Accès gratuit
Numéro
Biologie Aujourd’hui
Volume 213, Numéro 1-2, 2019
Page(s) 7 - 16
DOI https://doi.org/10.1051/jbio/2019007
Publié en ligne 5 juillet 2019
  • Ambrogini, P., Cuppini, R., Ferri, P., Mancini, C., Ciaroni, S., Voci, A., Gerdoni, E., Gallo, G. (2005). Thyroid hormones affect neurogenesis in the dentate gyrus of adult rat. Neuroendocrinology, 81, 244-253. [Google Scholar]
  • Arellano, J.I., Rakic, P. (2011). Neuroscience: Gone with the wean. Nature, 478, 333-334. [CrossRef] [PubMed] [Google Scholar]
  • Ausó, E., Lavado-Autric, R., Cuevas, E., Del Rey, F.E., Morreale De Escobar, G., Berbel, P. (2004). A moderate and transient deficiency of maternal thyroid function at the beginning of fetal neocorticogenesis alters neuronal migration. Endocrinology, 145, 4037-4047. [CrossRef] [PubMed] [Google Scholar]
  • Baldini, I.M., Vita, A., Mauri, M.C., Amodei, V., Carrisi, M., Bravin, S., Cantalamessa, L. (1997). Psychopathological and cognitive features in subclinical hypothyroidism. Prog Neuropsychopharmacol Biol Psychiatry, 21, 925-935. [CrossRef] [PubMed] [Google Scholar]
  • Bancalari, R.E., Gregory, L.C., McCabe, M.J., Dattani, M.T. (2012). Pituitary gland development: An update. Endocr Dev, 23, 1-15. [CrossRef] [PubMed] [Google Scholar]
  • Berbel, P., Navarro, D., Ausó, E., Varea, E., Rodríguez, A.E., Ballesta, J.J., Salinas, M., Flores, E., Faura, C.C., de Escobar, G.M. (2010). Role of late maternal thyroid hormones in cerebral cortex development: An experimental model for human prematurity. Cereb Cortex, 20, 1462-1475. [CrossRef] [PubMed] [Google Scholar]
  • Bergmann, O., Liebl, J., Bernard, S., Alkass, K., Yeung, M.S., Steier, P., Kutschera, W., Johnson, L., Landén, M., Druid, H., Spalding, KL, Frisén, J. (2012). The age of olfactory bulb neurons in humans. Neuron, 74, 634-639. [CrossRef] [PubMed] [Google Scholar]
  • Bernal, J. (2007). Thyroid hormone receptors in brain development and function. Nat Clin Pract Endocrinol Metab, 3, 249-259. [Google Scholar]
  • Bernal, J., Pekonen, F. (1984). Ontogenesis of the nuclear 3,5,3’-triiodothyronine receptor in the human fetal brain. Endocrinology, 114, 677-679. [CrossRef] [PubMed] [Google Scholar]
  • Bernal, J., Guadaño-Ferraz, A., Morte, B. (2003). Perspectives in the study of thyroid hormone action on brain development and function. Thyroid, 13, 1005-1012. [CrossRef] [PubMed] [Google Scholar]
  • Bernal, J., Morte, B. (2018). Expression analysis of genes regulated by thyroid hormone in neural cells. Methods Mol Biol, 1801, 17-28. [CrossRef] [PubMed] [Google Scholar]
  • Bouab, M., Paliouras, G.N., Aumont, A., Forest-Bérard, K., Fernandes, K.J. (2011). Aging of the subventricular zone neural stem cell niche: Evidence for quiescence-associated changes between early and mid-adulthood. Neuroscience, 173, 135-149. [PubMed] [Google Scholar]
  • Boldrini, M., Fulmore, C.A., Tartt, A.N., Simeon, L.R., Pavlova, I., Poposka, V., Rosoklija, G.B., Stankov, A., Arango, V., Dwork, A.J., Hen, R., Mann, J.J. (2018). Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell, 22, 589-599. [Google Scholar]
  • Braun, S.M., Pilz, G.A., Machado, R.A., Moss, J., Becher, B., Toni, N., Jessberger, S. (2015). Programming hippocampal neural stem/progenitor cells into oligodendrocytes enhances remyelination in the adult brain after injury. Cell Rep, 11, 1679-1685. [CrossRef] [PubMed] [Google Scholar]
