed] [Google Scholar]
  • Martin A., Orgogozo V., The loci of repeated evolution: A catalog of genetic hotspots of phenotypic variation. Evolution, 2013, 67, 1235–1250. [PubMed] [Google Scholar]
  • Mora C., Tittensor D., Adl S., Simpson A., Worm B., How many species are there on Earth and in the ocean? PLoS Biol, 2011, 9, e1001127. [CrossRef] [PubMed] [Google Scholar]
  • Nadeau N.J., Jiggins C.D., A golden age for evolutionary genetics? Genomic studies of adaptation in natural populations. Trends Genet, 2010, 26, 484–492. [CrossRef] [PubMed] [Google Scholar]
  • Orr H., The genetic theory of adaptation: a brief history. Nat Rev Genet, 2005a, 6, 119–127. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Orr H., Theories of adaptation: what they do and don’t say. Genetica, 2005b, 123, 3–13. [CrossRef] [PubMed] [Google Scholar]
  • Pigliucci M., What, if anything, is an evolutionary novelty? Philosophy of Science, 2008, 75, 887–898. [CrossRef] [Google Scholar]
  • Poelwijk F., Kiviet D., Weinreich D., Tans S., Empirical fitness landscapes reveal accessible evolutionary paths. Nature, 2007, 445, 383. [CrossRef] [PubMed] [Google Scholar]
  • Prud’homme B.,Gompel N., Rokas A., Kassner V.A., Williams T.M., Yeh S.-D., True J.R., Carroll S.B., Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene. Nature, 2006, 440, 1050–1053. [CrossRef] [PubMed] [Google Scholar]
  • Reed R., Papa R., Martin A., Hines H., Counterman B., Pardo-Diaz C., Jiggins C., Chamberlain N., Kronforst M., Chen R., Optix drives the repeated convergent evolution of butterfly wing pattern mimicry. Science, 2011, 333, 1137–1141. [CrossRef] [PubMed] [Google Scholar]
  • Riedel F., Vorkel D., Eaton S., Megalin-dependent Yellow endocytosis restricts melanization in the Drosophila cuticle. Development, 2011, 138, 149–158. [CrossRef] [PubMed] [Google Scholar]
  • Rockman M.V., The QTN program and the alleles that matter for evolution: all that’s gold does not glitter. Evolution, 2011, 66, 1–17. [CrossRef] [PubMed] [Google Scholar]
  • Rokyta D., Joyce P., Caudle S., Wichman H., An empirical test of the mutational landscape model of adaptation using a single-stranded DNA virus. Nat Genet, 2005, 37, 441–444. [CrossRef] [PubMed] [Google Scholar]
  • Smith J., Burian R., Kauffman S., Alberch P., Campbell J., Goodwin B., Lande R., Raup D., Wolpert L., Developmental constraints and evolution: a perspective from the Mountain Lake conference on development and evolution. Q Rev Biol, 1985, 60, 265–287. [CrossRef] [Google Scholar]
  • Stern D., The genetic causes of convergent evolution. Nat Rev Genet, 2013, 14, 751–764. [CrossRef] [PubMed] [Google Scholar]
  • Stern D.L., Orgogozo V., The loci of evolution : How predictable is genetic evolution? Evolution, 2008, 62, 2155–2177. [CrossRef] [PubMed] [Google Scholar]
  • Stern D.L., Orgogozo V., Is genetic evolution predictable? Science, 2009, 323, 746–751. [CrossRef] [PubMed] [Google Scholar]
  • Sucena E., Delon I., Jones I., Payre F., Stern D.L., Regulatory evolution of shavenbaby/ovo underlies multiple cases of morphological parallelism. Nature, 2003, 424, 935–938. [CrossRef] [PubMed] [Google Scholar]
  • Tanaka K., Barmina O., Sanders L., Arbeitman M., Kopp A., Evolution of sex-specific traits through changes in HOX-dependent doublesex expression. PLoS Biol, 2011, 9, e1001131. [CrossRef] [PubMed] [Google Scholar]
  • Walter M.F., Black B.C., Afshar G., Kermabon A.Y., Wright T.R., Biessmann H., Temporal and spatial expression of the yellow gene in correlation with cuticle formation and dopa decarboxylase activity in Drosophila development. Dev Biol, 1991, 147, 32–45. [CrossRef] [PubMed] [Google Scholar]
  • Weinreich D., Delaney N., DePristo M., Hartl D., Darwinian evolution can follow only very few mutational paths to fitter proteins. Science, 2006, 312, 111–114. [CrossRef] [PubMed] [Google Scholar]
  • Werner T., Koshikawa S., Williams T.M., Carroll S.B., Generation of a novel wing colour pattern by the Wingless morphogen. Nature, 2010, 464, 1143–1148. [CrossRef] [PubMed] [Google Scholar]
  • Wittkopp P.J., True J.R., Carroll S.B., Reciprocal functions of the Drosophila yellow and ebony proteins in the development and evolution of pigment patterns. Development, 2002, 129, 1849–1858. [PubMed] [Google Scholar]
  • Wray G., The evolutionary significance of cis-regulatory mutations. Nat Rev Genet, 2007, 8, 206–216. [CrossRef] [PubMed] [Google Scholar]
  • Yokoyama S., Molecular evolution of color vision in vertebrates. Gene, 2002, 300, 69–78. [CrossRef] [PubMed] [Google Scholar]
  • Zhen Y., Aardema M., Medina E., Schumer M., Parallel Molecular Evolution in an Herbivore Community. Science, 2012, 337, 1634–1637. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.