Accès gratuit
Numéro
Biologie Aujourd’hui
Volume 214, Numéro 1-2, 2020
Page(s) 1 - 13
DOI https://doi.org/10.1051/jbio/2020002
Publié en ligne 10 août 2020
  • Afonso, M.B., Rodrigues, P.M., Carvalho, T., Caridade, M., Borralho, P., Cortez-Pinto, H., Castro, R.E., Rodrigues, C.M. (2015). Necroptosis is a key pathogenic event in human and experimental murine models of non-alcoholic steatohepatitis. Clin Sci (Lond), 129, 721-739. [CrossRef] [PubMed] [Google Scholar]
  • Ashkenazi, A., Dixit, V.M. (1998). Death receptors: Signaling and modulation. Science, 281, 1305-1308. [Google Scholar]
  • Barreyro, F.J., Holod, S., Finocchietto, P.V., Camino, A.M., Aquino, J.B., Avagnina, A., Carreras, M.C., Poderoso, J.J., Gores, G.J. (2015). The pan-caspase inhibitor Emricasan (IDN-6556) decreases liver injury and fibrosis in a murine model of non-alcoholic steatohepatitis. Liver Int, 35, 953-966. [CrossRef] [PubMed] [Google Scholar]
  • Bergsbaken, T., Fink, S.L., Cookson, B.T. (2009). Pyroptosis: Host cell death and inflammation. Nat Rev Microbiol, 7, 99-109. [CrossRef] [PubMed] [Google Scholar]
  • Bersuker, K., Hendricks, J.M., Li, Z., Magtanong, L., Ford, B., Tang, P.H., Roberts, M.A., Tong, B., Maimone, T.J., Zoncu, R., Bassik, M.C., Nomura, D.K., Dixon, S.J., Olzmann, J.A. (2019). The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature, 575, 688-692. [PubMed] [Google Scholar]
  • Bonkovsky, H.L., Jawaid, Q., Tortorelli, K., LeClair, P., Cobb, J., Lambrecht, R.W., Banner, B.F. (1999). Non-alcoholic steatohepatitis and iron: Increased prevalence of mutations of the HFE gene in non-alcoholic steatohepatitis. J Hepatol, 31, 421-429. [CrossRef] [PubMed] [Google Scholar]
  • Broz, P., Dixit, V.M. (2016). Inflammasomes: Mechanism of assembly, regulation and signalling. Nat Rev Immunol, 16, 407-420. [PubMed] [Google Scholar]
  • Broz, P., Pelegrin, P., Shao, F. (2019). The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol, 3, 143-157. [Google Scholar]
  • Cookson, B.T., Brennan, M.A. (2001). Pro-inflammatory programmed cell death. Trends Microbiol, 9, 113-114. [Google Scholar]
  • Cory, S., Adams, J.M. (2002). The Bcl2 family: Regulators of the cellular life-or-death switch. Nat Rev Cancer, 2, 647-656. [CrossRef] [PubMed] [Google Scholar]
  • Degterev, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., Cuny, G.D., Mitchison, T.J., Moskowitz, M.A., Yuan, J. (2005). Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol, 1, 112-119. [Google Scholar]
  • Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., Patel, D.N., Bauer, A.J., Cantley, A.M., Yang, W.S., Morrison, B. 3rd, Stockwell, B.R. (2012). Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 149, 1060-1072. [CrossRef] [PubMed] [Google Scholar]
  • Doll, S., Freitas, F.P., Shah, R., Aldrovandi, M., da Silva, M.C., Ingold, I., Grocin, A.G., Xavier da Silva, T.N., Panzilius, E., Scheel, C.H., Morrison, B. 3rd, Stockwell, B.R. (2019). FSP1 is a glutathione-independent ferroptosis suppressor. Nature, 575, 693-698. [PubMed] [Google Scholar]
  • Doll, S., Proneth, B., Tyurina, Y.Y., Panzilius, E., Kobayashi, S., Ingold, I., Irmler, M., Beckers, J., Aichler, M., Walch, A., Prokisch, H., Trümbach, D., Mao, G., Qu, F., Bayir, H., Füllekrug, J., Scheel, C.H., Wurst, W., Schick, J.A., Kagan, V.E., Angeli, J.P., Conrad, M. (2017). ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol, 13, 91-98. [Google Scholar]
