Accès gratuit
J. Soc. Biol.
Volume 201, Numéro 4, 2007
Journée Claude Bernard Régulation de l'expression génétique par les ARN
Page(s) 401 - 410
Section Les ARN et l'organisation de l'information génétique
Publié en ligne 5 mars 2008
  • Almeida, R. & Allshire, R.C. RNA silencing and genome regulation. Trends Cell Biol, 2005, 15, 251-258. [CrossRef] [PubMed] [Google Scholar]
  • Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116, 281-297. [CrossRef] [PubMed] [Google Scholar]
  • Brodersen, P. & Voinnet, O. The diversity of RNA silencing pathways in plants. Trends Genet, 2006, 22, 268-280. [CrossRef] [PubMed] [Google Scholar]
  • Buhler, M., Verdel, A. & Moazed, D. Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing. Cell, 2006, 125, 873-886. [CrossRef] [PubMed] [Google Scholar]
  • Buker, S.M., Iida, T., Buhler, M., Villen, J., Gygi, S.P., Nakayama, J. & Moazed, D. Two different Argonaute complexes are required for siRNA generation and heterochromatin assembly in fission yeast. Nat Struct Mol Biol, 2007, 14, 200-207. [CrossRef] [PubMed] [Google Scholar]
  • Cam, H.P., Sugiyama, T., Chen, E.S., Chen, X., FitzGerald, P.C. & Grewal, S.I. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nat Genet, 2005, 37, 809-819. [CrossRef] [PubMed] [Google Scholar]
  • Croce, C.M. & Calin, G.A. miRNAs, cancer, and stem cell division. Cell, 2005, 122, 6-7. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Deshpande, G., Calhoun, G. & Schedl, P. Drosophila argonaute-2 is required early in embryogenesis for the assembly of centric/centromeric heterochromatin, nuclear division, nuclear migration, and germ-cell formation. Genes Dev, 2005, 19, 1680-1685. [CrossRef] [PubMed] [Google Scholar]
  • Djupedal, I., Portoso, M., Spahr, H., Bonilla, C., Gustafsson, C.M., Allshire, R.C. & Ekwall, K. RNA Pol II subunit Rpb7 promotes centromeric transcription and RNAi-directed chromatin silencing. Genes Dev, 2005, 19, 2301-2306. [CrossRef] [PubMed] [Google Scholar]
  • Doe, C.L., Wang, G., Chow, C., Fricker, M.D., Singh, P.B. & Mellor, E.J. The fission yeast chromo domain encoding gene chp1(+) is required for chromosome segregation and shows a genetic interaction with alpha-tubulin. Nucleic Acids Res, 1998, 26, 4222-4229. [CrossRef] [PubMed] [Google Scholar]
  • Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E. & Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391, 806-811. [CrossRef] [PubMed] [Google Scholar]
  • Fukagawa, T., Nogami, M., Yoshikawa, M., Ikeno, M., Okazaki, T., Takami, Y., Nakayama, T. & Oshimura, M. Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat Cell Biol, 2004, 6, 784-791. [CrossRef] [PubMed] [Google Scholar]
  • Grewal, S.I. Transcriptional silencing in fission yeast. J Cell Physiol, 2000, 184, 311-318. [CrossRef] [PubMed] [Google Scholar]
  • Grewal, S.I. & Moazed, D. Heterochromatin and epigenetic control of gene expression. Science, 2003, 301, 798-802. [CrossRef] [PubMed] [Google Scholar]
  • Grimaud, C., Bantignies, F., Pal-Bhadra, M., Ghana, P., Bhadra, U. & Cavalli, G. RNAi components are required for nuclear clustering of Polycomb group response elements. Cell, 2006, 124, 957-971. [CrossRef] [PubMed] [Google Scholar]
  • Hall, I.M., Noma, K. & Grewal, S.I. RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proc Natl Acad Sci U S A, 2003, 100, 193-198. [CrossRef] [PubMed] [Google Scholar]
