Accès gratuit
Numéro |
J. Soc. Biol.
Volume 202, Numéro 2, 2008
|
|
---|---|---|
Page(s) | 83 - 92 | |
DOI | https://doi.org/10.1051/jbio:2008010 | |
Publié en ligne | 13 juin 2008 |
- Ailhaud G.P., Abumrad N., Amri E.Z. & Grimaldi P.A., A new look at fatty acids as signal-transducing molecules. World Rev. Nutr. Diet., 1994, 75, 35–45. [PubMed] [Google Scholar]
- Bergh J.J., Lin H.Y., Lansing L., Mohamed S.N., Davis F.B., Mousa S., Davis P.J., Integrin V3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology, 2005, 146, 2864–2871. [CrossRef] [PubMed] [Google Scholar]
- Bigler J., Hokanson W. & Eisenman R.N., Thyroid hormone receptor transcriptional activity is potentially autoregulated by truncated forms of thé receptor. Mol. Cell Biol., 1992, 12, 2406–2417. [Google Scholar]
- Biswas T.K. & Getz G.S., Import of yeast mitochondrial transcription factor (Mtf1p) via a nonconventional pathway. J. Biol. Chem., 2002, 277, 45704–45714. [CrossRef] [PubMed] [Google Scholar]
- Brookes P.S., Yoon Y., Robotham J.L., Anders M.W. & Sheu S.S., Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am. J. Physiol. Cell Physiol., 2004, 287, C817–C833. [CrossRef] [PubMed] [Google Scholar]
- Casanova J., Horowitz Z.D., Copp R.P., McIntyre W.L., Pascual A. & Samuels H.H., Photaffinity labeling of thyroid hormone nuclear receptors: influence of n-butyrate and analysis of the half-lives of the 47000 and 57000 molecular weight receptors forms. J. Biol. Chem., 1984, 259, 12084–12091. [PubMed] [Google Scholar]
- Casas F., Daury L., Grandemange S., Busson M., Seyer P., Hatier R., Carazo A., Cabello G. & Wrutniak-Cabello C., Endocrine regulation of mitochondrial activity: involvement of Truncated RXR and c-Erb A1 protein. FASEB J., 2003, 17, 426–436. [CrossRef] [PubMed] [Google Scholar]
- Casas F., Domenjoud L., Rochard P., Hatier R., Rodier A., Daury L., Bianchi A., Kremarik-Bouillaud P., Becuwe P., Keller J.M., Schohn H., Wrutniak-Cabello C., Cabello G. & Dauça M., A 45 KDa protein related to PPAR2, induced by peroxisome proliferators, is located in the mitochondrial matrix. FEBS Letters, 2000, 478, 4–8. [CrossRef] [PubMed] [Google Scholar]
- Casas F., Rochard P., Rodier A., Cassar-Malek I., Marchal-Victorion S., Wiesner R.J., Cabello G. & Wrutniak C., A variant form of the nuclear T3 receptor c-Erb A1 plays a direct role in regulation of mitochondrial RNA synthesis. Mol. Cell. Biol., 2004, 19, 7913–7924. [Google Scholar]
- Cassar-Malek I., Marchal S., Rochard P., Casas F., Wrutniak C., Samarut J. & Cabello G., Induction of c-Erb A-AP1 interactions and c-Erb A transcriptional activity in myoblasts by RXR. Consequences for muscle differentiation. J. Biol. Chem., 1996, 271, 11392–11399. [CrossRef] [PubMed] [Google Scholar]
- Chassande O., Do unliganded thyroid hormone receptors have physiological functions? J. Mol. Endocrinol., 2003, 31, 9–20. [Google Scholar]
- Chen J.Q., Delannoy M., Cooke C. & Yager J.D., Mitochondrial localization of ERalpha and ERbeta in human MCF7 cells. Am. J. Physiol. Endocrinol. Metab., 2004, 286, E1011–E1022. [Google Scholar]
- Davis P.J., Shih A., Lin H.Y., Martino L.J. & Davis F.B., Thyroxine promotes association of mitogen-activated protein kinase and nuclear thyroid hormone receptor (TR) and causes serine phosphorylation of TR. J. Biol. Chem., 2000, 275, 38032–38039. [CrossRef] [PubMed] [Google Scholar]
- Demonacos C.V., Karayanni N., Hatzoglou E., Tsiriyiotis C., Spandidos D.A. & Sekeris C.E., Mitochondrial genes as sites of primary action of steroid hormones. Steroids, 1996, 61, 226–232. [CrossRef] [PubMed] [Google Scholar]
- Dinardo M.M., Musicco C., Fracasso F., Milella F., Gadaleta M.N. & Gadaleta G., Acetylation and level of mitochondrial transcription factor A in several organs of young and old rats. Biochem. Biophys. Res. Commun., 2003, 301, 187-191. [CrossRef] [PubMed] [Google Scholar]
- Enriquez J.A., Fernandez-Silva P., Garrido-Perez N., Lopez-Perez M.J., Perez-Martos A. & Montoya J., Direct régulation of mitochondrial RNA synthesis by thyroid hormone. Mol. Cell Biol., 1999, 19, 657–670. [Google Scholar]