  • Dolma, S., Lessnick, S.L., Hahn, W.C., Stockwell, B.R. (2003). Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell, 3, 285-296. [CrossRef] [PubMed] [Google Scholar]
  • Dondelinger, Y., Declercq, W., Montessuit, S., Roelandt, R., Goncalves, A., Bruggeman, I., Hulpiau, P., Weber, K., Sehon, C.A., Marquis, R.W., Bertin, J., Gough, P.J., Savvides, S., Martinou, J.C., Bertrand, M.J., Vandenabeele, P. (2014). MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep, 7, 971-981. [CrossRef] [PubMed] [Google Scholar]
  • Elmore, S. (2007). Apoptosis: A review of programmed cell death. Toxicol Pathol, 35, 495-516. [CrossRef] [PubMed] [Google Scholar]
  • Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., Nagata, S. (1998). A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature, 391, 43-50. [PubMed] [Google Scholar]
  • Estaquier, J., Vallette, F., Vayssiere, J.L., Mignotte, B. (2012). The mitochondrial pathways of apoptosis. Adv Exp Med Biol, 942, 157-183. [CrossRef] [PubMed] [Google Scholar]
  • Farrell, G.C., van Rooyen, D., Gan, L., Chitturi, S. (2012). NASH is an inflammatory disorder: Pathogenic, prognostic and therapeutic implications. Gut Liver, 6, 149-171. [PubMed] [Google Scholar]
  • Feldstein, A.E., Canbay, A., Angulo, P., Taniai, M., Burgart, L.J., Lindor, K.D., Gores, G.J. (2003). Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology, 125, 437-443. [CrossRef] [PubMed] [Google Scholar]
  • Feldstein, A.E., Wieckowska, A., Lopez, A.R., Liu, Y.C., Zein, N.N., McCullough, A.J. (2009). Cytokeratin-18 fragment levels as noninvasive biomarkers for nonalcoholic steatohepatitis: A multicenter validation study. Hepatology, 50, 1072-1078. [CrossRef] [PubMed] [Google Scholar]
  • Feng, H., Stockwell, B.R. (2018). Unsolved mysteries: How does lipid peroxidation cause ferroptosis? PLoS Biol, 16, e2006203. [CrossRef] [PubMed] [Google Scholar]
  • Feng, S., Yang, Y., Mei, Y., Ma, L., Zhu, D.E., Hoti, N., Castanares, M., Wu, M. (2007). Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal, 19, 2056-2067. [CrossRef] [PubMed] [Google Scholar]
  • Friedman, S.L., Neuschwander-Tetri, B.A., Rinella, M., Sanyal, A.J. (2018). Mechanisms of NAFLD development and therapeutic strategies. Nat Med, 24, 908-922. [CrossRef] [PubMed] [Google Scholar]
  • Galluzzi, L., Vitale, I., Aaronson, S.A., Abrams, J.M., Adam, D., Agostinis, P., Alnemri, E.S., Altucci, L., Amelio, I., Andrews, D.W., et al. (2018). Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ, 25, 486-541. [CrossRef] [PubMed] [Google Scholar]
  • Gao, M., Monian, P., Quadri, N., Ramasamy, R., Jiang, X. (2015). Glutaminolysis and transferrin regulate ferroptosis. Mol Cell, 59, 298-308. [CrossRef] [PubMed] [Google Scholar]
  • Garcia-Tsao, G., Bosch, J., Kayali, Z., Harrison, S.A., Abdelmalek, M.F., Lawitz, E., Satapathy, S.K., Ghabril, M., Shiffman, M.L., Younes, Z.H., Thuluvath, P.J., Berzigotti, A., Albillos, A., Robinson, J.M., Hagerty, D.T., Chan, J.L., Sanyal, A.J., IDN-6556-14 Investigators (‡). (2019). Randomized placebo-controlled trial of Emricasan in Non-alcoholic Steatohepatitis (NASH) cirrhosis with severe portal hypertension. J Hepatol, DOI: 10.1016/j.jhep.2019.12.010. [Google Scholar]