  • Brousse, B., Magalon, K., Durbec, P., Cayre, M. (2015). Region and dynamic specificities of adult neural stem cells and oligodendrocyte precursors in myelin regeneration in the mouse brain. Biol Open, 4, 980-992. [CrossRef] [PubMed] [Google Scholar]
  • Bárez-López, S., Montero-Pedrazuela, A., Bosch-García, D., Venero, C., Guadaño-Ferraz, A. (2017). Increased anxiety and fear memory in adult mice lacking type 2 deiodinase. Psychoneuroendocrinology, 84, 51-60. [CrossRef] [PubMed] [Google Scholar]
  • Calvo, R., Obregón, M.J., Ruiz de Oña, C., Escobar del Rey, F., Morreale de Escobar, G. (1990). Congenital hypothyroidism, as studied in rats. Crucial role of maternal thyroxine but not of 3, 5, 3’-triiodothyronine in the protection of the fetal brain. J Clin Invest, 86, 889-899. [CrossRef] [PubMed] [Google Scholar]
  • Calvo, R.M., Jauniaux, E., Gulbis, B., Asunción, M., Gervy, C., Contempré, B., Morreale de Escobar, G. (2002). Fetal tissues are exposed to biologically relevant free thyroxine concentrations during early phases of development. J Clin Endocrinol Metab, 87, 1768-1777. [CrossRef] [PubMed] [Google Scholar]
  • Cao, X.Y., Jiang, X.M., Dou, Z.H., Rakeman, M.A., Zhang, M.L., O’Donnell, K., Ma, T., Amette, K., DeLong, N., DeLong, G.R. (1994). Timing of vulnerability of the brain to iodine deficiency in endemic cretinism. N Engl J Med, 331, 1739-1744. [Google Scholar]
  • Capilla-Gonzalez, V., Herranz-Pérez, V., García-Verdugo, J.M. (2015). The aged brain: Genesis and fate of residual progenitor cells in the subventricular zone. Front Cell Neurosci, 9, 365. [Google Scholar]
  • Chaker, Z., Codega, P., Doetsch, F. (2016). A mosaic world: Puzzles revealed by adult neural stem cell heterogeneity. Wiley Interdiscip Rev Dev Biol, 5, 640-658. [CrossRef] [PubMed] [Google Scholar]
  • Cheng, M.F. (2013). Hypothalamic neurogenesis in the adult brain. Front Neuroendocrinol, 34, 167-178. [PubMed] [Google Scholar]
  • Cooke, G.E., Mullally, S., Correia, N., O’Mara, S.M., Gibney, J. (2014). Hippocampal volume is decreased in adults with hypothyroidism. Thyroid, 24, 433-440. [CrossRef] [PubMed] [Google Scholar]
  • Craig, W.Y., Allan, W.C., Kloza, E.M., Pulkkinen, A.J., Waisbren, S., Spratt, D.I., Palomaki, G.E., Neveux, L.M., Haddow, J.E. (2012). Mid-gestational maternal free thyroxine concentration and offspring neurocognitive development at age two years. J Clin Endocrinol Metab, 97, E22-E28. [CrossRef] [PubMed] [Google Scholar]
  • Dawson, M.R., Polito, A., Levine, J.M., Reynolds, R. (2003). NG2-expressing glial progenitor cells: An abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci, 24, 476-488. [CrossRef] [PubMed] [Google Scholar]
  • de Escobar, G.M., Obregón, M.J., del Rey, F.E. (2004). Maternal thyroid hormones early in pregnancy and fetal brain development. Best Pract Res Clin Endocrinol Metab, 18, 225-248. [CrossRef] [PubMed] [Google Scholar]
  • Dennis, C.V., Suh, L.S., Rodriguez, M.L., Kril, J.J., Sutherland, G.T. (2016). Human adult neurogenesis across the ages: An immunohistochemical study. Neuropathol Appl Neurobiol, 42, 621-638. [CrossRef] [PubMed] [Google Scholar]
