Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 209, Numéro 2, 2015
Page(s) 175 - 187
Section La reproduction de demain chez l’Homme et l’animal
DOI https://doi.org/10.1051/jbio/2015021
Publié en ligne 29 octobre 2015
  • Aiken, C.E., and Ozanne, S.E. (2013). Sex differences in developmental programming models. Reprod Camb Engl, 145, R1-R13. [Google Scholar]
  • Anderson, O.S., Sant, K.E., and Dolinoy, D.C. (2012). Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J Nutr Biochem, 23, 853-859. [CrossRef] [PubMed] [Google Scholar]
  • Attig, L., Gabory, A., and Junien, C. (2010). Early nutrition and epigenetic programming: chasing shadows. Curr Opin Clin Nutr Metab Care, 13, 284-293. [CrossRef] [PubMed] [Google Scholar]
  • Bale, T.L. (2011). Sex differences in prenatal epigenetic programming of stress pathways. Stress Amst Neth, 14, 348-356. [Google Scholar]
  • Barker, D.J. (1990). The fetal and infant origins of adult disease. BMJ, 301, 1111. [CrossRef] [PubMed] [Google Scholar]
  • Barker, D.J., Osmond, C., and Law, C.M. (1989). The intrauterine and early postnatal origins of cardiovascular disease and chronic bronchitis. J Epidemiol Community Health, 43, 237-240. [CrossRef] [PubMed] [Google Scholar]
  • Barker, D.J.P., Thornburg, K.L., Osmond, C., Kajantie, E., and Eriksson, J.G. (2010a). Beyond birthweight: the maternal and placental origins of chronic disease. J Dev Orig Health Dis, 1, 360-364. [CrossRef] [PubMed] [Google Scholar]
  • Barker, D.J.P., Thornburg, K.L., Osmond, C., Kajantie, E., and Eriksson, J.G. (2010b). The surface area of the placenta and hypertension in the offspring in later life. Int J Dev Biol, 54, 525-530. [CrossRef] [PubMed] [Google Scholar]
  • Beaujean, N. (2014). Histone post-translational modifications in preimplantation mouse embryos and their role in nuclear architecture. Mol Reprod Dev, 81, 100-112. [CrossRef] [PubMed] [Google Scholar]
  • Beaujean, N., Mason, K., Bonnet-Garnier, A., Salvaing, J., and Debey, P. (2010). Organisation du génome embryonnaire après la fécondation chez les mammifères [Embryonic genome organization after fertilization in mammals]. Biol Auj, 204, 205-213. [CrossRef] [EDP Sciences] [Google Scholar]
  • Binder, N.K., Hannan, N.J. and Gardner, D.K., (2012). Paternal Diet-Induced Obesity Retards Early Mouse Embryo Development, Mitochondrial Activity and Pregnancy Health, PLoS One, 7, e52304. [CrossRef] [PubMed] [Google Scholar]
  • Binder, N.K., Beard, S.A., Kaitu’u-Lino, T.J., Tong, S., Hannan, N.J., and Gardner, D.K. (2015). Paternal obesity in a rodent model affects placental gene expression in a sex-specific manner. Reprod Camb Engl, 149, 435-444. [Google Scholar]
  • Borengasser, S.J., Faske, J., Kang, P., Blackburn, M.L., Badger, T.M., and Shankar, K. (2014). In utero exposure to prepregnancy maternal obesity and postweaning high-fat diet impair regulators of mitochondrial dynamics in rat placenta and offspring. Physiol Genomics, 46, 841-850. [CrossRef] [PubMed] [Google Scholar]
  • Brett, K.E., Ferraro, Z.M., Holcik, M., and Adamo, K.B. (2015). Placenta nutrient transport-related gene expression: the impact of maternal obesity and excessive gestational weight gain. J Matern-Fetal Neonatal Med, 22, 1-7. [CrossRef] [Google Scholar]