  • Gautheron, J., Vucur, M., Reisinger, F., Cardenas, D.V., Roderburg, C., Koppe, C., Kreggenwinkel, K., Schneider, A.T., Bartneck, M., Neumann, U.P., Canbay, A., Reeves, H.L., Luedde, M., Tacke, F., Trautwein, C., Heikenwalder, M., Luedde, T. (2014). A positive feedback loop between RIP3 and JNK controls non-alcoholic steatohepatitis. EMBO Mol Med, 6, 1062-1074. [CrossRef] [PubMed] [Google Scholar]
  • Gautheron, J., Vucur, M., Luedde, T. (2015). Necroptosis in nonalcoholic steatohepatitis. Cell Mol Gastroenterol Hepatol, 1, 264-265. [Google Scholar]
  • Gautheron, J., Vucur, M., Schneider, A.T., Severi, I., Roderburg, C., Roy, S., Bartneck, M., Schrammen, P., Diaz, M.B., Ehling, J., Gremse, F., Heymann F., Koppe, C., Lammers, T., Kiessling, F., Van Best, N., Pabst, O., Courtois, G., Linkermann, A., Krautwald, S., Neumann, U.P., Tacke, F., Trautwein, C., Green, D.R., Longerich, T., Frey, N., Luedde, M., Bluher, M., Herzig, S., Heikenwalder, M., Luedde, T. (2016). The necroptosis-inducing kinase RIPK3 dampens adipose tissue inflammation and glucose intolerance. Nat Commun, 7, 11869. [CrossRef] [PubMed] [Google Scholar]
  • Geng, N., Shi, B.J., Li, S.L., Zhong, Z.Y., Li, Y.C., Xua, W.L., Zhou, H., Cai, J.H. (2018). Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma cells. Eur Rev Med Pharmacol Sci, 22, 3826-3836. [Google Scholar]
  • Guicciardi, M.E., Gores, G.J. (2009). Life and death by death receptors. FASEB J, 23, 1625-1637. [CrossRef] [PubMed] [Google Scholar]
  • Harrison, S.A., Goodman, Z., Jabbar, A., Vemulapalli, R., Younes, Z.H., Freilich, B., Sheikh, M.Y., Schattenberg, J.M., Kayali, Z., Zivony, A., Sheikh, A., Garcia-Samaniego, J., Satapathy, S.K., Therapondos, G., Mena, E., Schuppan, D., Robinson, J., Chan, J.L., Hagerty, D.T., Sanyal, A.J. (2019). A randomized, placebo-controlled trial of Emricasan in patients with NASH and F1-F3 fibrosis. J Hepatol, DOI: 10.1016/j.jhep.2019.11.024. [Google Scholar]
  • Hatting, M., Zhao, G., Schumacher, F., Sellge, G., Al Masaoudi, M., Gabetaler, N., Boekschoten, M., Muller, M., Liedtke, C., Cubero, F.J., Trautwein, C. (2013). Hepatocyte caspase-8 is an essential modulator of steatohepatitis in rodents. Hepatology, 57, 2189-2201. [CrossRef] [PubMed] [Google Scholar]
  • He, S., Wang, L., Miao, L., Wang, T., Du, F., Zhao, L., Wang, X. (2009). Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell, 137, 1100-1111. [CrossRef] [PubMed] [Google Scholar]
  • Henao-Mejia, J., Elinav, E., Jin, C., Hao, L., Mehal, W.Z., Strowig, T., Thaiss, C.A., Kau, A.L., Eisenbarth, S.C., Jurczak, M.J., Camporez, J.P., Shulman, G.I., Gordon, J.I., Hoffman, H.M., Flavell, R.A. (2012). Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature, 482, 179-185. [PubMed] [Google Scholar]
  • Hildebrand, J.M., Tanzer, M.C., Lucet, I.S., Young, S.N., Spall, S.K., Sharma, P., Pierotti, C., Garnier, J.M., Dobson, R.C., Webb, A.I., Tripaydonis, A., Babon, J.J., Mulcair, M.D., Scanlon, M.J., Alexander, W.S., Wilks, A.F., Czabotar, P.E., Lessene, G., Murphy, J.M., Silke, J. (2014). Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proc Natl Acad Sci USA, 111, 15072-15077. [CrossRef] [Google Scholar]
  • Holler, N., Zaru, R., Micheau, O., Thome, M., Attinger, A., Valitutti, S., Bodmer, J.L., Schneider, P., Seed, B., Tschopp, J. (2000). Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol, 1, 489-495. [PubMed] [Google Scholar]
