Accès gratuit
Numéro
J. Soc. Biol.
Volume 201, Numéro 4, 2007
Journée Claude Bernard Régulation de l'expression génétique par les ARN
Page(s) 349 - 358
Section L'interférence par l'ARN: la dégradation des ARN
DOI https://doi.org/10.1051/jbio:2007905
Publié en ligne 5 mars 2008
  • Aakalu, G., Smith, W. B., Nguyen, N., Jiang, C. and Schuman, E. M. (2001). Dynamic visualization of local protein synthesis in hippocampal neurons. Neuron 30, 489-502. [CrossRef] [PubMed] [Google Scholar]
  • Bhattacharyya, S. N., Habermacher, R., Martine, U., Closs, E. I. and Filipowicz, W. (2006). Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125, 1111-24. [CrossRef] [PubMed] [Google Scholar]
  • Brengues, M., Teixeira, D. and Parker, R. (2005). Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 310, 486-9. [CrossRef] [PubMed] [Google Scholar]
  • Caudy, A. A., Myers, M., Hannon, G. J. and Hammond, S. M. (2002). Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev. 16, 2491-6. [CrossRef] [PubMed] [Google Scholar]
  • Chu, C. Y. and Rana, T. M. (2006). Translation Repression in Human Cells by MicroRNA-Induced Gene Silencing Requires RCK/p54. PLoS Biol. 4, e210. [Google Scholar]
  • Coller, J. M., Tucker, M., Sheth, U., Valencia-Sanchez, M. A. and Parker, R. (2001). The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. Rna 7, 1717-27. [CrossRef] [PubMed] [Google Scholar]
  • Cougot, N., Babajko, S. and Seraphin, B. (2004). Cytoplasmic foci are sites of mRNA decay in human cells. J. Cell Biol. 165, 31-40. [CrossRef] [PubMed] [Google Scholar]
  • Cunningham, K. S., Hanson, M. N. and Schoenberg, D. R. (2001). Polysomal ribonuclease 1 exists in a latent form on polysomes prior to estrogen activation of mRNA decay. Nucleic Acids Res. 29, 1156-62. [CrossRef] [PubMed] [Google Scholar]
  • Dang, Y., Kedersha, N., Low, W. K., Romo, D., Gorospe, M., Kaufman, R., Anderson, P. and Liu, J. O. (2006). Eukaryotic initiation factor 2alpha-independent pathway of stress granule induction by the natural product pateamine A. J. Biol. Chem. 281, 32870-8. [CrossRef] [Google Scholar]
  • Eystathioy, T., Chan, E. K., Tenenbaum, S. A., Keene, J. D., Griffith, K. and Fritzler, M. J. (2002). A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Mol. Biol. Cell 13, 1338-51. [CrossRef] [PubMed] [Google Scholar]
  • Ferraiuolo, M. A., Basak, S., Dostie, J., Murray, E. L., Schoenberg, D. R. and Sonenberg, N. (2005). A role for the eIF4E-binding protein 4E-T in P-body formation and mRNA decay. J. Cell. Biol. 170, 913-24. [CrossRef] [PubMed] [Google Scholar]
  • Gilks, N., Kedersha, N., Ayodele, M., Shen, L., Stoecklin, G., Dember, L. M. and Anderson, P. (2004). Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol. Biol. Cell 15, 5383-98. [CrossRef] [PubMed] [Google Scholar]
  • Ingelfinger, D., Arndt-Jovin, D. J., Luhrmann, R. and Achsel, T. (2002). The human LSm1-7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrnl in distinct cytoplasmic foci. Rna 8, 1489-501. [PubMed] [Google Scholar]
  • Ishizuka, A., Siomi, M. C. and Siomi, H. (2002). A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev. 16, 2497-508. [CrossRef] [PubMed] [Google Scholar]
  • Jakymiw, A., Lian, S., Eystathioy, T., Li, S., Satoh, M., Hamel, J. C., Fritzler, M. J. and Chan, E. K. (2005). Disruption of GW bodies impairs mammalian RNA interference. Nat. Cell Biol. 7, 1267-74. [CrossRef] [PubMed] [Google Scholar]
  • Jin, P., Zarnescu, D. C., Ceman, S., Nakamoto, M., Mowrey, J., Jongens, T. A., Nelson, D. L., Moses, K. and Warren, S. T. (2004). Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat. Neurosci. 7, 113-7. [CrossRef] [PubMed] [Google Scholar]