  • Challier, J.C., Basu, S., Bintein, T., Minium, J., Hotmire, K., Catalano, P.M., and Hauguel-de Mouzon, S. (2008). Obesity in pregnancy stimulates macrophage accumulation and inflammation in the placenta. Placenta, 29, 274-281. [CrossRef] [PubMed] [Google Scholar]
  • Clifton, V.L. (2010). Review: Sex and the human placenta: mediating differential strategies of fetal growth and survival. Placenta, 31 Suppl, S33-S39. [CrossRef] [PubMed] [Google Scholar]
  • Cox, L.A., Li, C., Glenn, J.P., Lange, K., Spradling, K.D., Nathanielsz, P.W., and Jansson, T. (2013). Expression of the placental transcriptome in maternal nutrient reduction in baboons is dependent on fetal sex. J Nutr, 143, 1698-1708. [CrossRef] [PubMed] [Google Scholar]
  • Delage, B., and Dashwood, R.H. (2008). Dietary manipulation of histone structure and function. Annu Rev Nutr, 28, 347-366. [CrossRef] [PubMed] [Google Scholar]
  • Doyle, O., Harmon, C.P., Heckman, J.J., and Tremblay, R.E. (2009). Investing in early human development: Timing and economic efficiency. Econ Hum Biol, 7, 1-6. [CrossRef] [PubMed] [Google Scholar]
  • Dubé, E., Gravel, A., Martin, C., Desparois, G., Moussa, I., Ethier-Chiasson, M., Forest, J.-C., Giguère, Y., Masse, A., and Lafond, J. (2012). Modulation of fatty acid transport and metabolism by maternal obesity in the human full-term placenta. Biol Reprod, 87, 14, 1-11. [Google Scholar]
  • Finer, S., Mathews, C., Lowe, R., Smart, M., Hillman, S., Foo, L., Sinha, A., Williams, D., Rakyan, V.K., and Hitman, G.A. (2015). Maternal gestational diabetes is associated with genome-wide DNA methylation variation in placenta and cord blood of exposed offspring. Hum Mol Genet, 24, 3021-3029. [CrossRef] [PubMed] [Google Scholar]
  • Forsdahl, A. (1977). Are poor living conditions in childhood and adolescence an important risk factor for arteriosclerotic heart disease? Br J Prev Soc Med, 31, 91-95. [PubMed] [Google Scholar]
  • Frias, A.E., Morgan, T.K., Evans, A.E., Rasanen, J., Oh, K.Y., Thornburg, K.L., and Grove, K.L. (2011). Maternal high-fat diet disturbs uteroplacental hemodynamics and increases the frequency of stillbirth in a nonhuman primate model of excess nutrition. Endocrinology, 152, 2456-2464. [CrossRef] [PubMed] [Google Scholar]
  • Gabory, A., Chavatte-Palmer, P., Vambergue, A., and Tarrade, A. (in press). Impact de l’obésité et du diabète maternels sur la fonction placentaire. Médecine Sci MS. [Google Scholar]
  • Gabory, A., Attig, L., and Junien, C. (2011). Developmental programming and epigenetics. Am J Clin Nutr, 94, 1943S-1952S. [CrossRef] [PubMed] [Google Scholar]
  • Gabory, A., Ferry, L., Fajardy, I., Jouneau, L., Gothié, J.-D., Vigé, A., Fleur, C., Mayeur, S., Gallou-Kabani, C., Gross, M.-S., Attig, L., Vambergue, A., Lesage, J., Reusens, B., Vieau, D., Remacle, C., Jais, J.P., and Junien, C. (2012). Maternal diets trigger sex-specific divergent trajectories of gene expression and epigenetic systems in mouse placenta. PloS One, 7, e47986. [Google Scholar]
  • Gabory, A., Roseboom, T.J., Moore, T., Moore, L.G., and Junien, C. (2013). Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics. Biol Sex Differ, 4, 5. [CrossRef] [PubMed] [Google Scholar]