  • Joza, N., Susin, S.A., Daugas, E., Stanford, W.L., Cho, S.K., Li, C.Y., Sasaki, T., Elia, A.J., Cheng, H.Y., Ravagnan, L., Ferri, K.F., Zamzami, N., Wakeham, A., Hakem, R., Yoshida, H., Kong, Y.Y., Mak, T.W., Zúñiga-Pflücker, J.C., Kroemer, G., Penninger, J.M. (2001). Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature, 410, 549-554. [PubMed] [Google Scholar]
  • Kagan, V.E., Mao, G., Qu, F., Angeli, J.P., Doll, S., Croix, C.S., Dar, H.H., Liu, B., Tyurin, V.A., Ritov, V.B., Kapralov, A.A, Amoscato, A.A., Jiang, J., Anthonymuthu, T., Mohammadyani, D., Yang, Q., Proneth, B., Klein-Seetharaman, J., Watkins, S., Bahar, I., Greenberger, J., Mallampalli, R.K., Stockwell, B.R., Tyurina, Y.Y., Conrad, M., Bayır, H. (2017). Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol, 13, 81-90. [Google Scholar]
  • Kayagaki, N., Warming, S., Lamkanfi, M., Vande Walle, L., Louie, S., Dong, J., Newton, K., Qu, Y., Liu, J., Heldens, S., Zhang, J., Lee, W.P., Roose-Girma, M., Dixit, V.M. (2011). Non-canonical inflammasome activation targets caspase-11. Nature, 479, 117-121. [PubMed] [Google Scholar]
  • Kayagaki, N., Stowe, I.B., Lee, B.L., O’Rourke, K., Anderson, K., Warming, S., Cuellar, T., Haley, B., Roose-Girma, M., Phung, Q.T., Liu, P.S., Lill, J.R., Li, H., Wu, J., Kummerfeld, S., Zhang, J., Lee, W.P., Snipas, S.J., Salvesen, G.S., Morris, L.X., Fitzgerald, L., Zhang, Y., Bertram, E.M., Goodnow, C.C., Dixit, V.M. (2015). Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature, 526, 666-671. [CrossRef] [PubMed] [Google Scholar]
  • Kerr, J.F. (2002). History of the events leading to the formulation of the apoptosis concept. Toxicology, 181-182, 471-474. [CrossRef] [PubMed] [Google Scholar]
  • Kerr, J.F., Wyllie, A.H., Currie, A.R. (1972). Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 26, 239-257. [CrossRef] [PubMed] [Google Scholar]
  • Kohn-Gaone, J., Dwyer, B.J., Grzelak, C.A., Miller, G., Shackel, N.A., Ramm, G.A., McCaughan, G.W., Elsegood, C.L., Olynyk, J.K., Tirnitz-Parker, J.E.E. (2016). Divergent inflammatory, fibrogenic, and liver progenitor cell dynamics in two common mouse models of chronic liver injury. Am J Pathol, 186, 1762-1774. [CrossRef] [PubMed] [Google Scholar]
  • Krishna-Subramanian, S., Singer, S., Armaka, M., Banales, J.M., Holzer, K., Schirmacher, P., Walczak, H., Kollias, G., Pasparakis, M., Kondylis, V. (2019). RIPK1 and death receptor signaling drive biliary damage and early liver tumorigenesis in mice with chronic hepatobiliary injury. Cell Death Differ, 26, 2710-2726. [CrossRef] [PubMed] [Google Scholar]
  • Lamkanfi, M., Dixit, V.M. (2014). Mechanisms and functions of inflammasomes. Cell, 157, 1013-1022. [CrossRef] [PubMed] [Google Scholar]
  • Li, L.Y., Luo, X., Wang, X. (2001). Endonuclease G is an apoptotic DNase when released from mitochondria. Nature, 412, 95-99. [PubMed] [Google Scholar]
  • Lin, Y., Devin, A., Rodriguez, Y., Liu, Z.G. (1999). Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev, 13, 2514-2526. [CrossRef] [PubMed] [Google Scholar]
  • Lo, M., Wang, Y.Z., Gout, P.W. (2008). The x(c)- cystine/glutamate antiporter: A potential target for therapy of cancer and other diseases. J Cell Physiol, 215, 593-602. [Google Scholar]
