Accès gratuit
Biologie Aujourd'hui
Volume 208, Numéro 4, 2014
Page(s) 311 - 323
Section Contributions invitées
Publié en ligne 3 avril 2015
  • Arbibe L., Kim D.W., Batsche E., Pedron T., Mateescu B., Muchardt C., Parsot C., Sansonetti P.J., An injected bacterial effector targets chromatin access for transcription factor NF-κB to alter transcription of host genes involved in immune responses. Nat Immunol, 2007, 8, 47–56. [CrossRef] [PubMed] [Google Scholar]
  • Booden T., Hull R.W., Nucleic acid precursor synthesis by Plasmodium lophurae parasitizing chicken erythrocytes. Exp Parasitol, 1973, 34, 220–228. [CrossRef] [PubMed] [Google Scholar]
  • Chang S., Wang R.-H., Akagi K., Kim K.-A., Martin B.K., Cavallone L., Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer (kConFab), Haines D.C., Basik M., Mai P., Poggi E., Isaacs C., Looi L.M., Mun K.S., Greene M.H., Byers S.W., Teo S.H., Deng C.X., Sharan S.K., Tumor suppressor BRCA1 epigenetically controls oncogenic microRNA-155. Nat Med, 2011, 17, 1275–1282. [CrossRef] [PubMed] [Google Scholar]
  • Chaudhary K., Darling J.A., Fohl L.M., Sullivan W.J., Jr Donald R.G.K., Pfefferkorn E.R., Ullman B., Roos D.S., Purine salvage pathways in the apicomplexan parasite Toxoplasma gondii. J Biol Chem, 2004, 279, 31221–31227. [CrossRef] [PubMed] [Google Scholar]
  • Chaussepied M., Lallemand D., Moreau M.F., Adamson R., Hall R., Langsley G., Upregulation of Jun and Fos family members and permanent JNK activity lead to constitutive AP-1 activation in Theileria-transformed leukocytes. Mol Biochem Parasitol, 1998, 94, 215–226. [CrossRef] [PubMed] [Google Scholar]
  • Chen J., Wang B.-C., Tang J.-H., Clinical significance of MicoRNA-155 expression in human breast cancer. J Surg Oncol, 2012, 106, 260–266. [CrossRef] [PubMed] [Google Scholar]
  • Cock-Rada A.M., Medjkane S., Janski N., Yousfi N., Périchon M., Chaussepied M., Chluba J., Langsley G., Weitzman J.B., SMYD3 promotes cancer invasion by epigenetic upregulation of the metalloproteinase MMP-9. Cancer Res, 2012, 72, 810–20. [CrossRef] [PubMed] [Google Scholar]
  • Dessauge F., Hilaly S., Baumgartner M., Blumen B., Werling D., Langsley G., c-Myc activation by Theileria parasites promotes survival of infected B-lymphocytes. Oncogene, 2005, 24, 1075–1083. [CrossRef] [PubMed] [Google Scholar]
  • Dhar S., Malhotra D.V., Bhushan C., Gautam O.P., Chemotherapy of Theileria annulata infection with buparvaquone. Vet Rec, 1986, 119, 635–636. [Google Scholar]
  • Dobbelaere D., Heussler V., Transformation of leukocytes by Theileria parva and T. annulata. Annu Rev Microbiol, 1999, 53, 1–42. [CrossRef] [PubMed] [Google Scholar]
  • Dobbelaere D.A., Rottenberg S., Theileria-induced leukocyte transformation. Curr Opin Microbio., 2003, 6, 377–382. [CrossRef] [PubMed] [Google Scholar]
  • Farrell A.S., Pelz C., Wang X., Daniel C.J., Wang Z., Su Y., Janghorban M., Zhang X., Morgan C., Impey S., Sears R.C., Pin1 Regulates the Dynamics of c-Myc DNA Binding to Facilitate Target Gene Regulation and Oncogenesis. Mol Cell Biol, 2013, 33, 2930–2949. [CrossRef] [PubMed] [Google Scholar]
  • Fast N.M., Kissinger J.C., Roos D.S., Keeling P.J., Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol Biol Evol, 2001, 18, 418–426. [Google Scholar]
