Accès gratuit
Numéro
J. Soc. Biol.
Volume 202, Numéro 2, 2008
Page(s) 103 - 112
DOI https://doi.org/10.1051/jbio:2008013
Publié en ligne 13 juin 2008
  • Andersson, M., Sexual selection, Princeton University Press, Princeton, 1994. [Google Scholar]
  • Arnqvist, G. & Rowe, L., Sexual Conflict, Princeton University Press, 2005. [Google Scholar]
  • Beatty, R.A. & Sidhu, N.S., Polymegaly of spermatozoan length and its genetic control in Drosophila species. Proc. R. Soc. Edinb. Sct. B, 1970, 71, 14-28. [Google Scholar]
  • Birkhead, T.R., Defining and demonstrating postcopulatory female choice - again. Evolution, 2000, 54, 1057-1060. [PubMed] [Google Scholar]
  • Birkhead, T.R. & Møller, A.P., Sperm Competition and Sexual Selection, Academic Press, San Diego.1998. [Google Scholar]
  • Bowen, R.H., Studies on insect spermatogenesis. IV. The phenomenon of polymegaly in the sperm cells of the family Pentatomidae. Proc. Amer. Ac. Arts Sci., 1922, 57, 391-425. [CrossRef] [Google Scholar]
  • Bressac, C. & Hauschteck-Jungen, E., Drosophila subobscura females preferentially select long sperm for storage and use. J. Insect Physiol., 1996, 42, 323-328. [CrossRef] [Google Scholar]
  • Bressac, C., Fleury, A. & Lachaise, D., Another way of being anisogamous in Drosophila subgenus species: giant sperm, one-to-one gamete ratio, and high zygote provisioning. Proc. Natl. Acad. Sci. USA, 1994, 91, 10399-10402. [CrossRef] [Google Scholar]
  • Bressac, C., Fleury, A., Joly, D. & Lachaise, D., The giant-sperm strategy: another way of being a male. The Journal of NIH Research, 1995, 7, 53. [Google Scholar]
  • Chapman, T., Arnqvist, G., Bangham, J. & Rowe, L., Sexual conflict. Trends Evol. Ecol., 2003, 18, 41-47. [CrossRef] [Google Scholar]
  • Civetta, A., Direct visualization of sperm competition and sperm storage in Drosophila. Curr. Biol., 1999, 12, 841-844. [CrossRef] [Google Scholar]
  • Cook, P.A. & Gage, M.J.G., Effects of risks of sperm competition on the numbers of eupyrene and apyrene sperm ejaculated by the moth Plodia interpunctella (Lepidoptera: Pyralidae). Behav. Ecol. Sociobiol., 1995, 36, 261-268. [CrossRef] [Google Scholar]
  • Cooper, K.W., Normal spermatogenesis in Drosophila, in: Biology of Drosophila, (Demerec M., (ed.) John Wiley & Sons, Inc., New York, 1950, pp. 1-61. [Google Scholar]
  • Davey, K.G., The male reproductive tract, in: Comprehensive Insect Physiology, Biochemistry and Pharmacology, (Kerkut G. A. & Gilbert L. I., eds.), Pergamon Press, 1985, pp. 1-36. [Google Scholar]
  • de Cuevas, M., Lilly, M.A. & Spradling, A.C., Germline cyst formation in Drosophila. Annu. Rev. Genet., 1997, 31, 405–428. [CrossRef] [PubMed] [Google Scholar]
  • Demerec, M., Biology of Drosophila, J. Wiley & Sons, Inc., New York, 1950. [Google Scholar]
  • Dybas, L.K. & Dybas, H.S., Coadaptation and taxonomic differentiation of sperm and spermathecae in featherwing beetles. Evolution, 1981, 35, 168-174. [CrossRef] [PubMed] [Google Scholar]
  • Eberhard, W.G., Female control: sexual selection by cryptic female choice, Princeton University Press, Princeton, NJ, 1996. [Google Scholar]
  • Fuller, M.T., Spermatogenesis, in: The development of Drosophila melanogaster, (Bate M. & Martinez-Arias M., eds.), Cold Spring Harbor Laboratory Press, New York, 1993, pp. 71-147. [Google Scholar]
  • Hauschteck-Jungen, E. & Rutz, G., Arginine-rich nucleoprotein transition occurs in the two size classes of spermatozoa of Drosophila subobscura males. Genetica, 1983, 62, 25-32. [CrossRef] [Google Scholar]
  • Holman, L. & Snook, R.R., Spermicide, cryptic female choice and the evolution of sperm form and function. J. Evol. Biol., 2006, 19, 1660-1670. [CrossRef] [PubMed] [Google Scholar]
