Accès gratuit
Biologie Aujourd'hui
Volume 209, Numéro 1, 2015
Page(s) 97 - 109
Section Contributions à la Journée Claude Bernard 2014
Publié en ligne 26 juin 2015
  • Antonsson, B.E. (1994). Purification and characterization of phosphatidylinositol synthase from human placenta. Biochem J, 297, 517-522. [PubMed] [Google Scholar]
  • Audhya, A., and Emr, S.D. (2002). Stt4 PI 4-kinase localizes to the plasma membrane and functions in the Pkc1-mediated MAP kinase cascade. Dev Cell, 2, 593-605. [CrossRef] [PubMed] [Google Scholar]
  • Audhya, A., Foti, M., and Emr, S.D. (2000). Distinct roles for the yeast phosphatidylinositol 4-kinases, Stt4p and Pik1p, in secretion, cell growth, and organelle membrane dynamics. Mol Biol Cell, 11, 2673-2689. [CrossRef] [PubMed] [Google Scholar]
  • Bonangelino, C.J., Nau, J.J., Duex, J.E., Brinkman, M., Wurmser, A.E., Gary, J.D., Emr, S.D., and Weisman, L.S. (2002). Osmotic stress-induced increase of phosphatidylinositol 3,5-bisphosphate requires Vac14p, an activator of the lipid kinase Fab1p. J Cell Biol, 156, 1015-1028. [CrossRef] [PubMed] [Google Scholar]
  • Bunce, M.W., Boronenkov, I.V., and Anderson, R.A. (2008). Coordinated activation of the nuclear ubiquitin ligase Cul3-SPOP by the generation of phosphatidylinositol 5-phosphate. J Biol Chem, 283, 8678-8686. [CrossRef] [PubMed] [Google Scholar]
  • Clarke, J.H., Emson, P.C., and Irvine, R.F. (2008). Localization of phosphatidylinositol phosphate kinase IIgamma in kidney to a membrane trafficking compartment within specialized cells of the nephron. Am J Physiol Renal Physiol, 295, F1422-1430. [CrossRef] [PubMed] [Google Scholar]
  • De Craene, J.O., Ripp, R., Lecompte, O., Thompson, J.D., Poch, O., and Friant, S. (2012). Evolutionary analysis of the ENTH/ANTH/VHS protein superfamily reveals a coevolution between membrane trafficking and metabolism. BMC Genomics, 13, 297. [CrossRef] [PubMed] [Google Scholar]
  • De Matteis, M., Godi, A., and Corda, D. (2002). Phosphoinositides and the Golgi complex. Curr Opin Cell Biol, 14, 434-447. [CrossRef] [PubMed] [Google Scholar]
  • Desrivières, S., Cooke, F.T., Parker, P.J., and Hall, M.N. (1998). MSS4, a phosphatidylinositol-4-phosphate 5-kinase required for organization of the actin cytoskeleton in Saccharomyces cerevisiae. J Biol Chem, 273, 15787-15793. [CrossRef] [PubMed] [Google Scholar]
  • Di Paolo, G., and De Camilli, P. (2006). Phosphoinositides in cell regulation and membrane dynamics. Nature, 443, 651-657. [CrossRef] [PubMed] [Google Scholar]
  • Dove, S.K., Cooke, F.T., Douglas, M.R., Sayers, L.G., Parker, P.J., and Michell, R.H. (1997). Osmotic stress activates phosphatidylinositol-3,5-bisphosphate synthesis. Nature, 390, 187-192. [CrossRef] [PubMed] [Google Scholar]
  • Duex, J.E., Nau, J.J., Kauffman, E.J., and Weisman, L.S. (2006a). Phosphoinositide 5-phosphatase Fig 4p is required for both acute rise and subsequent fall in stress-induced phosphatidylinositol 3,5-bisphosphate levels. Eukaryot Cell, 5, 723-731. [CrossRef] [PubMed] [Google Scholar]
  • Duex, J.E., Tang, F., and Weisman, L.S. (2006b). The Vac14p-Fig4p complex acts independently of Vac7p and couples PI3,5P2 synthesis and turnover. J Cell Biol, 172, 693-704. [CrossRef] [PubMed] [Google Scholar]
  • Efe, J.A., Botelho, R.J., and Emr, S.D. (2007). Atg18 regulates organelle morphology and Fab1 kinase activity independent of its membrane recruitment by phosphatidylinositol 3,5-bisphosphate. Mol Biol Cell, 18, 4232-4244. [CrossRef] [PubMed] [Google Scholar]