  • Loguercio, C., De Girolamo, V., de Sio, I., Tuccillo, C., Ascione, A., Baldi, F., Budillon, G., Cimino, L., Di Carlo, A., Di Marino, M.P., Morisco, F, Picciotto, F, Terracciano, L, Vecchione, R., Verde, V., Del Vecchio Blanco, C. (2001). Non-alcoholic fatty liver disease in an area of southern Italy: Main clinical, histological, and pathophysiological aspects. J Hepatol, 35, 568-574. [CrossRef] [PubMed] [Google Scholar]
  • Lu, S.C. (2013). Glutathione synthesis. Biochim Biophys Acta, 1830, 3143-3153. [CrossRef] [PubMed] [Google Scholar]
  • Luedde, T., Kaplowitz, N., Schwabe, R.F. (2014). Cell death and cell death responses in liver disease: Mechanisms and clinical relevance. Gastroenterology, 147, 765-783 e764. [CrossRef] [PubMed] [Google Scholar]
  • Machado, M.V., Michelotti, G.A., de Almeida Pereira, T.A., Boursier, J., Kruger, L., Swiderska-Syn, M., Karaca, G., Xie, G., Guy, C.D., Bohinc, B., Lindblom, K.R., Johnson, E., Kornbluth, S., Diehl, A.M. (2015). Reduced lipoapoptosis, hedgehog pathway activation and fibrosis in caspase-2 deficient mice with non-alcoholic steatohepatitis. Gut, 64, 1148-1157. [CrossRef] [PubMed] [Google Scholar]
  • Machado, M.V., Michelotti, G.A., Jewell, M.L., Pereira, T.A., Xie, G., Premont, R.T., Diehl, A.M. (2016). Caspase-2 promotes obesity, the metabolic syndrome and nonalcoholic fatty liver disease. Cell Death Dis, 7, e2096. [CrossRef] [PubMed] [Google Scholar]
  • Majdi, A., Aoudjehane, L., Ratziu, V., Islam, T., Afonso, M.B., Conti, F., Mestiri, T., Lagouge, M., Foufelle, F., Ballenghien, F., Ledent, T., Moldes, M., Cadoret, A., Fouassier, L., Delaunay, J.L., Aït-Slimane, T., Courtois, G., Fève, B., Scatton, O., Prip-Buus, C., Rodrigues, C.M.P., Housset, C., Gautheron, J. (2019). Inhibition of receptor-interacting protein kinase 1 improves experimental non-alcoholic fatty liver disease. J Hepatol, DOI: 10.1016/j.jhep.2019.11.008. [Google Scholar]
  • Mandal, P., Berger, S.B., Pillay, S., Moriwaki, K., Huang, C., Guo, H., Lich, J.D., Finger, J., Kasparcova, V., Votta, B., Ouellette, M., King, B.W., Wisnoski, D., Lakdawala, A.S., DeMartino, M.P., Casillas, L.N., Haile, P.A., Sehon, C.A., Marquis, R.W., Upton, J., Daley-Bauer, L.P., Roback, L., Ramia, N., Dovey, C.M., Carette, J.E., Chan, F.K., Bertin, J., Gough, P.J., Mocarski, E.S., Kaiser, W.J. (2014). RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol Cell, 56, 481-495. [CrossRef] [PubMed] [Google Scholar]
  • Mompean, M., Li, W., Li, J., Laage, S., Siemer, A.B., Bozkurt, G., Wu, H., McDermott, A.E. (2018). The structure of the necrosome RIPK1-RIPK3 core, a human hetero-amyloid signaling complex. Cell, 173, 1244-1253 e1210. [CrossRef] [PubMed] [Google Scholar]
  • Mridha, A.R., Wree, A., Robertson, A.A.B., Yeh, M.M., Johnson, C.D., Van Rooyen, D.M., Haczeyni, F., Teoh, N.C., Savard, C., Ioannou, G.N., Masters, S.L., Schroder, K, Cooper, M.A., Feldstein, A.E., Farrell, G.C. (2017). NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J Hepatol, 66, 1037-1046. [CrossRef] [PubMed] [Google Scholar]
  • Nelson, J.E., Wilson, L., Brunt, E.M., Yeh, M.M., Kleiner, D.E., Unalp-Arida, A., Kowdley, K.V., Nonalcoholic Steatohepatitis Clinical Research Network (2011). Relationship between the pattern of hepatic iron deposition and histological severity in nonalcoholic fatty liver disease. Hepatology, 53, 448-457. [CrossRef] [PubMed] [Google Scholar]
  • Newton, K., Dugger, D.L., Wickliffe, K.E., Kapoor, N., de Almagro, M.C., Vucic, D., Komuves, L., Ferrando, R.E., French, D.M., Webster, J., Roose-Girma, M, Warming, S, Dixit, VM. (2014). Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science, 343, 1357-1360. [Google Scholar]
