Accès gratuit
J. Soc. Biol.
Volume 201, Numéro 4, 2007
Journée Claude Bernard Régulation de l'expression génétique par les ARN
Page(s) 385 - 395
Section ARN et génétique non-mendélienne
Publié en ligne 5 mars 2008
  • Abu-Amero, S., Monk, D., Apostolidou, S., Stanier, P., and Moore, G. (2006). Imprinted genes and their role in human fetal growth. Cytogenet Genome. Res. 113, 262-270. [CrossRef] [PubMed] [Google Scholar]
  • Bachellerie, J.P., Cavaille, J., and Huttenhofer, A. (2002). The expanding snoRNA world. Biochimie 84, 775-790. [CrossRef] [PubMed] [Google Scholar]
  • Bagga, S., Bracht, J., Hunter, S., Massirer, K., Holtz, J., Eachus, R., and Pasquinelli, A.E. (2005). Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell. 122, 553-563. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Bartel, D.P., and Chen, C.Z. (2004). Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat. Rev. Genet. 5, 396-400. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Bernstein, B.E., Meissner, A., and Lander, E.S. (2007). The Mammalian epigenome. Cell. 128, 669-681. [CrossRef] [PubMed] [Google Scholar]
  • Bernstein, E., and Allis, C.D. (2005). RNA meets chromatin. Genes. Dev. 19, 1635-1655. [CrossRef] [PubMed] [Google Scholar]
  • Burger, J., Horn, D., Tonnies, H., Neitzel, H., and Reis, A. (2002). Familial interstitial 570 kbp deletion of the UBE3A gene region causing Angelman syndrome but not Prader-Willi syndrome. Am. J. Med. Genet. 111, 233-237. [CrossRef] [PubMed] [Google Scholar]
  • Burns, C.M., Chu, H., Rueter, S.M., Hutchinson, L.K., Canton, H., Sanders-Bush, E., and Emeson, R.B. (1997). Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387, 303-308. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Carninci, P., and Hayashizaki, Y. (2007). Noncoding RNA transcription beyond annotated genes. Curr. Opin. Genet. Dev. [Google Scholar]
  • Cavaille, J., Buiting, K., Kiefmann, M., Lalande, M., Brannan, C.I., Horsthemke, B., Bachellerie, J.P., Brosius, J., and Huttenhofer, A. (2000). Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc. Natl. Acad. Sci. U S A 97, 14311-14316. [Google Scholar]
  • Cavaille, J., Nicoloso, M., and Bachellerie, J.P. (1996). Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides. Nature 383, 732-735. [CrossRef] [PubMed] [Google Scholar]
  • Cavaille, J., Seitz, H., Paulsen, M., Ferguson-Smith, A.C., and Bachellerie, J.P. (2002). Identification of tandemly-repeated C/D snoRNA genes at the imprinted human 14q32 domain reminiscent of those at the Prader-Willi/Angelman syndrome region. Hum.. Mol. Genet. 11, 1527-1538. [CrossRef] [Google Scholar]
  • Cavaille, J., Vitali, P., Basyuk, E., Huttenhofer, A., and Bachellerie, J.P. (2001). A novel brain-specific box C/D small nucleolar RNA processed from tandemly repeated introns of a noncoding RNA gene in rats. J. Biol. Chem. 276, 26374-26383. [CrossRef] [PubMed] [Google Scholar]
  • Chamberlain, S.J., and Brannan, C.I. (2001). The Prader-Willi syndrome imprinting center activates the paternally expressed murine Ube3a antisense transcript but represses paternal Ube3a. Genomics 73, 316-322. [CrossRef] [PubMed] [Google Scholar]
  • Charlier, C., Segers, K., Karim, L., Shay, T., Gyapay, G., Cockett, N., and Georges, M. (2001). The callipyge mutation enhances the expression of coregulated imprinted genes in cis without affecting their imprinting status. Nat. Genet. 27, 367-369. [CrossRef] [PubMed] [Google Scholar]
  • Davis, E., Caiment, F., Tordoir, X., Cavaille, J., Ferguson-Smith, A., Cockett, N., Georges, M., and Charlier, C. (2005). RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus. Curr. Biol. 15, 743-749. [CrossRef] [PubMed] [Google Scholar]
  • Davis, E., Jensen, C.H., Schroder, H.D., Farnir, F., Shay-Hadfield, T., Kliem, A., Cockett, N., Georges, M., and Charlier, C. (2004). Ectopic expression of DLK1 protein in skeletal muscle of padumnal heterozygotes causes the callipyge phenotype. Curr. Biol. 14, 1858-1862. [CrossRef] [PubMed] [Google Scholar]