  • Jing, Q., Huang, S., Guth, S., Zarubin, T., Motoyama, A., Chen, J., Di Padova, F., Lin, S. C., Gram, H. and Han, J. (2005). Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120, 623-34. [CrossRef] [PubMed] [Google Scholar]
  • Katsanou, V., Papadaki, O., Milatos, S., Blackshear, P. J., Anderson, P., Kollias, G. and Kontoyiannis, D. L. (2005). HuR as a negative posttranscriptional modulator in inflammation. Mol. Cell 19, 777-89. [CrossRef] [PubMed] [Google Scholar]
  • Kayali, F., Montie, H. L., Rafols, J. A. and DeGracia, D. J. (2005). Prolonged translation arrest in reperfused hippocampal cornu Ammonis 1 is mediated by stress granules. Neuroscience 134, 1223-45. [CrossRef] [PubMed] [Google Scholar]
  • Kedersha, N., Chen, S., Gilks, N., Li, W., Miller, I. J., Stahl, J. and Anderson, P. (2002). Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules. Mol. Biol. Cell 13, 195-210. [CrossRef] [PubMed] [Google Scholar]
  • Kedersha, N., Cho, M. R., Li, W., Yacono, P. W., Chen, S., Gilks, N., Golan, D. E. and Anderson, P. (2000). Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules. J. Cell Biol. 151, 1257-68. [CrossRef] [PubMed] [Google Scholar]
  • Kedersha, N., Stoecklin, G., Ayodele, M., Yacono, P., Lykke-Andersen, J., Fritzler, M. J., Scheuner, D., Kaufman, R. J., Golan, D. E. and Anderson, P. (2005). Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J. Cell Biol. 169, 871-84. [CrossRef] [PubMed] [Google Scholar]
  • Kedersha, N. L., Gupta, M., Li, W., Miller, I. and Anderson, P. (1999). RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J. Cell Biol. 147, 1431-42. [CrossRef] [PubMed] [Google Scholar]
  • Kim, S. H., Dong, W. K., Weiler, I. J. and Greenough, W. T. (2006). Fragile X mental retardation protein shifts between polyribosomes and stress granules after neuronal injury by arsenite stress or in vivo hippocampal electrode insertion. J. Neurosci. 26, 2413-8. [CrossRef] [PubMed] [Google Scholar]
  • Kimball, S. R., Horetsky, R. L., Ron, D., Jefferson, L. S. and Harding, H. P. (2003). Mammalian stress granules represent sites of accumulation of stalled translation initiation complexes. Am. J. Physiol. Cell. Physiol. 284, C273-84. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Liu, J., Rivas, F. V., Wohlschlegel, J., Yates, J. R., 3rd, Parker, R. and Hannon, G. J. (2005a). A role for the P-body component GW182 in microRNA function. Nat. Cell Biol. 7, 1261-6. [CrossRef] [PubMed] [Google Scholar]
  • Liu, J., Valencia-Sanchez, M. A., Hannon, G. J. and Parker, R. (2005b). MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat. Cell Biol. 7, 719-23. [CrossRef] [PubMed] [Google Scholar]
  • Mazroui, R., Huot, M. E., Tremblay, S., Filion, C., Labelle, Y. and Khandjian, E. W. (2002). Trapping of messenger RNA by Fragile X Mental Retardation protein into cytoplasmic granules induces translation repression. Hum. Mol. Genet. 11, 3007-17. [CrossRef] [PubMed] [Google Scholar]
  • McInerney, G. M., Kedersha, N. L., Kaufman, R. J., Anderson, P. and Liljestrom, P. (2005). Importance of eIF2 Formula phosphorylation and stress granule assembly in alpha virus translation regulation. Mol. Biol. Cell 16, 3753-63. [Google Scholar]
  • Minshall, N., Thom, G. and Standart, N. (2001). A conserved role of a DEAD box helicase in mRNA masking. Rna 7, 1728-42. [CrossRef] [PubMed] [Google Scholar]
  • Orban, T. I. and Izaurralde, E. (2005). Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. Rna 11, 459-69. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Pillai, R. S., Bhattacharyya, S. N., Artus, C. G., Zoller, T., Cougot, N., Basyuk, E., Bertrand, E. and Filipowicz, W. (2005). Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309, 1573-6. [CrossRef] [PubMed] [Google Scholar]