  • Orning, P., Lien, E., Fitzgerald, K.A. (2019). Gasdermins and their role in immunity and inflammation. J Exp Med, 216, 2453-2465. [CrossRef] [PubMed] [Google Scholar]
  • Rathkey, J.K., Zhao, J., Liu, Z., Chen, Y., Yang, J., Kondolf, H.C., Benson, B.L., Chirieleison, S.M., Huang, A.Y., Dubyak, G.R., Xiao, T.S., Li, X., Abbott, D.W. (2018). Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis. Sci Immunol, 3 (26): eaat2738. [CrossRef] [PubMed] [Google Scholar]
  • Ratziu, V., Sheikh, M.Y., Sanyal, A.J., Lim, J.K., Conjeevaram, H., Chalasani, N., Abdelmalek, M., Bakken, A., Renou, C., Palmer, M., Levine, R.A., Bhandari, B.R., Cornpropst, M., Liang, W., King, B., Mondou, E., Rousseau, F.S., McHutchison, J., Chojkier, M. (2012). A phase 2, randomized, double-blind, placebo-controlled study of GS-9450 in subjects with nonalcoholic steatohepatitis. Hepatology, 55, 419-428. [CrossRef] [PubMed] [Google Scholar]
  • Ray, C.A., Pickup, D.J. (1996). The mode of death of pig kidney cells infected with cowpox virus is governed by the expression of the crmA gene. Virology, 217, 384-391. [CrossRef] [PubMed] [Google Scholar]
  • Rogers, C., Fernandes-Alnemri, T., Mayes, L., Alnemri, D., Cingolani, G., Alnemri, E.S. (2017). Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun, 8, 14128. [PubMed] [Google Scholar]
  • Roychowdhury, S., McCullough, R.L., Sanz-Garcia, C., Saikia, P., Alkhouri, N., Matloob, A., Pollard, K.A., McMullen, M.R., Croniger, C.M., Nagy, L.E. (2016). Receptor interacting protein 3 protects mice from high-fat diet-induced liver injury. Hepatology, 64, 1518-1533. [CrossRef] [PubMed] [Google Scholar]
  • Saeed, W.K., Jun, D.W., Jang, K., Oh, J.H., Chae, Y.J., Lee, J.S., Koh, D.H., Kang, H.T. (2019). Decrease in fat de novo synthesis and chemokine ligand expression in non-alcoholic fatty liver disease caused by inhibition of mixed lineage kinase domain-like pseudokinase. J Gastroenterol Hepatol, 34, 2206-2218. [CrossRef] [PubMed] [Google Scholar]
  • Sanyal, A.J., Chalasani, N., Kowdley, K.V., McCullough, A., Diehl, A.M., Bass, N.M., Neuschwander-Tetri, B.A., Lavine, J.E., Tonascia, J., Unalp, A., Van Natta , M, Clark , J, Brunt, EM, Kleiner, DE, Hoofnagle, JH, Robuck, PR, NASH, CRN. (2010). Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med, 362, 1675-1685. [Google Scholar]
  • Schuster, S., Cabrera, D., Arrese, M., Feldstein, A.E. (2018). Triggering and resolution of inflammation in NASH. Nat Rev Gastroenterol Hepatol, 15, 349-364. [CrossRef] [PubMed] [Google Scholar]
  • Shi, J., Zhao, Y., Wang, Y., Gao, W., Ding, J., Li, P., Hu, L., Shao, F. (2014). Inflammatory caspases are innate immune receptors for intracellular LPS. Nature, 514, 187-192. [CrossRef] [PubMed] [Google Scholar]
  • Shi, J., Zhao, Y., Wang, K., Shi, X., Wang, Y., Huang, H., Zhuang, Y., Cai, T., Wang, F., Shao, F. (2015). Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 526, 660-665. [CrossRef] [PubMed] [Google Scholar]
  • Skouta, R., Dixon, S.J., Wang, J., Dunn, D.E., Orman, M., Shimada, K., Rosenberg, P.A., Lo, D.C., Weinberg, J.M., Linkermann, A., Stockwell, B.R. (2014). Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc, 136, 4551-4556. [Google Scholar]