  • Fell A.H., Preston P.M., Proliferation of Theileria annulata and Theileria parva macroschizont-infected bovine cells in scid mice. Int J Parasitol, 1993, 23, 77–87. [CrossRef] [PubMed] [Google Scholar]
  • Forsyth L.M.G., Minns F.C., Kirvar E., Adamson R.E., Hall F.R., McOrist S., Brown C.G.D., Preston P.M., Tissue Damage in Cattle Infected with Theileria annulata Accompanied by Metastasis of Cytokine-producing, Schizont-infected Mononuclear Phagocytes. J Comp Pathol, 1999, 120, 39–57. [CrossRef] [PubMed] [Google Scholar]
  • Fry M., Pudney M., Site of action of the antimalarial hydroxynaphthoquinone, 2-[trans-4-(4’-chlorophenyl) cyclohexyl]-3-hydroxy-1,4-naphthoquinone (566C80). Biochem Pharmacol, 1992, 43, 1545–1553. [CrossRef] [PubMed] [Google Scholar]
  • Gharbi M., Sassi L., Dorchies P., Darghouth M.A., Infection of calves with Theileria annulata in Tunisia: Economic analysis and evaluation of the potential benefit of vaccination.Vet Parasitol, 2006, 137, 231–41. [CrossRef] [PubMed] [Google Scholar]
  • Gironella M., Seux M., Xie M.-J., Cano C., Tomasini R., Gommeaux J., Garcia S., Nowak J., Yeung M.L., Jeang K.-T., Chaix A., Fazli L., Motoo Y., Wang Q., Rocchi P., Russo A., Gleave M., Dagorn J.C., Iovanna J.L., Carrier A., Pébusque M.J., Dusetti N.J., Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci USA, 2007, 104, 16170–16175. [CrossRef] [Google Scholar]
  • Guergnon J., Chaussepied M., Sopp P., Lizundia R., Moreau M.-F., Blumen B., Werling D., Howard C.J., Langsley G., A tumour necrosis factor alpha autocrine loop contributes to proliferation and nuclear factor-κB activation of Theileria parva-transformed B cells. Cell Microbiol, 2003, 5, 709–716. [CrossRef] [PubMed] [Google Scholar]
  • Gutteridge W.E., Antimalarial drugs currently in development. J R Soc Med, 1989, 82, 63. [Google Scholar]
  • Haller D., Mackiewicz M., Gerber S., Beyer D., Kullmann B., Schneider I., Ahmed J.S., Seitzer U., Cytoplasmic sequestration of p53 promotes survival in leukocytes transformed by Theileria. Oncogene, 2010, 29, 3079−3086. [CrossRef] [PubMed] [Google Scholar]
  • Hamamoto R., Furukawa Y., Morita M., Iimura Y., Silva F.P., Li M., Yagyu R., Nakamura Y., SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol, 2004, 6, 731–740. [CrossRef] [PubMed] [Google Scholar]
  • Hamamoto R., Silva F.P., Tsuge M., Nishidate T., Katagiri T., Nakamura Y., Furukawa Y., Enhanced SMYD3 expression is essential for the growth of breast cancer cells. Cancer Sci, 2006, 97, 113–118. [CrossRef] [PubMed] [Google Scholar]
  • Heussler V.T., Rottenberg S., Schwab R., Küenzi P., Fernandez P.C., McKellar S., Shiels B., Chen Z.J., Orth K., Wallach D., Dobbelaere D.A. Hijacking of Host Cell IKK Signalosomes by the Transforming Parasite Theileria. Science, 2002, 298, 1033–1036. [CrossRef] [PubMed] [Google Scholar]
  • Huskinson-Mark J., Araujo F.G., Remington J.S., Evaluation of the effect of drugs on the cyst form of Toxoplasma gondii. J Infect Dis, 1991, 164, 170–171. [CrossRef] [PubMed] [Google Scholar]
  • Ivanov V., Stein B., Baumann I., Dobbelaere D.A., Herrlich P., Williams R.O., Infection with the intracellular protozoan parasite Theileria parva induces constitutively high levels of NF-kappa B in bovine T lymphocytes. Mol Cell Biol, 1989, 9, 4677–4686. [PubMed] [Google Scholar]