  • Desouza, L.A., Ladiwala, U., Daniel, S.M., Agashe, S., Vaidya, R.A., Vaidya, V.A. (2005). Thyroid hormone regulates hippocampal neurogenesis in the adult rat brain. Mol Cell Neurosci, 29, 414-426. [CrossRef] [PubMed] [Google Scholar]
  • Downing, S., Halpern, L., Carswell, J., Brown, R.S. (2012). Severe maternal hypothyroidism corrected prior to the third trimester is associated with normal cognitive outcome in the offspring. Thyroid, 22, 625-630. [CrossRef] [PubMed] [Google Scholar]
  • Dugbartey, A.T. (1998). Neurocognitive aspects of hypothyroidism. Arch Intern Med, 158, 1413-1418. [CrossRef] [PubMed] [Google Scholar]
  • Dumitrescu, A.M., Liao, X.H., Weiss, R.E., Millen, K., Refetoff, S. (2006). Tissue-specific thyroid hormone deprivation and excess in monocarboxylate transporter (mct) 8-deficient mice. Endocrinology, 147, 4036-4043. [CrossRef] [PubMed] [Google Scholar]
  • Eriksson, P.S., Perfilieva, E., Björk-Eriksson, T., Alborn, A.M., Nordborg, C., Peterson, D.A., Gage, F.H. (1998). Neurogenesis in the adult human hippocampus. Nat Med, 4, 1313-1317. [CrossRef] [PubMed] [Google Scholar]
  • Ernst, A., Alkass, K., Bernard, S., Salehpour, M., Perl, S., Tisdale, J., Possnert, G., Druid, H., Frisén, J. (2014). Neurogenesis in the striatum of the adult human brain. Cell, 156, 1072-1083. [CrossRef] [PubMed] [Google Scholar]
  • Fanibunda, S.E., Desouza, L.A., Kapoor, R., Vaidya, R.A., Vaidya, V.A. (2018). Thyroid hormone regulation of adult neurogenesis. Vitam Horm, 106, 211-251. [CrossRef] [PubMed] [Google Scholar]
  • Finken, M.J., van Eijsden, M., Loomans, E.M., Vrijkotte, T.G., Rotteveel, J. (2013). Maternal hypothyroxinemia in early pregnancy predicts reduced performance in reaction time tests in 5- to 6-year-old offspring. J Clin Endocrinol Metab, 98, 1417-1426. [CrossRef] [PubMed] [Google Scholar]
  • Fuentealba, L.C., Rompani, S.B., Parraguez, J.I., Obernier, K., Romero, R., Cepko, C.L., Alvarez-Buylla, A. (2015). Embryonic origin of postnatal neural stem cells. Cell, 161, 1644-1655. [CrossRef] [PubMed] [Google Scholar]
  • Gereben, B., Zavacki, A.M., Ribich, S., Kim, B.W., Huang, S.A., Simonides, W.S., Zeöld, A., Bianco, A.C. (2008). Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev, 29, 898-938. [PubMed] [Google Scholar]
  • Ghassabian, A., El Marroun, H., Peeters, R.P., Jaddoe, V.W., Hofman, A., Verhulst, F.C., Tiemeier, H., White, T. (2014). Downstream effects of maternal hypothyroxinemia in early pregnancy: Nonverbal IQ and brain morphology in school-age children. J Clin Endocrinol Metab, 99, 2383-2390. [CrossRef] [PubMed] [Google Scholar]
  • Gothié, J.D., Demeneix, B., Remaud, S. (2017a). Comparative approaches to understanding thyroid hormone regulation of neurogenesis. Mol Cell Endocrinol, 459, 104-115. [CrossRef] [PubMed] [Google Scholar]
  • Gothié, J.D., Sébillot, A., Luongo, C., Legendre, M., Nguyen Van, C., Le Blay, K., Perret-Jeanneret, M., Remaud, S., Demeneix, B.A. (2017b). Adult neural stem cell fate is determined by thyroid hormone activation of mitochondrial metabolism. Mol Metab, 6, 1551-1561. [CrossRef] [PubMed] [Google Scholar]
  • Gussekloo, J., van Exel, E., de Craen, A.J., Meinders, A.E., Frölich, M., Westendorp, R.G. (2004). Thyroid status, disability and cognitive function, and survival in old age. JAMA, 292, 2591-2599. [CrossRef] [PubMed] [Google Scholar]