  • Rehwinkel, J., Behm-Ansmant, I., Gatfield, D. and Izaurralde, E. (2005). A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. Rna 11, 1640-7. [CrossRef] [PubMed] [Google Scholar]
  • Schmitter, D., Filkowski, J., Sewer, A., Pillai, R. S., Oakeley, E. J., Zavolan, M., Svoboda, P. and Filipowicz, W. (2006). Effects of Dicer and Argonaute down-regulation on mRNA levels in human HEK293 cells. Nucleic Acid Res. 34, 4801-15. [CrossRef] [Google Scholar]
  • Sen, G. L. and Blau, H. M. (2005). Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat. Cell Biol. 7, 633-6. [CrossRef] [PubMed] [Google Scholar]
  • Sheth, U. and Parker, R. (2003). Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300, 805-8. [CrossRef] [PubMed] [Google Scholar]
  • Smith, J. A., Schmechel, S. C., Raghavan, A., Abelson, M., Reilly, C., Katze, M. G., Kaufman, R. J., Bohjanen, P. R. and Schiff, L. A. (2006). Reovirus induces and benefits from an integrated cellular stress response. J. Virol. 80, 2019-33. [CrossRef] [PubMed] [Google Scholar]
  • Stoecklin, G., Stubbs, T., Kedersha, N., Wax, S., Rigby, W. F., Blackwell, T. K. and Anderson, P. (2004). MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay. Embo J. 23, 1313-24. [CrossRef] [PubMed] [Google Scholar]
  • Tanaka, K. J., Ogawa, K., Takagi, M., Imamoto, N., Matsumoto, K. and Tsujimoto, M. (2006). RAP55, a cytoplasmic mRNP component, represses translation in Xenopus oocytes. J. Biol. Chem. [Google Scholar]
  • Thomas, M. G., Martinez Tosar, L. J., Loschi, M., Pasquini, J. M., Correale, J., Kindler, S. and Boccaccio, G. L. (2005). Staufen recruitment into stress granules does not affect early mRNA transport in oligodendrocytes. Mol. Biol. Cell 16, 405-20. [CrossRef] [PubMed] [Google Scholar]
  • Tourriere, H., Chebli, K., Zekri, L., Courselaud, B., Blanchard, J. M., Bertrand, E. and Tazi, J. (2003). The RasGAP-associated endoribonuclease G3BP assembles stress granules. J. Cell. Biol. 160, 823-31. [CrossRef] [PubMed] [Google Scholar]
  • Unterholzner, L. and Izaurralde, E. (2004). SMG7 acts as a molecular link between mRNA surveillance and mRNA decay. Mol. Cell 16, 587-96. [CrossRef] [PubMed] [Google Scholar]
  • van Dijk, E., Cougot, N., Meyer, S., Babajko, S., Wahle, E. and Seraphin, B. (2002). Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. Embo J. 21, 6915-24. [CrossRef] [PubMed] [Google Scholar]
  • Wilczynska, A., Aigueperse, C., Kress, M., Dautry, F. and Weil, D. (2005). The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules. J. Cell Sci. 118, 981-92. [CrossRef] [PubMed] [Google Scholar]
  • Yang, F., Peng, Y., Murray, E. L., Otsuka, Y., Kedersha, N. and Schoenberg, D. R. (2006a). Polysome-Bound Endonuclease PMR1 Is Targeted to Stress Granules via Stress-Specific Binding to TIA-1. Mol. Cell. Biol. 26, 8803-8813. [CrossRef] [PubMed] [Google Scholar]
  • Yang, W. H., Yu, J. H., Gulick, T., Bloch, K. D. and Bloch, D. B. (2006b). RNA-associated protein 55 (RAP55) localizes to mRNA processing bodies and stress granules. Rna 12, 547-54. [CrossRef] [PubMed] [Google Scholar]
  • Yang, Z., Jakymiw, A., Wood, M. R., Eystathioy, T., Rubin, R. L., Fritzler, M. J. and Chan, E. K. (2004). GW182 is critical for the stability of GW bodies expressed during the cell cycle and cell proliferation. J. Cell Sci. 117, 5567-78. [CrossRef] [PubMed] [Google Scholar]
  • Zekri, L., Chebli, K., Tourriere, H., Nielsen, F. C., Hansen, T. V., Rami, A. and Tazi, J. (2005). Control of fetal growth and neonatal survival by the RasGAP-associated endoribonuclease G3BP. Mol. Cell. Biol. 25, 8703-16. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.