  • Kaye A., Toxoplasmosis: diagnosis, treatment, and prevention in congenitally exposed infants. J Pediatr Health Care, 2011, 25, 355–364. [CrossRef] [PubMed] [Google Scholar]
  • Kieffer F., Wallon M., Congenital toxoplasmosis. Handb Clin Neurol, 2013, 112, 1099–1101. [CrossRef] [PubMed] [Google Scholar]
  • Kong W., He L., Richards E.J., Challa S., Xu C.-X., Permuth-Wey J., Lancaster J.M., Coppola D., Sellers T.A., Djeu J.Y., Cheng J.Q., Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene, 2014, 33, 679–689. [CrossRef] [PubMed] [Google Scholar]
  • Lebreton A., Lakisic G., Job V., Fritsch L., Tham T.N., Camejo A., Matteï P.-J., Regnault B., Nahori M.-A., Cabanes D., Gautreau A., Ait-Si-Ali S., Dessen A., Cossart P., Bierne H., A Bacterial Protein Targets the BAHD1 Chromatin Complex to Stimulate Type III Interferon Response. Science, 2011, 331, 1319–1321. [CrossRef] [PubMed] [Google Scholar]
  • Levine N.D., Progress in taxonomy of the Apicomplexan protozoa. J Protozool, 1988, 35, 518–520. [CrossRef] [PubMed] [Google Scholar]
  • Liang Y., Zhou Y., Shen P., NF-kappaB and its regulation on the immune system. Cell Mol Immunol, 2004, 1, 343–350. [PubMed] [Google Scholar]
  • Lizundia R., Chaussepied M., Huerre M., Werling D., Santo J.P.D., Langsley G., c-Jun NH2-Terminal Kinase/c-Jun Signaling Promotes Survival and Metastasis of B Lymphocytes Transformed by Theileria. Cancer Res, 2006, 66, 6105–6110. [CrossRef] [PubMed] [Google Scholar]
  • Ma M., Baumgartner M., Intracellular Theileria annulata promote invasive cell motility through kinase regulation of the host actin cytoskeleton. PLoS Pathog, 2014, 10, e1004003. [CrossRef] [PubMed] [Google Scholar]
  • Marsolier J., Pineau S., Medjkane S., Périchon M., Yin Q., Flemington E., Weitzman M.D., Weitzman J.B., OncomiR Addiction Is Generated by a miR-155 Feedback Loop in Theileria-Transformed Leukocytes. PLoS Pathog, 2013, 9, e1003222. [CrossRef] [PubMed] [Google Scholar]
  • Marsolier J., Périchon M., DeBarry J.D., Villoutreix B.O., Chluba J., Lopez T., Garrido C., Zhou X.Z., Lu K.P., Fritsch L., Ait-Si-Ali S., Mhadhbi M., Medjkane S., Weitzman J.B., Theileria parasites secrete a prolyl isomerase which contributes to host leukocyte transformation. Nature, 2015, DOI: 10.1038/nature14044. [Google Scholar]
  • Medjkane S., Périchon M., Marsolier J., Dairou J., Weitzman J.B., Theileria induces oxidative stress and HIF1α activation that are essential for host leukocyte transformation. Oncogene, 2014, 33, 1809–1817. [CrossRef] [PubMed] [Google Scholar]
  • Metheni M., Echebli N., Chaussepied M., Ransy C., Chéreau C., Jensen K., Glass E., Batteux F., Bouillaud F., Langsley G., The level of H2O2 type oxidative stress regulates virulence of Theileria-transformed leukocytes. Cell Microbiol, 2014, 16, 269–279. [CrossRef] [PubMed] [Google Scholar]
  • Meyer H., de Andrade Mendonça I., Electron microscopic observations of toxoplasma “Nicolle et Manceaux” grown in tissue cultures (first note). Parasitology, 1955, 45, 449–451. [CrossRef] [PubMed] [Google Scholar]
  • Meyer N., Penn L.Z., Reflecting on 25 years with MYC. Nat Rev Cancer, 2008, 8, 976–990. [CrossRef] [PubMed] [Google Scholar]