  • Gallou-Kabani, C., Gabory, A., Tost, J., Karimi, M., Mayeur, S., Lesage, J., Boudadi, E., Gross, M.-S., Taurelle, J., Vigé, A., Breton, C., Reusens, B., Remacle, C., Vieau, D., Ekström, T.J., Jais, J.P., and Junien, C. (2010). Sex- and diet-specific changes of imprinted gene expression and DNA methylation in mouse placenta under a high-fat diet. PloS One, 5, e14398. [Google Scholar]
  • Godfrey, K.M. (2002). The role of the placenta in fetal programming-a review. Placenta, 23 Suppl A, S20-S27. [CrossRef] [PubMed] [Google Scholar]
  • Hajj, N. El, Pliushch, G., Schneider, E., Dittrich, M., Müller, T., Korenkov, M., Aretz, M., Zechner, U., Lehnen, H., and Haaf, T. (2013). Metabolic programming of MEST DNA methylation by intrauterine exposure to gestational diabetes mellitus. Diabetes, 62, 1320-1328. [CrossRef] [PubMed] [Google Scholar]
  • Hanson, M.A., and Gluckman, P.D. (2014). Early Developmental Conditioning of Later Health and Disease: Physiology or Pathophysiology? Physiol Rev, 94, 1027-1076. [CrossRef] [PubMed] [Google Scholar]
  • Hastie, R., and Lappas, M. (2014). The effect of pre-existing maternal obesity and diabetes on placental mitochondrial content and electron transport chain activity. Placenta, 35, 673-683. [CrossRef] [PubMed] [Google Scholar]
  • Haute Autorité de Santé (2013). Extrait de l’argumentaire scientifique de la Recommandations de bonne pratique : « Stratégie médicamenteuse du contrôle glycémique du diabète de type 2 ». Chapitre : Epidémiologie et coût du diabète de type 2 en France. [Google Scholar]
  • Huang, L., Liu, J., Feng, L., Chen, Y., Zhang, J., and Wang, W. (2014). Maternal prepregnancy obesity is associated with higher risk of placental pathological lesions. Placenta, 35, 563-569. [CrossRef] [PubMed] [Google Scholar]
  • Jones, H.N., Woollett, L.A., Barbour, N., Prasad, P.D., Powell, T.L., and Jansson, T. (2009). High-fat diet before and during pregnancy causes marked up-regulation of placental nutrient transport and fetal overgrowth in C57/BL6 mice. FASEB J, 23, 271-278. [CrossRef] [PubMed] [Google Scholar]
  • Junien, C., Gallou-Kabani, C., Vigé, A., and Gross, M.-S. (2005). Épigénomique nutritionnelle du syndrome métabolique [Nutritional epigenomics of metabolic syndrome]. Médecine Sci MS, 21 Spec No, 44-52. [Google Scholar]
  • Kim, D.W., Young, S.L., Grattan, D.R., and Jasoni, C.L. (2014). Obesity during pregnancy disrupts placental morphology, cell proliferation, and inflammation in a sex-specific manner across gestation in the mouse. Biol Reprod, 90, 130. [CrossRef] [PubMed] [Google Scholar]
  • King, V., Hibbert, N., Seckl, J.R., Norman, J.E., and Drake, A.J. (2013). The effects of an obesogenic diet during pregnancy on fetal growth and placental gene expression are gestation dependent. Placenta, 34, 1087-1090. [CrossRef] [PubMed] [Google Scholar]
  • Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128, 693-705. [CrossRef] [PubMed] [Google Scholar]
  • Lee, S.-A., and Ding, C. (2012). The dysfunctional placenta epigenome: causes and consequences. Epigenomics, 4, 561-569. [CrossRef] [PubMed] [Google Scholar]