  • Joly, D. & Lachaise, D., Polymorphism in the sperm heteromorphic species of the Drosophila obscura group. J. Insect Physiol., 1994, 40, 933-938. [CrossRef] [Google Scholar]
  • Joly, D., Bressac, C. & Lachaise, D., Disentangling giant sperm. Nature, 1995, 377, 202. [CrossRef] [PubMed] [Google Scholar]
  • Joly, D., Luck, N. & Dejonghe, B., Adaptations to long sperm in Drosophila: correlated development of the sperm roller and sperm packaging. J. Experimental Zoology (Mol. Dev. Evol), 2008, 310, 167-178. [CrossRef] [MathSciNet] [Google Scholar]
  • Joly, D., Cariou, M.-L., Lachaise, D. & David, J.R., Variation of sperm length and heteromorphism in Drosophilid species. Genet. Sel. Evol., 1989, 21, 283-293. [CrossRef] [Google Scholar]
  • Joly, D., Bazin, C., Zeng, L.-W. & Singh, R.S., Genetic basis of sperm and testis length differences and epistatic effect on hybrid inviability and sperm motility between Drosophila simulans and Drosophila sechellia. Heredity, 1997, 78, 354-362. [CrossRef] [PubMed] [Google Scholar]
  • Joly, D., Bressac, C., Jaillard, D., Lachaise, D. & Lemullois, M., The sperm roller: a modified testicular duct linked to giant sperm transport within the male reproductive tract. J. Struct. Biol., 2003, 142, 348-355. [CrossRef] [PubMed] [Google Scholar]
  • Kubli, E., Sex-peptides: seminal peptides of the Drosophila male. Cellular and Molecular Life Sciences, 2003, 60, 1689-1704. [CrossRef] [Google Scholar]
  • Lachaise, D., Capy, P., Cariou, M.L., Joly, D., Lemeunier, F. & David, J.R., 16. Nine relatives from one African ancestor: population biology and evolution of the Drosophila melanogaster subgroup species, in: The Evolution of Population Biology – Modern Synthesis, (Singh R. S. & Uyenoyama M., eds.), Cambridge University Press, 2004, pp. 315-342. [Google Scholar]
  • Lindsley, D.L. & Tokuyasu, K.T., Spermatogenesis, in: The Genetics and Biology of Drosophila, (Ashburner M. & Wright T. R. F., eds.), Academic Press, London, 1980, pp. 225-294. [Google Scholar]
  • Liu, H. & Kubli, E., Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA, 2003, 100, 9929-9933. [CrossRef] [Google Scholar]
  • Luck, N., Dejonghe, B., Fruchard, S., Huguenin, S. & Joly, D., Male and female effects on sperm precedence in the giant sperm species Drosophila bifurca. Genetica, 2007, 130, 257-265. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Matzke-Karasz, R., Giant spermatozoon coiled in small egg: Fertilization mechanisms and their implications for evolutionary studies on ostracoda (crustacea). J. Exp. Zool., 2005, 304B, 129-149. [CrossRef] [Google Scholar]
  • Meyers, S.A., Spermatozoal response to osmotic stress. Animal Reproduction Science, 2005, 89, 57–64. [CrossRef] [PubMed] [Google Scholar]
  • Miller, G.T. & Pitnick, S., Sperm-female coevolution in Drosophila. Science, 2002, 298, 1230-1233. [CrossRef] [PubMed] [Google Scholar]
  • Miller, G.T., Starmer, W.T. & Pitnick, S., Quantitative genetic analysis of among population variation in sperm and female sperm-storage organ length in Drosophila mojavensis. Genet. Res. Cambridge, 2003, 81, 213-220. [CrossRef] [Google Scholar]
  • Mueller, J.L., Ram, K.R., McGraw, L.A., Bloch Qazi, M.C., Siggia, E.D., Clark, A.G., Aquadro, C.F. & Wolfner, M.F., Cross-species comparison of Drosophila male accessory gland protein genes. Genetics, 2005, 171, 131-143. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Oppliger, A., Hosken, D.J. & Ribi, G., Snail sperm production characteristics vary with sperm competition risk. Proc. R. Soc. London B, 1998, 265, 1527-1534. [CrossRef] [Google Scholar]
  • Parker, G.A., Sperm competition and its evolutionary consequences in the insects. Biol. Rev., 1970, 45, 525-567. [Google Scholar]