  • Eugster, A., Pécheur, E.I., Michel, F., Winsor, B., Letourneur, F., and Friant, S. (2004). Ent5p is required with Ent3p and Vps27p for ubiquitin-dependent protein sorting into the multivesicular body. Mol Biol Cell, 15, 3031-3041. [CrossRef] [PubMed] [Google Scholar]
  • Ford, M.G., Pearse, B.M., Higgins, M.K., Vallis, Y., Owen, D.J., Gibson, A., Hopkins, C.R., Evans, P.R., and McMahon, H.T. (2001). Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science, 291, 1051-1055. [CrossRef] [PubMed] [Google Scholar]
  • Friant, S., Pécheur, E.I., Eugster, A., Michel, F., Lefkir, Y., Nourrisson, D., and Letourneur, F. (2003). Ent3p Is a PtdIns(3,5)P2 effector required for protein sorting to the multivesicular body. Dev Cell, 5, 499-511. [CrossRef] [PubMed] [Google Scholar]
  • Gary, J.D., Sato, T.K., Stefan, C.J., Bonangelino, C.J., Weisman, L.S., and Emr, S.D. (2002). Regulation of Fab1 phosphatidylinositol 3-phosphate 5-kinase pathway by Vac7 protein and Fig4, a polyphosphoinositide phosphatase family member. Mol Biol Cell, 13, 1238-1251. [CrossRef] [PubMed] [Google Scholar]
  • Gillooly, D.J., Morrow, I.C., Lindsay, M., Gould, R., Bryant, N.J., Gaullier, J.M., Parton, R.G., and Stenmark, H. (2000). Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J, 19, 4577-4588. [CrossRef] [PubMed] [Google Scholar]
  • Godi, A., Di Campli, A., Konstantakopoulos, A., Di Tullio, G., Alessi, D.R., Kular, G.S., Daniele, T., Marra, P., Lucocq, J.M., and De Matteis, M.A. (2004). FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nat Cell Biol, 6, 393-404. [CrossRef] [PubMed] [Google Scholar]
  • Gozani, O., Karuman, P., Jones, D.R., Ivanov, D., Cha, J., Lugovskoy, A.A., Baird, C.L., Zhu, H., Field, S.J., Lessnick, S.L., Villasenor J., Mehrotra B., Chen J., Rao V.R., Brugge J.S., Ferguson C.G., Payrastre B., Myszka D.G., Cantley L.C., Wagner G., Divecha N., Prestwich GD., and Yuan J. (2003). The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell, 114, 99-111. [CrossRef] [PubMed] [Google Scholar]
  • Gruenberg, J., and Stenmark, H. (2004). The biogenesis of multivesicular endosomes. Nat Rev Mol Cell Biol, 5, 317-323. [CrossRef] [PubMed] [Google Scholar]
  • Henne, W.M., Buchkovich, N.J., and Emr, S.D. (2011). The ESCRT pathway. Dev Cell, 21, 77-91. [CrossRef] [PubMed] [Google Scholar]
  • Herman, P.K., and Emr, S.D. (1990). Characterization of VPS34, a gene required for vacuolar protein sorting and vacuole segregation in Saccharomyces cerevisiae. Mol Cell Biol, 10, 6742-6754. [PubMed] [Google Scholar]
  • Hers, I., Vincent, E.E., and Tavare, J.M. (2011). Akt signalling in health and disease. Cell Signal, 23, 1515-1527. [CrossRef] [PubMed] [Google Scholar]
  • Ikonomov, O.C., Sbrissa, D., Delvecchio, K., Xie, Y., Jin, J.P., Rappolee, D., and Shisheva, A. (2011). The phosphoinositide kinase PIKfyve is vital in early embryonic development: preimplantation lethality of PIKfyve-/- embryos but normality of PIKfyve+/- mice. J Biol Chem, 286, 13404-13413. [CrossRef] [PubMed] [Google Scholar]
  • Ikonomov, O.C., Sbrissa, D., Fligger, J., Delvecchio, K., and Shisheva, A. (2010). ArPIKfyve regulates Sac3 protein abundance and turnover: disruption of the mechanism by Sac3I41T mutation causing Charcot-Marie-Tooth 4J disorder. J Biol Chem, 285, 26760-26764. [CrossRef] [PubMed] [Google Scholar]