  • Sun, L., Wang, H., Wang, Z., He, S., Chen, S., Liao, D., Wang, L., Yan, J., Liu, W., Lei, X., Wang, X. (2012). Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell, 148, 213-227. [CrossRef] [PubMed] [Google Scholar]
  • Szabo, G., Petrasek, J. (2015). Inflammasome activation and function in liver disease. Nat Rev Gastroenterol Hepatol, 12, 387-400. [CrossRef] [PubMed] [Google Scholar]
  • Tang, D., Kang, R., Berghe, T.V., Vandenabeele, P., Kroemer, G. (2019). The molecular machinery of regulated cell death. Cell Res, 29, 347-364. [CrossRef] [PubMed] [Google Scholar]
  • Tao, L., Yi, Y., Chen, Y., Zhang, H., Jie, J., Zhang, W., Xu, Q., Li, Y., Orning, P., Lien, E., Zhao, M., Ling, L., Ding, Z., Wu, C., Ding, Q., Wang, J., Zhang, J., Weng, D. (2020). RIP1 kinase activity promotes steatohepatitis through mediating cell death and inflammation in macrophages. bioRxiv, DOI: 10.1101/2020.01.07.895516. [Google Scholar]
  • Tenev, T., Bianchi, K., Darding, M., Broemer, M., Langlais, C., Wallberg, F., Zachariou, A., Lopez, J., MacFarlane, M., Cain, K., Meier, P. (2011). The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell, 43, 432-448. [CrossRef] [PubMed] [Google Scholar]
  • Thapaliya, S., Wree, A., Povero, D., Inzaugarat, M.E., Berk, M., Dixon, L., Papouchado, B.G., Feldstein, A.E. (2014). Caspase 3 inactivation protects against hepatic cell death and ameliorates fibrogenesis in a diet-induced NASH model. Dig Dis Sci, 59, 1197-1206. [CrossRef] [PubMed] [Google Scholar]
  • Tosello-Trampont, A.C., Landes, S.G., Nguyen, V., Novobrantseva, T.I., Hahn, Y.S. (2012). Kuppfer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-alpha production. J Biol Chem, 287, 40161-40172. [CrossRef] [PubMed] [Google Scholar]
  • Tsochatzis, E.A., Newsome, P.N. (2018). Non-alcoholic fatty liver disease and the interface between primary and secondary care. Lancet Gastroenterol Hepatol, 3, 509-517. [CrossRef] [PubMed] [Google Scholar]
  • Tsurusaki, S., Tsuchiya, Y., Koumura, T., Nakasone, M., Sakamoto, T., Matsuoka, M., Imai, H., Yuet-Yin Kok, C., Okochi, H., Nakano, H., Miyajima, A., Tanaka, M. (2019). Hepatic ferroptosis plays an important role as the trigger for initiating inflammation in nonalcoholic steatohepatitis. Cell Death Dis, 10, 449. [CrossRef] [PubMed] [Google Scholar]
  • Valenti, L., Moscatiello, S., Vanni, E., Fracanzani, A.L., Bugianesi, E., Fargion, S., Marchesini, G. (2011). Venesection for non-alcoholic fatty liver disease unresponsive to lifestyle counselling – a propensity score-adjusted observational study. QJM, 104, 141-149. [CrossRef] [PubMed] [Google Scholar]
  • van Loo, G., Saelens, X., van Gurp, M., MacFarlane, M., Martin, S.J., Vandenabeele, P. (2002a). The role of mitochondrial factors in apoptosis: A Russian roulette with more than one bullet. Cell Death Differ, 9, 1031-1042. [CrossRef] [PubMed] [Google Scholar]
  • van Loo, G., van Gurp, M., Depuydt, B., Srinivasula, S.M., Rodriguez, I., Alnemri, E.S., Gevaert, K., Vandekerckhove, J., Declercq, W., Vandenabeele, P. (2002b). The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ, 9, 20-26. [CrossRef] [PubMed] [Google Scholar]
  • Vanaja, S.K., Rathinam, V.A., Fitzgerald, K.A. (2015). Mechanisms of inflammasome activation: Recent advances and novel insights. Trends Cell Biol, 25, 308-315. [Google Scholar]