- Grandemange S., Seyer P., Carazo A., Becuwe P., Pessemesse L., Busson M., Marsac C., Roger P., Casas F., Cabello G. & Wrutniak-Cabello C., Stimulation of mitochondrial activity by p43 overexpression induces human dermal fibroblast transformation. Cancer Res., 2005, 65, 4282–4291. [CrossRef] [PubMed] [Google Scholar]
- Gremlich S., Bonny C., Waeber G. & Thorens B., Fatty acids decrease IDX-1 expression in rat pancreatic islets and reduce GLUT2, glucokinase, insulin, and somatostatine levels. J. Biol. Chem., 1997, 272, 30261–30269. [CrossRef] [PubMed] [Google Scholar]
- Gustafsson R., Tata JR, Lindberg O. & Ernster L., The relationship between the structure and activity of rat skeletal muscle mitochondria after thyroidectomy and thyroid treatment. J. Cell Biol., 1965, 26, 555–578. [CrossRef] [PubMed] [Google Scholar]
- Ianuzzo D., Patel P., Chen V., O'Brien P. & Williams C., Thyroidal trophic influence on skeletal muscle myosin. Nature, 1977, 270, 74–76. [CrossRef] [PubMed] [Google Scholar]
- Izumo S., Nadal-Ginard B. & Madhavi V., All members of the MHC mulitgenee family respond to thyroid hormone in highly tissue-specific manner. Science, 1986, 231, 597–600. [CrossRef] [PubMed] [Google Scholar]
- Jakovilcic S., Swift HH, Gross NJ & Rabinowitz R., Biochemical and stereological analysis of rat liver mitochondria in different thyroid states. J. Cell Biol., 1978, 77, 887–901. [CrossRef] [PubMed] [Google Scholar]
- Jeong J.H., Park J.S., Moon B., Kim M.C., Kim J.K., Lee S., Suh H., Kim N.D., Kim J.M., Park Y.C. & Yoo Y.H., Orphan nuclear receptor Nur77 translocates to mitochondria in the early phase of apoptosis induced by synthetic chenodeoxycholic acid derivatives in human stomach cancer cell line SNU-1. Ann. N.Y. Acad. Sci., 2003, 1010, 171–177. [Google Scholar]
- Mallon P.W., Unemori P., Sedwell R., Morey A., Rafferty M., Williams K., Chisholm D., Samaras K., Emery S., Kelleher A., Cooper D.A., Carr A. & SAMA Investigators., In vivo, nucleoside reverse-transcriptase inhibitors alter expression of both mitochondrial and lipid metabolism genes in the absence of depletion of mitochondrial DNA. J. Infect. Dis., 2005, 191, 1686–1696. [CrossRef] [PubMed] [Google Scholar]
- Martino G., Covello C., De Giovanni R., Rilipelli R. & Pitrelli G., Direct in vitro action of thyroid hormones on mitochondrial RNA-polymerase. Mol. Biol. Repr., 1986, 11, 205–211. [CrossRef] [Google Scholar]
- Maziere C., Conte M.A., Degonville J., Ali D. & Maziere J.C., Cellular enrichment with polyunsaturated fatty acids induces an oxidative stress and activates the transcription factors AP1 and NFkappaB. Biochem. Biophys. Res. Commun., 1999, 265, 116–122. [CrossRef] [PubMed] [Google Scholar]
- Morel G., Ricard-Blum S. & Ardail D., Kinetics of internalization and subcellular binding sites for T3 in mouse liver. Biol Cell., 1996, 86, 167-174. [Google Scholar]
- Muscat G.E., Mynett-Johnson L., Dowhan D., Downes M., Griggs R., Activation of myoD gene transcription by 3,5,3'-triiodo-L-thyronine: a direct role for the thyroid hormone and retinoid X receptors. Nucleic Acids Res., 1994, 22, 583–591. [CrossRef] [PubMed] [Google Scholar]
- Mutvei A., Husman B., Andersson G. & Neslon B.D., Control of mitochondrial transcription by thyroid hormone. Eur. J. Biochem., 1989, 180, 235–240. [CrossRef] [PubMed] [Google Scholar]
- Pfanner N. & Geissler A., Versatility of the mitochondrial protein import machinery. Nat. Rev. Mol. Cell Biol., 2001, 2, 339–349. [Google Scholar]
- Poyton R.O. & McEwen J.E., Crosstalk between nuclear and mitochondrial genomes. Annu. Rev. Biochem., 1996, 65, 563–607. [CrossRef] [PubMed] [Google Scholar]
- Puigserver P., Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-alpha. Int. J. Obes. (Lond), 2005, 29 (Suppl 1), S5–S9. [Google Scholar]
- Rochard P., Rodier A., Casas F., Cassar-Malek I., Marchal-Victorion S., DauryY L., Wrutniak C. & Cabello G., Mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and myogenic factors activity. J. Biol. Chem., 2000, 275, 2733–2744. [CrossRef] [PubMed] [Google Scholar]