  • Gyllenberg, D., Sourander, A., Surcel, H.M., Hinkka-Yli-Salomäki, S., McKeague, I.W., Brown, A.S. (2016). Hypothyroxinemia during gestation and offspring schizophrenia in a national birth cohort. Biol Psychiatry, 79, 962-970. [CrossRef] [PubMed] [Google Scholar]
  • Hassani, Z., François, J.C., Alfama, G., Dubois, G.M., Paris, M., Giovannangeli, C., Demeneix, B.A. (2007). A hybrid CMV-H1 construct improves efficiency of PEI-delivered shRNA in the mouse brain. Nucleic Acids Res, 35, e65. [CrossRef] [PubMed] [Google Scholar]
  • Henrichs, J., Bongers-Schokking, J.J., Schenk, J.J., Ghassabian, A., Schmidt, H.G., Visser, T.J., Hooijkaas, H., de Muinck Keizer-Schrama, S.M., Hofman, A., Jaddoe, V.V., Visser, W., Steegers, E.A., Verhulst, F.C., de Rijke, Y.B., Tiemeier, H. (2010). Maternal thyroid function during early pregnancy and cognitive functioning in early childhood: The generation R study. J Clin Endocrinol Metab, 95, 4227-4234. [CrossRef] [PubMed] [Google Scholar]
  • Iskaros, J., Pickard, M., Evans, I., Sinha, A., Hardiman, P., Ekins, R. (2000). Thyroid hormone receptor gene expression in first trimester human fetal brain. J Clin Endocrinol Metab, 85, 2620-2623. [CrossRef] [PubMed] [Google Scholar]
  • Kapoor, R., van Hogerlinden, M., Wallis, K., Ghosh, H., Nordstrom, K., Vennstrom, B., Vaidya, V.A. (2010). Unliganded thyroid hormone receptor alpha1 impairs adult hippocampal neurogenesis. FASEB J, 24, 4793-4805. [CrossRef] [PubMed] [Google Scholar]
  • Kapoor, R., Desouza, L.A., Nanavaty, I.N., Kernie, S.G., Vaidya, V.A. (2012). Thyroid hormone accelerates the differentiation of adult hippocampal progenitors. J Neuroendocrinol, 24, 1259-1271. [Google Scholar]
  • Kapoor, R., Fanibunda, S.E., Desouza, L.A., Guha, S.K., Vaidya, V.A. (2015). Perspectives on thyroid hormone action in adult neurogenesis. J Neurochem, 133, 599-616. [CrossRef] [PubMed] [Google Scholar]
  • Kester, M.H., Martinez de Mena, R., Obregon, M.J., Marinkovic, D., Howatson, A., Visser, T.J., Hume, R., Morreale de Escobar, G. (2004). Iodothyronine levels in the human developing brain: Major regulatory roles of iodothyronine deiodinases in different areas. J Clin Endocrinol Metab, 89, 3117-3128. [CrossRef] [PubMed] [Google Scholar]
  • Korevaar, T.I.M., Peeters, R.P. (2016). The continuous spectrum of thyroid hormone action during early life. Lancet Diabetes Endocrinol, 4, 721-723. [Google Scholar]
  • Korevaar, T.I.M, Muetzel, R., Medici, M., Chaker, L., Jaddoe, V.W., de Rijke, Y.B., Steegers, E.A., Visser, T.J., White, T., Tiemeier, H., Peeters, R.P. (2016). Association of maternal thyroid function during early pregnancy with offspring IQ and brain morphology in childhood: A population-based prospective cohort study. Lancet Diabetes Endocrinol, 4, 35-43. [Google Scholar]
  • Kriegstein, A., Alvarez-Buylla, A. (2009). The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci, 32, 149-184. [Google Scholar]
  • Kuhn, H.G., Dickinson-Anson, H., Gage, F.H. (1996). Neurogenesis in the dentate gyrus of the adult rat: Age-related decrease of neuronal progenitor proliferation. J Neurosci, 16, 2027-2033. [CrossRef] [PubMed] [Google Scholar]