  • ole-MoiYoi O.K., Brown W.C., Iams K.P., Nayar A., Tsukamoto T., Macklin M.D., Evidence for the induction of casein kinase II in bovine lymphocytes transformed by the intracellular protozoan parasite Theileria parva. EMBO J, 1993, 12, 1621–1631. [PubMed] [Google Scholar]
  • Mollaret P., [Discovery, by Alphonse Laveran, of the malaria agent. Constantine, 6 November 1880]. Nouv Presse Médicale, 1980, 9, 3055–3063. [Google Scholar]
  • Muller P.A.J., Vousden K.H., Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell, 2014, 25, 304–317. [CrossRef] [PubMed] [Google Scholar]
  • Pain A., Renauld H., Berriman M., Murphy L., Yeats C.A., Weir W., Kerhornou A., Aslett M., Bishop R., Bouchier C., Cochet M., Coulson R.M., Cronin A., de Villiers E.P., Fraser A., Fosker N., Gardner M., Goble A., Griffiths-Jones S., Harris D.E., Katzer F., Larke N., Lord A., Maser P., McKellar S., Mooney P., Morton F., Nene V., O’Neil S., Price C., Quail M.A., Rabbinowitsch E., Rawlings N.D, Rutter S., Saunders D., Seeger K., Shah T., Squares R., Squares S., Tivey A., Walker A.R., Woodward J., Dobbelaere D.A., Langsley G., Rajandream M.A., McKeever D., Shiels B., Tait A., Barrell B., Hall N., Genome of the host-cell transforming parasite Theileria annulata compared with T. parva. Science, 2005, 309, 131–133. [CrossRef] [PubMed] [Google Scholar]
  • Plattner F., Soldati-Favre D., Hijacking of Host Cellular Functions by the Apicomplexa. Annu Rev Microbiol, 2008, 62, 471–487. [CrossRef] [PubMed] [Google Scholar]
  • Ravindran S., Boothroyd J.C., Secretion of Proteins into Host Cells by Apicomplexan Parasites. Traffic, 2008, 9, 647–656. [CrossRef] [PubMed] [Google Scholar]
  • Ryo A., Suizu F., Yoshida Y., Perrem K., Liou Y.-C., Wulf G., Rottapel R., Yamaoka S., Lu K.P., Regulation of NF-κB Signaling by Pin1-Dependent Prolyl Isomerization and Ubiquitin-Mediated Proteolysis of p65/RelA. Mol Cell, 2003a, 12, 1413–1426. [CrossRef] [PubMed] [Google Scholar]
  • Ryo A., Liou Y.-C., Lu K.P., Wulf G., Prolyl isomerase Pin1: a catalyst for oncogenesis and a potential therapeutic target in cancer. J Cell Sci, 2003b, 116, 773–783. [CrossRef] [PubMed] [Google Scholar]
  • Schneider I., Haller D., Kullmann B., Beyer D., Ahmed J.S., Seitzer U., Identification, molecular characterization and subcellular localization of a Theileria annulata parasite protein secreted into the host cell cytoplasm. Parasitol Res, 2007, 101, 1471–1482. [CrossRef] [PubMed] [Google Scholar]
  • von Schubert C., Xue G., Schmuckli-Maurer J., Woods K.L., Nigg E.A., Dobbelaere D.A.E., The Transforming Parasite Theileria Co-opts Host Cell Mitotic and Central Spindles to Persist in Continuously Dividing Cells. PLoS Biol, 2010, 8, e1000499. [CrossRef] [PubMed] [Google Scholar]
  • Seitzer U., Gerber S., Beyer D., Dobschanski J., Kullmann B., Haller D., Ahmed J.S., Schizonts of Theileria annulata interact with the microtubuli network of their host cell via the membrane protein TaSP. Parasitol Res, 2010, 106, 1085–1102. [CrossRef] [PubMed] [Google Scholar]
  • Semenza G.L., Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J, 2007, 405, 1–9. [PubMed] [Google Scholar]
  • Sharifiyazdi H., Namazi F., Oryan A., Shahriari R., Razavi M., Point mutations in the Theileria annulata cytochrome b gene is associated with buparvaquone treatment failure. Vet Parasitol, 2012, 187, 431–435. [CrossRef] [PubMed] [Google Scholar]