- Saelim N., John L.M., Wu J., Park J.S., Bai Y., Camacho P. & Lechleiter J.D., Nontranscriptional modulation of intracellular Ca2+ signaling by ligand stimulated thyroid hormone receptor. J. Cell Biol., 2004, 167, 915–924. [CrossRef] [PubMed] [Google Scholar]
- Sap J., Munoz A., Damm K., Goldberg Y., Ghysdael J., leutz A., Beug H. & Vennström B., The c-erb A protein is a high affinity receptor for thyroid hormones. Nature, 1996, 324, 242–244. [Google Scholar]
- Seelig S., Liaw C., Towle H.C. & Oppenheimer J.H., Thyroid hormone attenuates and augments hepatic gene expression at a pretranslational level. Proc. Natl.Acad. Sci. USA, 1981, 78, 4733–4737. [Google Scholar]
- Segal J., Adrenergic inhibition of the stimulatory effect of 3, 5, 3'-triiodothyronine on calcium accumulation and cytoplasmic free calcium concentration in rat thymocytes. Further evidence in support of the concept that calcium serves as the first messenger for the prompt action of thyroid hormone. Endocrinology, 1988, 122, 2240–2246. [CrossRef] [PubMed] [Google Scholar]
- Seyer P., Grandemange S., Busson M., Carazo A., Gamaleri F., Pessemesse L., Casas F., Cabello G. & Wrutniak-Cabello C., Mitochondrial activity regulates myoblast differentiation by control of c-Myc expression. J. Cell Physiol., 2006, 207, 75–86. [CrossRef] [PubMed] [Google Scholar]
- Shi T., Wang F., Stieren E. & Tong Q., SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J. Biol. Chem., 2005, 280, 13560–13567. [CrossRef] [PubMed] [Google Scholar]
- Shih A., Lin H.Y., Davis F.B. & Davis P.J., Thyroid hormone promotes serine phosphorylation of p53 by mitogen-activated protein kinase. Biochemistry, 2001, 40, 2870–2878. [CrossRef] [PubMed] [Google Scholar]
- Sterling K. & Milch P.O., Thyroid hormone binding by a component of mitochondrial membrane. Proc. Natl. Acad. Sci. USA, 1975, 72, 3225–3229. [CrossRef] [Google Scholar]
- Sterling K., Brenner M.A. & Sakurada T., Rapid effect of triiodothyronine on the mitochondrial pathway in rat liver in vivo. Science, 1980, 210, 340–343. [CrossRef] [PubMed] [Google Scholar]
- Sterling K., Campbell G.A., Taliadouros G.S. & Nunez E.A., Mitochondrial binding of triiodothyronine (T3). Démonstration by electron-microscopic radioautography of dispersed liver cells. Cell Tissue Res., 1984, 236, 321–325. [Google Scholar]
- Tang H.Y., Lin H.Y., Zhang S., Davis F.B. & Davis P.J., Thyroid hormone causes mitogen-activated protein kinase-dependent phosphorylation of the nuclear estrogen receptor. Endocrinology, 2004, 145, 3265–3272. [CrossRef] [PubMed] [Google Scholar]
- Tata J.R., Ernster L., Lindberg O., Arrhenius E., Pedersen S. & Herman R., The action of thyroid hormones at the cell level. Biochem. J., 1963, 86, 408–428. [PubMed] [Google Scholar]
- Weinberger C. Thompson C.C., Ong E.S., Lebo R., Gruol D.J. & Evans R.M., The c-erb A gene encodes a thyroid hormone receptor. Nature, 1996, 324, 641–646. [Google Scholar]
- Wiesner R.J., Kurowski T.T. & Zak R., Regulation by thyroid hormone of nuclear and mitochondrial genes encoding subunits of cytochrome-c oxidase in rat liver and skeletal muscle. Mol. Endocrinol., 1992, 6, 1458–1467. [Google Scholar]
- Wrutniak C., Rochard P., Casas F., Fraysse A., Charrier J. & Cabello G., Physiological importance of the T3 mitochondrial pathway. Ann. Acad. Sci. New-York, 1998, 839, 93–100. [CrossRef] [Google Scholar]
- Wrutniak C., Cassar-Malek I., Marchal S., Rascle A., Heusser S., Keller J.M., Fléchon J., Dauça M., Samarut J., Ghysdael J. & Cabello G., A 43 kDa protein related to c-erb A1 is located in the mitochondrial matrix of rat liver. J. Biol. Chem, 1995, 270, 16347–16354. [CrossRef] [PubMed] [Google Scholar]
- Yang S.H., Liu R., Perez E.J., Wen Y., Stevens S.M. Jr, Valencia T., Brun-Zinkernagel A.M., Prokai L., Will Y., Dykens J., Koulen P. & Simpkins J.W., Mitochondrial localization of estrogen receptor beta. Proc. Natl. Acad. Sci. USA, 2004, 101, 4130–4135. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.