  • Lemkine, G.F., Raj, A., Alfama, G., Turque, N., Hassani, Z., Alegria-Prévot, O., Samarut, J., Levi, G., Demeneix, B.A. (2005). Adult neural stem cell cycling in vivo requires thyroid hormone and its alpha receptor. FASEB J, 19, 863-865. [CrossRef] [PubMed] [Google Scholar]
  • Lischinsky, J.E., Skocic, J., Clairman, H., Rovet, J. (2016). Preliminary findings show maternal hypothyroidism may contribute to abnormal cortical morphology in offspring. Front Endocrinol (Lausanne), 7, 16. [CrossRef] [PubMed] [Google Scholar]
  • Ludwin, S.K. (1978). Central nervous system demyelination and remyelination in the mouse: An ultrastructural study of cuprizone toxicity. Lab Invest, 39, 597-612. [PubMed] [Google Scholar]
  • López-Juárez, A., Remaud, S., Hassani, Z., Jolivet, P., Pierre Simons, J., Sontag, T., Yoshikawa, K., Price, J., Morvan-Dubois, G., Demeneix, B.A. (2012). Thyroid hormone signaling acts as a neurogenic switch by repressing Sox2 in the adult neural stem cell niche. Cell Stem Cell, 10, 531-543. [Google Scholar]
  • Mayerl, S., Müller, J., Bauer, R., Richert, S., Kassmann, C.M., Darras, V.M., Buder, K., Boelen, A., Visser, T.J., Heuer, H. (2014). Transporters MCT8 and OATP1C1 maintain murine brain thyroid hormone homeostasis. J Clin Invest, 124, 1987-1999. [CrossRef] [PubMed] [Google Scholar]
  • Menn, B., Garcia-Verdugo, J.M., Yaschine, C., Gonzalez-Perez, O., Rowitch, D., Alvarez-Buylla, A. (2006). Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci, 26, 7907-7918. [CrossRef] [PubMed] [Google Scholar]
  • Merkle, F.T., Mirzadeh, Z., Alvarez-Buylla, A. (2007). Mosaic organization of neural stem cells in the adult brain. Science, 317, 381-384. [Google Scholar]
  • Ming, G.L., Song, H. (2011). Adult neurogenesis in the mammalian brain: Significant answers and significant questions. Neuron, 70, 687-702. [CrossRef] [PubMed] [Google Scholar]
  • Mohan, V., Sinha, R.A., Pathak, A., Rastogi, L., Kumar, P., Pal, A., Godbole, M.M. (2012). Maternal thyroid hormone deficiency affects the fetal neocorticogenesis by reducing the proliferating pool, rate of neurogenesis and indirect neurogenesis. Exp Neurol, 237, 477-488. [CrossRef] [PubMed] [Google Scholar]
  • Montero-Pedrazuela, A., Venero, C., Lavado-Autric, R., Fernández-Lamo, I., García-Verdugo, J.M., Bernal, J., Guadaño-Ferraz, A. (2006). Modulation of adult hippocampal neurogenesis by thyroid hormones: Implications in depressive-like behavior. Mol Psychiatry, 11, 361-371. [CrossRef] [PubMed] [Google Scholar]
  • Moog, N.K., Entringer, S., Heim, C., Wadhwa, P.D., Kathmann, N., Buss, C. (2017). Influence of maternal thyroid hormones during gestation on fetal brain development. Neuroscience, 342, 68-100. [PubMed] [Google Scholar]
  • Mughal, B.B., Fini, J.B., Demeneix, B.A. (2018). Thyroid-disrupting chemicals and brain development: An update. Endocr Connect, 7, R160-R186. [CrossRef] [PubMed] [Google Scholar]
  • Nait-Oumesmar, B., Picard-Riera, N., Kerninon, C., Decker, L., Seilhean, D., Höglinger, G.U., Hirsch, E.C., Reynolds, R., Baron-Van Evercooren, A. (2007). Activation of the subventricular zone in multiple sclerosis: Evidence for early glial progenitors. Proc Natl Acad Sci USA, 104, 4694-4699. [CrossRef] [Google Scholar]
  • Noten, A.M., Loomans, E.M., Vrijkotte, T.G., van de Ven, P.M., van Trotsenburg, A.S., Rotteveel, J., van Eijsden, M., Finken, M.J. (2015). Maternal hypothyroxinaemia in early pregnancy and school performance in 5-year-old offspring. Eur J Endocrinol, 173, 563-571. [Google Scholar]