  • Lesseur, C., Armstrong, D.A., Paquette, A.G., Li, Z., Padbury, J.F., and Marsit, C.J. (2014). Maternal obesity and gestational diabetes are associated with placental leptin DNA methylation. Am J Obstet Gynecol, 211, 654.e1-e9. [CrossRef] [PubMed] [Google Scholar]
  • Li, N., and Carrel, L. (2008). Escape from X chromosome inactivation is an intrinsic property of the Jarid1c locus. Proc Natl Acad Sci USA, 105, 17055-17060. [CrossRef] [Google Scholar]
  • Li, Y., Saldanha, S.N., and Tollefsbol, T.O. (2013). Impact of Epigenetic Dietary Compounds on Transgenerational Prevention of Human Diseases. AAPSJ, 16, 27-36. [CrossRef] [Google Scholar]
  • Liang, C., DeCourcy, K., and Prater, M.R. (2010). High-saturated-fat diet induces gestational diabetes and placental vasculopathy in C57BL/6 mice. Metabolism, 59, 943-950. [CrossRef] [PubMed] [Google Scholar]
  • Maccani, M.A., Avissar-Whiting, M., Banister, C.E., McGonnigal, B., Padbury, J.F., and Marsit, C.J. (2010). Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21, and miR-146a in the placenta. Epigenetics, 5, 583-589. [CrossRef] [PubMed] [Google Scholar]
  • Mao, J., Zhang, X., Sieli, P.T., Falduto, M.T., Torres, K.E., and Rosenfeld, C.S. (2010). Contrasting effects of different maternal diets on sexually dimorphic gene expression in the murine placenta. Proc Natl Acad Sci USA, 107, 5557-5562. [CrossRef] [Google Scholar]
  • Marsit, C.J. (2015). Influence of environmental exposure on human epigenetic regulation. J Exp Biol, 218, 71-79. [CrossRef] [PubMed] [Google Scholar]
  • Mele, J., Muralimanoharan, S., Maloyan, A., and Myatt, L. (2014). Impaired mitochondrial function in human placenta with increased maternal adiposity. Am J Physiol Endocrinol Metab, 307, E419-E425. [CrossRef] [PubMed] [Google Scholar]
  • Monk, C., Spicer, J., and Champagne, F.A. (2012). Linking prenatal maternal adversity to developmental outcomes in infants: the role of epigenetic pathways. Dev Psychopathol, 24, 1361-1376. [CrossRef] [PubMed] [Google Scholar]
  • Myatt, L. (2006). Placental adaptive responses and fetal programming. J Physiol, 572, 25-30. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Nomura, Y., Lambertini, L., Rialdi, A., Lee, M., Mystal, E.Y., Grabie, M., Manaster, I., Huynh, N., Finik, J., Davey, M., Davey, K., Ly, J., Stone, J., Loudon, H., Eglinton, G., Hurd, Y., Newcorn, J.H., and Chen, J. (2014). Global methylation in the placenta and umbilical cord blood from pregnancies with maternal gestational diabetes, preeclampsia, and obesity. Reprod Sci, 21, 131-137. [CrossRef] [PubMed] [Google Scholar]
  • Office parlementaire d’évaluation des politiques de santé (2005). Rapport de l’OPEPS n° 8. Expertise collective Inserm. La prévention et la prise en charge de l’obésité. [Google Scholar]
  • Organisation Mondiale de la Santé (2010). Rapport sur la situation mondiale des maladies non transmissibles. [Google Scholar]
  • Picone, O., Laigre, P., Fortun-Lamothe, L., Archilla, C., Peynot, N., Ponter, A.A., Berthelot, V., Cordier, A.-G., Duranthon, V., and Chavatte-Palmer, P. (2011). Hyperlipidic hypercholesterolemic diet in prepubertal rabbits affects gene expression in the embryo, restricts fetal growth and increases offspring susceptibility to obesity. Theriogenology, 75, 287-299. [CrossRef] [PubMed] [Google Scholar]