  • Shaw M.K., Tilney L.G., Musoke A.J., The entry of Theileria parva sporozoites into bovine lymphocytes: evidence for MHC class I involvement. J Cell Biol, 1991, 113, 87–101. [CrossRef] [PubMed] [Google Scholar]
  • Shaw M.K., Tilney L.G., Musoke A.J., Teale A.J., MHC class I molecules are an essential cell surface component involved in Theileria parva sporozoite binding to bovine lymphocytes. J Cell Sci, 1995, 108, 1587−1596. [PubMed] [Google Scholar]
  • Shiels B., Langsley G., Weir W., Pain A., McKellar S., Dobbelaere D., Alteration of host cell phenotype by Theileria annulata and Theileria parva: mining for manipulators in the parasite genomes. Int J Parasitol, 2006, 36, 9–21. [CrossRef] [PubMed] [Google Scholar]
  • Shiels B.R., McKellar S., Katzer F., Lyons K., Kinnaird J., Ward C., Wastling J.M., Swan D., A Theileria annulata DNA Binding Protein Localized to the Host Cell Nucleus Alters the Phenotype of a Bovine Macrophage Cell Line. Eukaryot Cell, 2004, 3, 495–505. [CrossRef] [PubMed] [Google Scholar]
  • Silva F.P., Hamamoto R., Kunizaki M., Tsuge M., Nakamura Y., Furukawa Y., Enhanced methyltransferase activity of SMYD3 by the cleavage of its N-terminal region in human cancer cells. Oncogene, 2008, 27, 2686–2692. [CrossRef] [PubMed] [Google Scholar]
  • Skibbe D.S., Doehlemann G., Fernandes J., Walbot V., Maize Tumors Caused by Ustilago maydis Require Organ-Specific Genes in Host and Pathogen. Science, 2010, 328, 89–92. [CrossRef] [PubMed] [Google Scholar]
  • Spooner R.L., Innes E.A., Glass E.J., Brown C.G., Theileria annulata and T. parva infect and transform different bovine mononuclear cells. Immunology, 1989, 66, 284. [PubMed] [Google Scholar]
  • Swan D.G., Phillips K., Tait A., Shiels B.R., Evidence for localisation of a Theileria parasite AT hook DNA-binding protein to the nucleus of immortalised bovine host cells. Mol Biochem Parasitol, 1999, 101, 117–129. [CrossRef] [PubMed] [Google Scholar]
  • Velkova A., Monteiro A.N.A., Epigenetic tumor suppression by BRCA1. Nat Med, 2011, 17, 1183–1185. [CrossRef] [PubMed] [Google Scholar]
  • Webster P., Dobbelaere D.A., Fawcett D.W., The entry of sporozoites of Theileria parva into bovine lymphocytes in vitro. Immunoelectron microscopic observations. Eur J Cell Biol, 1985, 36, 157–162. [PubMed] [Google Scholar]
  • Woods K.L., Theiler R., Mühlemann M., Segiser A., Huber S., Ansari H.R., Pain A., Dobbelaere D.A.E., Recruitment of EB1, a Master Regulator of Microtubule Dynamics, to the Surface of the Theileria annulata Schizont. PLoS Pathog, 2013, 9, e1003346. [CrossRef] [PubMed] [Google Scholar]
  • Wulf G.M., Ryo A., Wulf G.G., Lee S.W., Niu T., Petkova V., Lu K.P., Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1. EMBO J, 2001, 20, 3459–3472. [CrossRef] [PubMed] [Google Scholar]
  • Wulf G.M., Liou Y.-C., Ryo A., Lee S.W., Lu K.P., Role of Pin1 in the Regulation of p53 Stability and p21 Transactivation, and Cell Cycle Checkpoints in Response to DNA Damage. J Biol. Chem, 2002, 277, 47976–47979. [CrossRef] [PubMed] [Google Scholar]
  • You H., Lei P., Andreadis S.T., JNK is a novel regulator of intercellular adhesion. Tissue Barriers, 2013, 1, e26845. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.