  • Ding, F., Prints, Y., Dhar, M.S., Johnson, D.K., Garnacho-Montero, C., Nicholls, R.D., and Francke, U. (2005). Lack of Pwcr1/MBII-85 snoRNA is critical for neonatal lethality in Prader-Willi syndrome mouse models. Mamm Genome 16, 424-431. [CrossRef] [PubMed] [Google Scholar]
  • Feil, R. (2006). Environmental and nutritional effects on the epigenetic regulation of genes. Mutat. Res. 600, 46-57. [CrossRef] [PubMed] [Google Scholar]
  • Freking, B.A., Murphy, S.K., Wylie, A.A., Rhodes, S.J., Keele, J.W., Leymaster, K.A., Jirtle, R.L., and Smith, T.P. (2002). Identification of the single base change causing the callipyge muscle hypertrophy phenotype, the only known example of polar overdominance in mammals. Genome Res. 12, 1496-1506. [CrossRef] [PubMed] [Google Scholar]
  • Gallagher, R.C., Pils, B., Albalwi, M., and Francke, U. (2002). Evidence for the role of PWCR1/HBII-85 C/D box small nucleolar RNAs in Prader-Willi syndrome. Am. J. Hum. Genet. 71, 669-678. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Georges, M., Charlier, C., and Cockett, N. (2003). The callipyge locus: evidence for the trans interaction of reciprocally imprinted genes. Trends Genet. 19, 248-252. [CrossRef] [PubMed] [Google Scholar]
  • Kawahara, Y., Zinshteyn, B., Sethupathy, P., Iizasa, H., Hatzigeorgiou, A.G., and Nishikura, K. (2007). Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315, 1137-1140. [CrossRef] [PubMed] [Google Scholar]
  • Kim, V.N. (2006). Small RNAs just got bigger: Piwi-interacting RNAs (piRNAs) in mammalian testes. Genes. Dev. 20, 1993-1997. [CrossRef] [PubMed] [Google Scholar]
  • Kishore, S., and Stamm, S. (2006). The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science 311, 230-232. [CrossRef] [PubMed] [Google Scholar]
  • Kiss, T. (2002). Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell. 109, 145-148. [CrossRef] [PubMed] [Google Scholar]
  • Kiss-Laszlo, Z., Henry, Y., Bachellerie, J.P., Caizergues-Ferrer, M., and Kiss, T. (1996). Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell. 85, 1077-1088. [CrossRef] [PubMed] [Google Scholar]
  • Kloosterman, W.P., and Plasterk, R.H. (2006). The diverse functions of microRNAs in animal development and disease. Dev. Cell. 11, 441-450. [CrossRef] [PubMed] [Google Scholar]
  • Kouzarides, T. (2007). Chromatin modifications and their function. Cell. 128, 693-705. [CrossRef] [PubMed] [Google Scholar]
  • Landers, M., Bancescu, D.L., Le Meur, E., Rougeulle, C., Glatt-Deeley, H., Brannan, C., Muscatelli, F., and Lalande, M. (2004). Regulation of the large (approximately 1000 kb) imprinted murine Ube3a antisense transcript by alternative exons upstream of Snurf/Snrpn. Nucleic. Acids Res. 32, 3480-3492. [CrossRef] [PubMed] [Google Scholar]
  • Le Meur, E., Watrin, F., Landers, M., Sturny, R., Lalande, M., and Muscatelli, F. (2005). Dynamic developmental regulation of the large non-coding RNA associated with the mouse 7C imprinted chromosomal region. Dev. Biol. 286, 587-600. [CrossRef] [PubMed] [Google Scholar]
  • Lewis, A., and Redrup, L. (2005). Genetic imprinting: conflict at the Callipyge locus. Curr. Biol. 15, R291-294. [CrossRef] [PubMed] [Google Scholar]
  • Lim, L.P., Lau, N.C., Garrett-Engele, P., Grimson, A., Schelter, J.M., Castle, J., Bartel, D.P., Linsley, P.S., and Johnson, J.M. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769-773. [CrossRef] [PubMed] [Google Scholar]
  • Lin, S.P., Youngson, N., Takada, S., Seitz, H., Reik, W., Paulsen, M., Cavaille, J., and Ferguson-Smith, A.C. (2003). Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12. Nat. Genet. 35, 97-102. [CrossRef] [PubMed] [Google Scholar]
  • Mancini-Dinardo, D., Steele, S.J., Levorse, J.M., Ingram, R.S., and Tilghman, S.M. (2006). Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes. Dev. 20, 1268-1282. [CrossRef] [PubMed] [Google Scholar]