  • Ishihara, H., Shibasaki, Y., Kizuki, N., Wada, T., Yazaki, Y., Asano, T., and Oka, Y. (1998). Type I phosphatidylinositol-4-phosphate 5-kinases. Cloning of the third isoform and deletion/substitution analysis of members of this novel lipid kinase family. J Biol Chem, 273, 8741-8748. [CrossRef] [PubMed] [Google Scholar]
  • Itoh, T., and Takenawa, T. (2002). Phosphoinositide-binding domains: Functional units for temporal and spatial regulation of intracellular signalling. Cell Signal, 14, 733-743. [CrossRef] [PubMed] [Google Scholar]
  • Jin, N., Chow, C.Y., Liu, L., Zolov, S.N., Bronson, R., Davisson, M., Petersen, J.L., Zhang, Y., Park, S., Duex, J.E., Goldowitz D., Meisler M.H., and Weisman L.S. (2008). VAC14 nucleates a protein complex essential for the acute interconversion of PI3P and PI(3,5)P(2) in yeast and mouse. EMBO J, 27, 3221-3234. [CrossRef] [PubMed] [Google Scholar]
  • Kihara, A., Noda, T., Ishihara, N., and Ohsumi, Y. (2001). Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol, 152, 519-530. [CrossRef] [PubMed] [Google Scholar]
  • Kimber, W.A., Deak, M., Prescott, A.R., and Alessi, D.R. (2003). Interaction of the protein tyrosine phosphatase PTPL1 with the PtdIns(3,4)P2-binding adaptor protein TAPP1. Biochem J, 376, 525-535. [CrossRef] [PubMed] [Google Scholar]
  • Laporte, J., Bedez, F., Bolino, A., and Mandel, J.L. (2003). Myotubularins, a large disease-associated family of cooperating catalytically active and inactive phosphoinositides phosphatases. Hum Mol Genet, 12 Spec No 2, R285-292. [Google Scholar]
  • Lecompte, O., Poch, O., and Laporte, J. (2008). PtdIns5P regulation through evolution: roles in membrane trafficking? Trends Biochem Sci, 33, 453-460. [CrossRef] [PubMed] [Google Scholar]
  • Lemmon, M.A. (2003). Phosphoinositide recognition domains. Traffic, 4, 201-213. [CrossRef] [PubMed] [Google Scholar]
  • Levine, T.P., and Munro, S. (2002). Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase-dependent and -independent components. Curr Biol, 12, 695-704. [CrossRef] [PubMed] [Google Scholar]
  • Liu, Y., and Bankaitis, V.A. (2010). Phosphoinositide phosphatases in cell biology and disease. Prog Lipid Res, 49, 201-217. [CrossRef] [PubMed] [Google Scholar]
  • Marcus, A.J., Ullman, H.L., and Safier, L.B. (1969). Lipid composition of subcellular particles of human blood platelets. J Lipid Res, 10, 108-114. [PubMed] [Google Scholar]
  • Milne, S.B., Ivanova, P.T., DeCamp, D., Hsueh, R.C., and Brown, H.A. (2005). A targeted mass spectrometric analysis of phosphatidylinositol phosphate species. J Lipid Res, 46, 1796-1802. [CrossRef] [PubMed] [Google Scholar]
  • Mizuno-Yamasaki, E., Medkova, M., Coleman, J., and Novick, P. (2010). Phosphatidylinositol 4-phosphate controls both membrane recruitment and a regulatory switch of the Rab GEF Sec2p. Dev Cell, 18, 828-840. [CrossRef] [PubMed] [Google Scholar]
  • Nikawa, J., and Yamashita, S. (1984). Molecular cloning of the gene encoding CDPdiacylglycerol-inositol 3-phosphatidyl transferase in Saccharomyces cerevisiae. Eur J Biochem, 143, 251-256. [CrossRef] [PubMed] [Google Scholar]
  • Odorizzi, G., Babst, M., and Emr, S.D. (1998). Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell, 95, 847-858. [CrossRef] [PubMed] [Google Scholar]