  • Poston, L., Harthoorn, L.F., and van der Beek, E.M. (2011). Obesity in Pregnancy: Implications for the Mother and Lifelong Health of the Child. A Consensus Statement. Pediatr Res, 69, 175-180. [CrossRef] [PubMed] [Google Scholar]
  • Roeder, L.M., and Chow, B.F. (1972). Maternal undernutrition and its long-term effects on the offspring. Am J Clin Nutr, 25, 812-821. [PubMed] [Google Scholar]
  • Ruchat, S.-M., Hivert, M.-F. and Bouchard, L., (2013a). Epigenetic programming of obesity and diabetes by in utero exposure to gestational diabetes mellitus. Nutr Rev, 71 Suppl 1, S88-S94. [CrossRef] [PubMed] [Google Scholar]
  • Ruchat, S.-M., Houde, A.-A., Voisin, G., St-Pierre, J., Perron, P., Baillargeon, J.-P., Gaudet, D., Hivert, M.-F., Brisson, D., and Bouchard, L. (2013b). Gestational diabetes mellitus epigenetically affects genes predominantly involved in metabolic diseases. Epigenetics, 8, 935-943. [CrossRef] [PubMed] [Google Scholar]
  • Saben, J., Kang, P., Zhong, Y., Thakali, K.M., Gomez-Acevedo, H., Borengasser, S.J., Andres, A., Badger, T.M., and Shankar, K. (2014). RNA-seq analysis of the rat placentation site reveals maternal obesity-associated changes in placental and offspring thyroid hormone signaling. Placenta, 35, 1013-1020. [CrossRef] [PubMed] [Google Scholar]
  • Sood, R., Zehnder, J.L., Druzin, M.L., and Brown, P.O. (2006). Gene expression patterns in human placenta. Proc Natl Acad Sci USA, 103, 5478-5483. [CrossRef] [Google Scholar]
  • Suter, M.A., and Aagaard, K. (2012). What changes in DNA methylation take place in individuals exposed to maternal smoking in utero? Epigenomics, 4, 115-118. [CrossRef] [PubMed] [Google Scholar]
  • Tarrade, A., Rousseau-Ralliard, D., Aubrière, M.-C., Peynot, N., Dahirel, M., Bertrand-Michel, J., Aguirre-Lavin, T., Morel, O., Beaujean, N., Duranthon, V., and Chavatte-Palmer, P. (2013). Sexual dimorphism of the feto-placental phenotype in response to a high fat and control maternal diets in a rabbit model. PloS One, 8, e83458. [Google Scholar]
  • Tarrade, A., Panchenko, P., Junien, C., and Gabory, A. (2015). Placental contribution to nutritional programming of health and diseases: epigenetics and sexual dimorphism. J Exp Biol, 218, 50-58. [CrossRef] [PubMed] [Google Scholar]
  • Thornburg, K.L., O’Tierney, P.F., and Louey, S. (2010). Review: The placenta is a programming agent for cardiovascular disease. Placenta, 31 Suppl, S54-S59. [CrossRef] [PubMed] [Google Scholar]
  • Warner, M.J., and Ozanne, S.E. (2010). Mechanisms involved in the developmental programming of adulthood disease. Biochem J, 427, 333-347. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Wijchers, P.J., and Festenstein, R.J. (2011). Epigenetic regulation of autosomal gene expression by sex chromosomes. Trends Genet, 27, 132-140. [CrossRef] [PubMed] [Google Scholar]
  • Williams, L., Seki, Y., Vuguin, P.M., and Charron, M.J. (2014). Animal models of in utero exposure to a high fat diet: a review. Biochim Biophys Acta, 1842, 507-519. [CrossRef] [PubMed] [Google Scholar]
  • Xu, J., Burgoyne, P.S., and Arnold, A.P. (2002). Sex differences in sex chromosome gene expression in mouse brain. Hum Mol Genet, 11, 1409-1419. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.