  • Paul, A., Chaker, Z., Doetsch, F. (2017). Hypothalamic regulation of regionally distinct adult neural stem cells and neurogenesis. Science, 356, 1383-1386. [Google Scholar]
  • Pop, V.J., Brouwers, E.P., Vader, H.L., Vulsma, T., van Baar, A.L., de Vijlder, J.J. (2003). Maternal hypothyroxinaemia during early pregnancy and subsequent child development: A 3-year follow-up study. Clin Endocrinol (Oxf), 59, 282-288. [Google Scholar]
  • Päkkilä, F., Männistö, T., Hartikainen, A.L., Ruokonen, A., Surcel, H.M., Bloigu, A., Vääräsmäki, M., Järvelin, M.R., Moilanen, I., Suvanto, E. (2015). Maternal and child’s thyroid function and child’s intellect and scholastic performance. Thyroid, 25, 1363-1374. [CrossRef] [PubMed] [Google Scholar]
  • Remaud, S., Gothié, J.D., Morvan-Dubois, G., Demeneix, B.A. (2014). Thyroid hormone signaling and adult neurogenesis in mammals. Front Endocrinol (Lausanne), 28, 62. [Google Scholar]
  • Remaud, S., Ortiz, F.C., Perret-Jeanneret, M., Aigrot, M.S., Gothié, J.D., Fekete, C., Kvárta-Papp, Z., Gereben, B., Langui, D., Lubetzki, C., Angulo, M.C., Zalc, B., Demeneix, B. (2017). Transient hypothyroidism favors oligodendrocyte generation providing functional remyelination in the adult mouse brain. Elife, 6. [Google Scholar]
  • Rolando, C., Erni, A., Grison, A., Beattie, R., Engler, A., Gokhale, P.J., Milo, M., Wegleiter, T., Jessberger, S., Taylor, V. (2016). Multipotency of adult hippocampal NSCs in vivo is restricted by Drosha/NFIB. Cell Stem Cell, 19, 653-662. [Google Scholar]
  • Sanai, N., Nguyen, T., Ihrie, R.A., Mirzadeh, Z., Tsai, H.H., Wong, M., Gupta, N., Berger, M.S., Huang, E., Garcia-Verdugo, J.M., Rowitch, D.H., Alvarez-Buylla, A. (2011). Corridors of migrating neurons in the human brain and their decline during infancy. Nature, 478, 382-386. [CrossRef] [PubMed] [Google Scholar]
  • Saper, C.B., Lowell, B.B. (2014). The hypothalamus. Curr Biol, 24, R1111-R1116. [CrossRef] [PubMed] [Google Scholar]
  • Seri, B., García-Verdugo, J.M., Collado-Morente, L., McEwen, B.S., Alvarez-Buylla, A. (2004). Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol, 478, 359-378. [PubMed] [Google Scholar]
  • Smith, J.W., Evans, A.T., Costall, B., Smythe, J.W. (2002). Thyroid hormones, brain function and cognition: A brief review. Neurosci Biobehav Rev, 26, 45-60. [CrossRef] [PubMed] [Google Scholar]
  • Sorrells, S.F., Paredes, M.F., Cebrian-Silla, A., Sandoval, K., Qi, D., Kelley, K.W., James, D., Mayer, S., Chang, J., Auguste, K.I., Chang, E.F., Gutierrez, A.J., Kriegstein, A.R., Mathern, G.W., Oldham, M.C., Huang, E.J., Garcia-Verdugo, J.M., Yang, Z., Alvarez-Buylla, A. (2018). Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature, 555, 377-381. [CrossRef] [PubMed] [Google Scholar]
  • Spalding, K.L., Bergmann, O., Alkass, K., Bernard, S., Salehpour, M., Huttner, H.B., Boström, E., Westerlund, I., Vial, C., Buchholz, B.A., Possnert, G., Mash, D.C., Druid, H., Frisén, J. (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153, 1219-1227. [CrossRef] [PubMed] [Google Scholar]