  • Panaretou, C., Domin, J., Cockcroft, S., and Waterfield, M.D. (1997). Characterization of p150, an adaptor protein for the human phosphatidylinositol (PtdIns) 3-kinase. Substrate presentation by phosphatidylinositol transfer protein to the p150.Ptdins 3-kinase complex. J Biol Chem, 272, 2477-2485. [CrossRef] [PubMed] [Google Scholar]
  • Parrish, W.R., Stefan, C.J., and Emr, S.D. (2004). Essential role for the myotubularin-related phosphatase Ymr1p and the synaptojanin-like phosphatases Sjl2p and Sjl3p in regulation of phosphatidylinositol 3-phosphate in yeast. Mol Biol Cell, 15, 3567-3579. [CrossRef] [PubMed] [Google Scholar]
  • Payrastre, B., Missy, K., Giuriato, S., Bodin, S., Plantavid, M., and Gratacap, M. (2001). Phosphoinositides: key players in cell signalling, in time and space. Cell Signal, 13, 377-387. [CrossRef] [PubMed] [Google Scholar]
  • Rameh, L.E., Tolias, K.F., Duckworth, B.C., and Cantley, L.C. (1997). A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature, 390, 192-196. [CrossRef] [PubMed] [Google Scholar]
  • Sbrissa, D., Ikonomov, O.C., Deeb, R., and Shisheva, A. (2002). Phosphatidylinositol 5-phosphate biosynthesis is linked to PIKfyve and is involved in osmotic response pathway in mammalian cells. J Biol Chem, 277, 47276-47284. [CrossRef] [PubMed] [Google Scholar]
  • Schu, P.V., Takegawa, K., Fry, M.J., Stack, J.H., Waterfield, M.D., and Emr, S.D. (1993). Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science, 260, 88-91. [CrossRef] [PubMed] [Google Scholar]
  • Shisheva, A. (2008). PIKfyve: Partners, significance, debates and paradoxes. Cell Biol Int, 32, 591-604. [CrossRef] [PubMed] [Google Scholar]
  • Slessareva, J.E., Routt, S.M., Temple, B., Bankaitis, V.A., and Dohlman, H.G. (2006). Activation of the phosphatidylinositol 3-kinase Vps34 by a G protein alpha subunit at the endosome. Cell, 126, 191-203. [CrossRef] [PubMed] [Google Scholar]
  • Spector, A.A., and Yorek, M.A. (1985). Membrane lipid composition and cellular function. J Lipid Res, 26, 1015-1035. [PubMed] [Google Scholar]
  • Sun, Y., Carroll, S., Kaksonen, M., Toshima, J.Y., and Drubin, D.G. (2007). PtdIns(4,5)P2 turnover is required for multiple stages during clathrin- and actin-dependent endocytic internalization. J Cell Biol, 177, 355-367. [CrossRef] [PubMed] [Google Scholar]
  • Taylor, G.S., Maehama, T., and Dixon, J.E. (2000). Inaugural article: myotubularin, a protein tyrosine phosphatase mutated in myotubular myopathy, dephosphorylates the lipid second messenger, phosphatidylinositol 3-phosphate. Proc Natl Acad Sci USA, 97, 8910-8915. [CrossRef] [Google Scholar]
  • Trevelyan, W.E. (1966). Preparation of phosphatidyl inositol from baker’s yeast. J Lipid Res, 7, 445-447. [PubMed] [Google Scholar]
  • Vanhaesebroeck, B., Leevers, S.J., Ahmadi, K., Timms, J., Katso, R., Driscoll, P.C., Woscholski, R., Parker, P.J., and Waterfield, M.D. (2001). Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem, 70, 535-602. [CrossRef] [PubMed] [Google Scholar]
  • Yamamoto, A., DeWald, D.B., Boronenkov, I.V., Anderson, R.A., Emr, S.D., and Koshland, D. (1995). Novel PI(4)P 5-kinase homologue, Fab1p, essential for normal vacuole function and morphology in yeast. Mol Biol Cell, 6, 525-539. [CrossRef] [PubMed] [Google Scholar]
  • Zinser, E., Sperka-Gottlieb, C.D., Fasch, E.V., Kohlwein, S.D., Paltauf, F., and Daum, G. (1991). Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae. J Bacteriol, 173, 2026-2034. [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.