  • Hall, I.M., Shankaranarayana, G.D., Noma, K., Ayoub, N., Cohen, A. & Grewal, S.I. Establishment and maintenance of a heterochromatin domain. Science, 2002, 297, 2232-2237. [CrossRef] [PubMed] [Google Scholar]
  • Hansen, K.R., Ibarra, P.T. & Thon, G. Evolutionary-conserved telomere-linked helicase genes of fission yeast are repressed by silencing factors, RNAi components and the telomere-binding protein Taz1. Nucleic Acids Res, 2006, 34, 78-88. [CrossRef] [PubMed] [Google Scholar]
  • Horn, P.J. & Peterson, C.L. Heterochromatin assembly: a new twist on an old model. Chromosome Res, 2006, 14, 83-94. [CrossRef] [PubMed] [Google Scholar]
  • Irvine, D.V., Zaratiegui, M., Tolia, N.H., Goto, D.B., Chitwood, D.H., Vaughn, M.W., Joshua-Tor, L. & Martienssen, R.A. Argonaute slicing is required for heterochromatic silencing and spreading. Science, 2006, 313, 1134-1137. [CrossRef] [PubMed] [Google Scholar]
  • Janowski, B.A., Huffman, K.E., Schwartz, J.C., Ram, R., Nordsell, R., Shames, D.S., Minna, J.D. & Corey, D.R. Involvement of AGO1 and AGO2 in mammalian transcriptional silencing. Nat Struct Mol Biol, 2006, 13, 787-792. [CrossRef] [PubMed] [Google Scholar]
  • Jia, S., Noma, K. & Grewal, S.I. RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins. Science, 2004, 304, 1971-1976. [CrossRef] [PubMed] [Google Scholar]
  • Kanellopoulou, C., Muljo, S.A., Kung, A.L., Ganesan, S., Drapkin, R., Jenuwein, T., Livingston, D.M. & Rajewsky, K. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev, 2005, 19, 489-501. [CrossRef] [PubMed] [Google Scholar]
  • Kanoh, J., Sadaie, M., Urano, T. & Ishikawa, F. Telomere binding protein Taz1 establishes Swi6 heterochromatin independently of RNAi at telomeres. Curr Biol, 2005, 15, 1808-1819. [CrossRef] [PubMed] [Google Scholar]
  • Kato, H., Goto, D.B., Martienssen, R.A., Urano, T., Furukawa, K. & Murakami, Y. RNA polymerase II is required for RNAi-dependent heterochromatin assembly. Science, 2005, 309, 467-469. [CrossRef] [PubMed] [Google Scholar]
  • Kim, D.H., Villeneuve, L.M., Morris, K.V. & Rossi, J.J. Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nat Struct Mol Biol, 2006, 13, 793-797. [CrossRef] [PubMed] [Google Scholar]
  • Lei, E.P. & Corces, V.G. RNA interference machinery influences the nuclear organization of a chromatin insulator. Nat Genet, 2006, 38, 936-941. [CrossRef] [PubMed] [Google Scholar]
  • Maison, C., Bailly, D., Peters, A.H., Quivy, J.P., Roche, D., Taddei, A., Lachner, M., Jenuwein, T. & Almouzni, G. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat Genet, 2002, 30, 329-334. [CrossRef] [PubMed] [Google Scholar]
  • Martienssen, R.A., Zaratiegui, M. & Goto, D.B. RNA interference and heterochromatin in the fission yeast Schizosaccharomyces pombe. Trends Genet, 2005, 21, 450-456. [CrossRef] [PubMed] [Google Scholar]
  • Matzke, M.A. & Birchler, J.A. RNAi-mediated pathways in the nucleus. Nat Rev Genet, 2005, 6, 24-35. [CrossRef] [PubMed] [Google Scholar]
  • Mochizuki, K., Fine, N.A., Fujisawa, T. & Gorovsky, M.A. Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in tetrahymena. Cell, 2002, 110, 689-699. [CrossRef] [PubMed] [Google Scholar]
  • Morris, K.V. siRNA-mediated transcriptional gene silencing: the potential mechanism and a possible role in the histone code. Cell Mol Life Sci, 2005, 62, 3057-3066. [CrossRef] [PubMed] [Google Scholar]