  • Vanden Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H., Vandenabeele, P. (2014). Regulated necrosis: The expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol, 15, 135-147. [CrossRef] [PubMed] [Google Scholar]
  • Vanden Berghe, T., Kaiser, W.J., Bertrand, M.J., Vandenabeele, P. (2015). Molecular crosstalk between apoptosis, necroptosis, and survival signaling. Mol Cell Oncol, 2, e975093. [CrossRef] [PubMed] [Google Scholar]
  • Vercammen, D., Beyaert, R., Denecker, G., Goossens, V., Van Loo, G., Declercq, W., Grooten, J., Fiers, W., Vandenabeele, P. (1998). Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med, 187, 1477-1485. [CrossRef] [PubMed] [Google Scholar]
  • Wang, Y., Gao, W., Shi, X., Ding, J., Liu, W., He, H., Wang, K., Shao, F. (2017). Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature, 547, 99-103. [PubMed] [Google Scholar]
  • Witek, R.P., Stone, W.C., Karaca, F.G., Syn, W.K., Pereira, T.A., Agboola, K.M., Omenetti, A., Jung, Y., Teaberry, V., Choi, S.S., Guy, C.D., Pollard, J., Charlton, P., Diehl, A.M. (2009). Pan-caspase inhibitor VX-166 reduces fibrosis in an animal model of nonalcoholic steatohepatitis. Hepatology, 50, 1421-1430. [CrossRef] [PubMed] [Google Scholar]
  • Wree, A., Eguchi, A., McGeough, M.D., Pena, C.A., Johnson, C.D., Canbay, A., Hoffman, H.M., Feldstein, A.E. (2014). NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology, 59, 898-910. [CrossRef] [PubMed] [Google Scholar]
  • Wree, A., McGeough, M.D., Inzaugarat, M.E., Eguchi, A., Schuster, S., Johnson, C.D., Pena, C.A., Geisler, L.J., Papouchado, B.G., Hoffman, H.M., Feldstein, A.E. (2018). NLRP3 inflammasome driven liver injury and fibrosis: Roles of IL-17 and TNF in mice. Hepatology, 67, 736-749. [CrossRef] [PubMed] [Google Scholar]
  • Xie, Y., Hou, W., Song, X., Yu, Y., Huang, J., Sun, X., Kang, R., Tang, D. (2016). Ferroptosis: Process and function. Cell Death Differ, 23, 369-379. [CrossRef] [PubMed] [Google Scholar]
  • Xu, B., Jiang, M., Chu, Y., Wang, W., Chen, D., Li, X., Zhang, Z., Zhang, D., Fan, D., Nie, Y., Shao, F, Wu, K, Liang, J. (2018). Gasdermin D plays a key role as a pyroptosis executor of non-alcoholic steatohepatitis in humans and mice. J Hepatol, 68, 773-782. [CrossRef] [PubMed] [Google Scholar]
  • Xu, H., Du, X., Liu, G., Huang, S., Du, W., Zou, S., Tang, D., Fan, C., Xie, Y., Wei, Y., Tian, Y., Fu, X. (2019). The pseudokinase MLKL regulates hepatic insulin sensitivity independently of inflammation. Mol Metab, 23, 14-23. [CrossRef] [PubMed] [Google Scholar]
  • Yang, W.S., SriRamaratnam, R., Welsch, M.E., Shimada, K., Skouta, R., Viswanathan, V.S., Cheah, J.H., Clemons, P.A., Shamji, A.F., Clish, C.B., Brown, LM, Girotti, AW, Cornish, VW, Schreiber, SL, Stockwell, B.R. (2014). Regulation of ferroptotic cancer cell death by GPX4. Cell, 156, 317-331. [CrossRef] [PubMed] [Google Scholar]
  • Yang, W.S., Kim, K.J., Gaschler, M.M., Patel, M., Shchepinov, M.S., Stockwell, B.R. (2016). Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA, 113, E4966-4975. [CrossRef] [Google Scholar]
  • Zhang, D.W., Shao, J., Lin, J., Zhang, N., Lu, B.J., Lin, S.C., Dong, M.Q., Han, J. (2009). RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science, 325, 332-336. [Google Scholar]
  • Zychlinsky, A., Prevost, M.C., Sansonetti, P.J. (1992). Shigella flexneri induces apoptosis in infected macrophages. Nature, 358, 167-169. [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.