  • Stohn, J.P., Martinez, M.E., Hernandez, A. (2016). Decreased anxiety- and depression-like behaviors and hyperactivity in a type 3 deiodinase-deficient mouse showing brain thyrotoxicosis and peripheral hypothyroidism. Psychoneuroendocrinology, 74, 46-56. [CrossRef] [PubMed] [Google Scholar]
  • Stohn, J.P., Martinez, M.E., Zafer, M., López-Espíndola, D., Keyes, L.M., Hernandez, A. (2018). Increased aggression and lack of maternal behavior in Dio3-deficient mice are associated with abnormalities in oxytocin and vasopressin systems. Genes Brain Behav, 17, 23-35. [CrossRef] [PubMed] [Google Scholar]
  • Taupin, P. (2007). BrdU immunohistochemistry for studying adult neurogenesis: Paradigms, pitfalls, limitations, and validation. Brain Res Rev, 53, 198-214. [CrossRef] [PubMed] [Google Scholar]
  • Trajkovic, M., Visser, T.J., Mittag, J., Horn, S., Lukas, J., Darras, V.M., Raivich, G., Bauer, K., Heuer, H. (2007). Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8. J Clin Invest, 117, 627-635. [CrossRef] [PubMed] [Google Scholar]
  • Vancamp, P., Darras, V.M. (2017). Dissecting the role of regulators of thyroid hormone availability in early brain development: Merits and potential of the chicken embryo model. Mol Cell Endocrinol, 459, 71-78. [CrossRef] [PubMed] [Google Scholar]
  • Wang, C., Liu, F., Liu, Y.Y., Zhao, C.H., You, Y., Wang, L., Zhang, J., Wei, B., Ma, T., Zhang, Q., Zhang, Y., Chen, R., Song, H., Yang, Z. (2011). Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell Res, 21, 1534-1550. [CrossRef] [PubMed] [Google Scholar]
  • Weissleder, C., Fung, S.J., Wong, M.W., Barry, G., Double, K.L., Halliday, G.M., Webster, M.J., Weickert, C.S. (2016). Decline in proliferation and immature neuron markers in the human subependymal zone during aging: Relationship to EGF- and FGF-related transcripts. Front Aging Neurosci, 8, 274. [CrossRef] [PubMed] [Google Scholar]
  • Wheeler, S.M., Willoughby, K.A., McAndrews, M.P., Rovet, J.F. (2011). Hippocampal size and memory functioning in children and adolescents with congenital hypothyroidism. J Clin Endocrinol Metab, 96, E1427–E1434. [CrossRef] [PubMed] [Google Scholar]
  • Whybrow, P.C., Prange, A.J., Treadway, C.R. (1969). Mental changes accompanying thyroid gland dysfunction. A reappraisal using objective psychological measurement. Arch Gen Psychiatry, 20, 48-63. [CrossRef] [PubMed] [Google Scholar]
  • Willoughby, K.A., McAndrews, M.P., Rovet, J.F. (2014). Effects of maternal hypothyroidism on offspring hippocampus and memory. Thyroid, 24, 576-584. [CrossRef] [PubMed] [Google Scholar]
  • Wirth, E.K., Roth, S., Blechschmidt, C., Hölter, S.M., Becker, L., Racz, I., Zimmer, A., Klopstock, T., Gailus-Durner, V., Fuchs, H., Wurst, W., Naumann, T., Bräuer, A., de Angelis, M.H., Köhrle, J., Grüters, A., Schweizer, U. (2009). N euronal 3’,3,5-triiodothyronine (T3) uptake and behavioral phenotype of mice deficient in Mct8, the neuronal T3 transporter mutated in Allan-Herndon-Dudley syndrome. J Neurosci, 29, 9439-9449. [CrossRef] [PubMed] [Google Scholar]
  • Xing, Y.L., Röth, P.T., Stratton, J.A., Chuang, B.H., Danne, J., Ellis, S.L., Ng, S.W., Kilpatrick, T.J., Merson, T.D. (2014). Adult neural precursor cells from the subventricular zone contribute significantly to oligodendrocyte regeneration and remyelination. J Neurosci, 34, 14128-14146. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.