  • Morris, K.V. Therapeutic potential of siRNA-mediated transcriptional gene silencing. Biotechniques, 2006, Suppl, 7-13. [Google Scholar]
  • Motamedi, M.R., Verdel, A., Colmenares, S.U., Gerber, S.A., Gygi, S.P. & Moazed, D. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell, 2004, 119, 789-802. [CrossRef] [PubMed] [Google Scholar]
  • Muchardt, C., Guilleme, M., Seeler, J.S., Trouche, D., Dejean, A. & Yaniv, M. Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1alpha. EMBO Rep, 2002, 3, 975-981. [CrossRef] [PubMed] [Google Scholar]
  • Nowacki, M., Zagorski-Ostoja, W. & Meyer, E. Nowa1p and Nowa2p: novel putative RNA binding proteins involved in trans-nuclear crosstalk in Paramecium tetraurelia. Curr Biol, 2005, 15, 1616-1628. [CrossRef] [PubMed] [Google Scholar]
  • Pal-Bhadra, M., Leibovitch, B.A., Gandhi, S.G., Rao, M., Bhadra, U., Birchler, J.A. & Elgin, S.C. Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science, 2004, 303, 669-672. [CrossRef] [PubMed] [Google Scholar]
  • Partridge, J.F., Scott, K.S., Bannister, A.J., Kouzarides, T. & Allshire, R.C. cis-acting DNA from fission yeast centromeres mediates histone H3 methylation and recruitment of silencing factors and cohesin to an ectopic site. Curr Biol, 2002, 12, 1652-1660. [CrossRef] [PubMed] [Google Scholar]
  • Petrie, V.J., Wuitschick, J.D., Givens, C.D., Kosinski, A.M. & Partridge, J.F. RNA interference (RNAi)-dependent and RNAi-independent association of the Chp1 chromodomain protein with distinct heterochromatic loci in fission yeast. Mol Cell Biol, 2005, 25, 2331-2346. [CrossRef] [PubMed] [Google Scholar]
  • Reinhart, B.J. & Bartel, D.P. Small RNAs correspond to centromere heterochromatic repeats. Science, 2002, 297, 1831. [CrossRef] [PubMed] [Google Scholar]
  • Sugiyama, T., Cam, H., Verdel, A., Moazed, D. & Grewal, S.I. RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. Proc Natl Acad Sci U S A, 2005, 102, 152-157. [CrossRef] [PubMed] [Google Scholar]
  • Thon, G. & Verhein-Hansen, J. Four chromo-domain proteins of Schizosaccharomyces pombe differentially repress transcription at various chromosomal locations. Genetics, 2000, 155, 551-568. [PubMed] [Google Scholar]
  • Verdel, A., Jia, S., Gerber, S., Sugiyama, T., Gygi, S., Grewal, S.I. & Moazed, D. RNAi-mediated targeting of heterochromatin by the RITS complex. Science, 2004, 303, 672-676. [CrossRef] [PubMed] [Google Scholar]
  • Verdel, A. & Moazed, D. RNAi-directed assembly of heterochromatin in fission yeast. FEBS Lett, 2005, 579, 5872-5878. [CrossRef] [PubMed] [Google Scholar]
  • Volpe, T.A., Kidner, C., Hall, I.M., Teng, G., Grewal, S.I. & Martienssen, R.A. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science, 2002, 297, 1833-1837. [CrossRef] [PubMed] [Google Scholar]
  • Volpe, T., Schramke, V., Hamilton, G.L., White, S.A., Teng, G., Martienssen, R.A. & Allshire, R.C. RNA interference is required for normal centromere function in fission yeast. Chromosome Res, 2003, 11, 137-146. [CrossRef] [PubMed] [Google Scholar]
  • Wassenegger, M. The role of the RNAi machinery in heterochromatin formation. Cell, 2005, 122, 13-16. [CrossRef] [PubMed] [Google Scholar]
  • Yang, N. & Kazazian, H.H., Jr. L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat Struct Mol Biol, 2006, 13, 763-771. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.