  • Mattick, J.S., and Makunin, I.V. (2006). Non-coding RNA. Hum. Mol. Genet. 15 Spec No 1, R17-29. [Google Scholar]
  • Moore, T., and Haig, D. (1991). Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet. 7, 45-49. [PubMed] [Google Scholar]
  • Nicholls, R.D., and Knepper, J.L. (2001). Genome organization, function, and imprinting in Prader-Willi and Angelman syndromes. Annu. Rev. Genomics Hum. Genet. 2, 153-175. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Niswender, C.M., Copeland, S.C., Herrick-Davis, K., Emeson, R.B., and Sanders-Bush, E. (1999). RNA editing of the human serotonin 5-hydroxytryptamine 2C receptor silences constitutive activity. J. Biol. Chem. 274, 9472-9478. [CrossRef] [PubMed] [Google Scholar]
  • Niwa, R., and Slack, F.J. (2007). The evolution of animal microRNA function. Curr. Opin. Genet. Dev. [Google Scholar]
  • Nottrott, S., Simard, M.J., and Richter, J.D. (2006). Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat. Struct. Mol. Biol. 13, 1108-1114. [CrossRef] [PubMed] [Google Scholar]
  • O'Neill, M.J. (2005). The influence of non-coding RNAs on allele-specific gene expression in mammals. Hum. Mol. Genet. 14 Spec No 1, R113-120. [Google Scholar]
  • Petersen, C.P., Bordeleau, M.E., Pelletier, J., and Sharp, P.A. (2006). Short RNAs repress translation after initiation in mammalian cells. Mol. Cell. 21, 533-542. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Pillai, R.S. (2005). MicroRNA function: multiple mechanisms for a tiny RNA? Rna 11, 1753-1761. [Google Scholar]
  • Pillai, R.S., Bhattacharyya, S.N., Artus, C.G., Zoller, T., Cougot, N., Basyuk, E., Bertrand, E., and Filipowicz, W. (2005). Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309, 1573-1576. [CrossRef] [PubMed] [Google Scholar]
  • Pillai, R.S., Bhattacharyya, S.N., and Filipowicz, W. (2006). Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell. Biol. [Google Scholar]
  • Reik, W., and Walter, J. (2001). Genomic imprinting: parental influence on the genome. Nat. Rev. Genet. 2, 21-32. [CrossRef] [PubMed] [Google Scholar]
  • Rougeulle, C., Cardoso, C., Fontes, M., Colleaux, L., and Lalande, M. (1998). An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript. Nat. Genet. 19, 15-16. [CrossRef] [PubMed] [Google Scholar]
  • Royo, H., Bortolin, M.L., Seitz, H., and Cavaille, J. (2006). Small non-coding RNAs and genomic imprinting. Cytogenet Genome Res. 113, 99-108. [CrossRef] [PubMed] [Google Scholar]
  • Runte, M., Huttenhofer, A., Gross, S., Kiefmann, M., Horsthemke, B., and Buiting, K. (2001). The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A. Hum. Mol. Genet. 10, 2687-2700. [CrossRef] [PubMed] [Google Scholar]
  • Runte, M., Varon, R., Horn, D., Horsthemke, B., and Buiting, K. (2005). Exclusion of the C/D box snoRNA gene cluster HBII-52 from a major role in Prader-Willi syndrome. Hum. Genet. 116, 228-230. [CrossRef] [PubMed] [Google Scholar]
  • Saito, Y., Liang, G., Egger, G., Friedman, J.M., Chuang, J.C., Coetzee, G.A., and Jones, P.A. (2006). Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer. Cell. 9, 435-443. [CrossRef] [PubMed] [Google Scholar]
  • Schratt, G.M., Tuebing, F., Nigh, E.A., Kane, C.G., Sabatini, M.E., Kiebler, M., and Greenberg, M.E. (2006). A brain-specific microRNA regulates dendritic spine development. Nature 439, 283-289. [CrossRef] [PubMed] [Google Scholar]
  • Schule, B., Albalwi, M., Northrop, E., Francis, D.I., Rowell, M., Slater, H., McKinlay Gardner, R.J., and Francke, U. (2005). Molecular breakpoint cloning and gene expression studies of a novel translocation t(4;15)(q27;q11.2) associated with Prader-Willi syndrome. BMC Med. Genet. 6, 18. [Google Scholar]
  • Seidl, C.I., Stricker, S.H., and Barlow, D.P. (2006). The imprinted Air ncRNA is an atypical RNAPII transcript that evades splicing and escapes nuclear export. Embo. J. 25, 3565-3575. [CrossRef] [PubMed] [Google Scholar]