  • Parker, G.A., Sexual selection and sexual conflict, in: Sexual selection and reproductive competition in insects systems, (Blum M. S. & Blum N. A., eds.), Academic Press, New York, 1979, pp. 123-166. [Google Scholar]
  • Parker, G.A., Baker, R.R. & Smith, V.G.F., The origin and evolution of gamete dimorphism and the male-female phenomenon. J. Theor. Biol., 1972, 36, 529-553. [CrossRef] [PubMed] [Google Scholar]
  • Pasini, M.E., Redi, C.A., Cavaglia, O. & Perotti, M.E., Ultrastructural and cytochemical analysis of sperm dimorphism in Drosophila subobscura. Tissue & Cell, 1996, 28, 165-175. [CrossRef] [PubMed] [Google Scholar]
  • Patterson, J.T., Studies in the genetics of Drosophila. III. The Drosophilidae of the Southwest, The Univ. Texas Publ., Dustin, 1943. [Google Scholar]
  • Perotti, M.E. & Riva, A., Concanavalin a binding sites on the surface of Drosophila melanogaster sperm: a fluorescence and ultrastructure study. J. Ultrastructure and Molec. Struc. Research, 1988, 100, 173-182. [CrossRef] [Google Scholar]
  • Perotti, M.E., Cattaneo, F., Pasini, M.E., Verni, F. & Hackstein, J.H., Male sterile mutant casanova gives clues to mechanisms of sperm-egg interactions in Drosophila melanogaster. Molec. Reprod. Dev., 2001, 60, 248-259. [CrossRef] [MathSciNet] [Google Scholar]
  • Pitnick, S., Spicer, G.S. & Markow, T.A., How long is a giant sperm? Nature, 1995, 375, 109. [Google Scholar]
  • Pitnick, S., Markow, T. & Spicer, G.S., Evolution of multiple kinds of female sperm-storage organs in Drosophila. Evolution, 1999, 53, 1804-1822. [CrossRef] [PubMed] [Google Scholar]
  • Price, C.S.C., Kelly, A.D. & Coyne, J.A., Sperm competition between Drosophila males involves both displacement and incapacitation. Nature, 1999, 400, 449-452. [CrossRef] [PubMed] [Google Scholar]
  • Smith, R.L., Sperm Competition and the Evolution of Animal Mating Systems, Academic Press, Inc., Orlando, 1984. [Google Scholar]
  • Snook, R.R., The risk of sperm competition and the evolution of sperm heteromorphism. Animal Behaviour, 1998, 56, 1497-1507. [CrossRef] [PubMed] [Google Scholar]
  • Snook, R.R., Sperm in competition: not playing by the numbers. Trends Evol. Ecol., 2005, 20, 46-53. [CrossRef] [Google Scholar]
  • Snook, R.R. & Karr, T.L., Only long sperm are fertilization-competent in six sperm heteromorphic Drosophila species. Curr. Biol., 1998, 8, 291-294. [CrossRef] [PubMed] [Google Scholar]
  • Swallow, J.G. & Wilkinson, G.S., The long and short of sperm polymorphisms in insects. Biol. Rev. Camb. Philos. Soc., 2002, 77, 153-182. [CrossRef] [PubMed] [Google Scholar]
  • Swanson, W.J. & Vacquier, V.D., The rapid evolution of reproductive proteins. Nature Review Genetics, 2002, 3, 137-44. [CrossRef] [Google Scholar]
  • Swanson, W.J., Ziheng Yang, Z., Wolfner, M.F. & Aquadro, C.F., Positive Darwinian selection drives the evolution of several female reproductive proteins in mammals. Proc. Natl. Acad. Sci. USA, 2001, 98, 2509-2514. [CrossRef] [Google Scholar]
  • Till-Bottraud, I., Joly, D., Lachaise, D. & Snook, R.R., Pollen and sperm heteromorphism: convergence across kingdom? J. Evol. Biol., 2005, 18, 1-18. [Google Scholar]
  • Tokuyasu, K.T., Peacock, W.J. & Hardy, R.W., Dynamics of spermiogenesis in Drosophila melanogaster. I. Individualization process. Z. Zellforsch., 1972, 124, 479-506. [CrossRef] [Google Scholar]
  • Wedell, N., Female receptivity in butterflies and moths. J. Exp. Biol., 2005, 208, 3433-3440. [CrossRef] [PubMed] [Google Scholar]
  • Wedell, N. & Cook, P.A., Butterflies tailor their ejaculate in response to sperm competition risk and intensity. Proc. R. Soc. London B, 1999, 266, 1033-1039. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.