  • Seitz, H., Royo, H., Bortolin, M.L., Lin, S.P., Ferguson-Smith, A.C., and Cavaille, J. (2004a). A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome. Res. 14, 1741-1748. [CrossRef] [PubMed] [Google Scholar]
  • Seitz, H., Royo, H., Lin, S.P., Youngson, N., Ferguson-Smith, A.C., and Cavaille, J. (2004b). Imprinted small RNA genes. Biol. Chem. 385, 905-911. [CrossRef] [PubMed] [Google Scholar]
  • Seitz, H., Youngson, N., Lin, S.P., Dalbert, S., Paulsen, M., Bachellerie, J.P., Ferguson-Smith, A.C., and Cavaille, J. (2003). Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene. Nat. Genet. 34, 261-262. [CrossRef] [PubMed] [Google Scholar]
  • Sleutels, F., Zwart, R., and Barlow, D.P. (2002). The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415, 810-813. [CrossRef] [PubMed] [Google Scholar]
  • Smit, M., Segers, K., Carrascosa, L.G., Shay, T., Baraldi, F., Gyapay, G., Snowder, G., Georges, M., Cockett, N., and Charlier, C. (2003). Mosaicism of Solid Gold supports the causality of a noncoding A-to-G transition in the determinism of the callipyge phenotype. Genetics 163, 453-456. [PubMed] [Google Scholar]
  • Smith, F.M., Garfield, A.S., and Ward, A. (2006). Regulation of growth and metabolism by imprinted genes. Cytogenet. Genome Res. 113, 279-291. [CrossRef] [PubMed] [Google Scholar]
  • Surani, M.A., Hayashi, K., and Hajkova, P. (2007). Genetic and epigenetic regulators of pluripotency. Cell. 128, 747-762. [CrossRef] [PubMed] [Google Scholar]
  • Tai, H.C., and Schuman, E.M. (2006). MicroRNA: microRNAs reach out into dendrites. Curr. Biol. 16, R121-123. [CrossRef] [PubMed] [Google Scholar]
  • Varrault, A., Gueydan, C., Delalbre, A., Bellmann, A., Houssami, S., Aknin, C., Severac, D., Chotard, L., Kahli, M., Le Digarcher, A., Pavlidis, P., and Journot, L. (2006). Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev. Cell. 11, 711-722. [CrossRef] [PubMed] [Google Scholar]
  • Vitali, P., Basyuk, E., Le Meur, E., Bertrand, E., Muscatelli, F., Cavaille, J., and Huttenhofer, A. (2005). ADAR2-mediated editing of RNA substrates in the nucleolus is inhibited by C/D small nucleolar RNAs. J. Cell. Biol. 169, 745-753. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Wang, Q., O'Brien, P.J., Chen, C.X., Cho, D.S., Murray, J.M., and Nishikura, K. (2000). Altered G protein-coupling functions of RNA editing isoform and splicing variant serotonin2C receptors. J. Neurochem. 74, 1290-1300. [CrossRef] [PubMed] [Google Scholar]
  • Wirth, J., Back, E., Huttenhofer, A., Nothwang, H.G., Lich, C., Gross, S., Menzel, C., Schinzel, A., Kioschis, P., Tommerup, N., Ropers, H.H., Horsthemke, B., and Buiting, K. (2001). A translocation breakpoint cluster disrupts the newly defined 3' end of the SNURF-SNRPN transcription unit on chromosome 15. Hum. Mol. Genet. 10, 201-210. [CrossRef] [PubMed] [Google Scholar]
  • Yang, P.K., and Kuroda, M.I. (2007). Noncoding RNAs and Intranuclear Positioning in Monoallelic Gene Expression. Cell. 128, 777-786. [CrossRef] [PubMed] [Google Scholar]
  • Yekta, S., Shih, I.H., and Bartel, D.P. (2004). MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594-596. [CrossRef] [PubMed] [Google Scholar]
  • Youngson, N.A., Kocialkowski, S., Peel, N., and Ferguson-Smith, A.C. (2005). A small family of sushi-class retrotransposon-derived genes in mammals and their relation to genomic imprinting. J. Mol. Evol. 61, 481-490. [CrossRef] [PubMed] [Google Scholar]
  • Zamore, P.D., and Haley, B. (2005). Ribo-gnome: the big world of small RNAs. Science 309, 1519-1524. [CrossRef] [PubMed] [Google Scholar]
  • Zhao, Z., Tavoosidana, G., Sjolinder, M., Gondor, A., Mariano, P., Wang, S., Kanduri, C., Lezcano, M., Sandhu, K.S., Singh, U., Pant, V., Tiwari, V., Kurukuti, S., and Ohlsson, R. (2006). Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat. Genet. 38, 1341-1347. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.