Accès gratuit
Numéro
J. Soc. Biol.
Volume 202, Numéro 4, 2008
Os et cartilage - Structure, métabolisme, vieillissement
Page(s) 313 - 321
DOI https://doi.org/10.1051/jbio:2008030
Publié en ligne 19 décembre 2008
  • Akiyama H., Chaboissier M.C., Martin J.F., Schedl A. & de Crombrugghe, B., The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev, 2002, 16, 2813–2828. [CrossRef] [PubMed] [Google Scholar]
  • Akiyama H., Lyons J.P., Mori-Akiyama Y., Yang X., Zhang R., Zhang Z., Deng J.M., Taketo M.M., Nakamura T., Behringer R.R., McCrea P.D. & de Crombrugghe B., Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes Dev, 2004, 18, 1072–1087. [CrossRef] [PubMed] [Google Scholar]
  • Benya P.D. & Shaffer J.D., Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell, 1982, 30, 215–224. [CrossRef] [PubMed] [Google Scholar]
  • Bi W., Deng J.M., Zhang Z., Behringer R.R. & de Crombrugghe B., Sox9 is required for cartilage formation. Nat Genet, 1999, 22, 85–89. [CrossRef] [PubMed] [Google Scholar]
  • Bosnakovski D., Mizuno M., Kim G., Takagi S., Okumura M. & Fujinaga T., Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol Bioeng, 2006, 93, 1152–1163. [CrossRef] [PubMed] [Google Scholar]
  • Brittberg M., Lindahl A., Nilsson A., Ohlsson C., Isaksson O. & Peterson L., Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med, 1994, 331, 889–895. [CrossRef] [PubMed] [Google Scholar]
  • Bryant S.J. & Anseth K.S., Hydrogel properties influence ECM production by chondrocytes photoencapsulated in polyethylene glycol hydrogels. J Biomed Mater Res, 2002, 59, 63–72. [CrossRef] [PubMed] [Google Scholar]
  • Chevalier X., Autologous chondrocyte implantation for cartilage defects: development and applicability to osteoarthritis. Joint Bone Spine, 2000, 67, 572–578. [CrossRef] [PubMed] [Google Scholar]
  • Church V.L. & Francis-West P., Wnt signalling during limb development. Int J Dev Biol, 2002, 46, 927–936. [PubMed] [Google Scholar]
  • Dausse Y., Grossin L., Miralles G., Pelletier S., Mainard D., Hubert P., Baptiste D., Gillet P., Dellacherie E., Netter P. & Payan E., Cartilage repair using new polysaccharidic biomaterials: macroscopic, histological and biochemical approaches in a rat model of cartilage defect. Osteoarthritis Cartilage, 2003, 11, 16–28. [CrossRef] [PubMed] [Google Scholar]
  • De Bari C., Dell'Accio F., Tylzanowski P. & Luyten F.P., Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum, 2001, 44, 1928–1942. [CrossRef] [PubMed] [Google Scholar]
  • De Bari C., Dell'Accio F., Vanlauwe J., Eyckmans J., Khan I.M., Archer C.W., Jones E.A., McGonagle D., Mitsiadis T.A., Pitzalis C. & Luyten F.P., Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis Rheum, 2006, 54, 1209–1221. [CrossRef] [PubMed] [Google Scholar]
  • Dennis J.E., Merriam A., Awadallah A., Yoo J.U., Johnstone B. & Caplan A.I., A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse. J Bone Miner Res, 1999, 14, 700–709. [CrossRef] [PubMed] [Google Scholar]
  • Diarra D., Stolina M., Polzer K., Zwerina J., Ominsky M.S., Dwyer D., Korb A., Smolen J., Hoffmann M., Scheinecker C., van der Heide D., Landewe R., Lacey D., Richards W.G. & Schett G., Dickkopf-1 is a master regulator of joint remodeling. Nat Med, 2007, 13, 156–163. [CrossRef] [PubMed] [Google Scholar]
  • Djouad F., Bony C., Haupl T., Uze G., Lahlou N., Louis-Plence P., Apparailly F., Canovas F., Reme T., Sany J., Jorgensen C. & Noel D., Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells. Arthritis Res Ther, 2005, 7, R1304–1315. [CrossRef] [PubMed] [Google Scholar]
  • Donati I., Stredanska S., Silvestrini G., Vetere A., Marcon P., Marsich E., Mozetic P., Gamini A., Paoletti S. & Vittur F., The aggregation of pig articular chondrocyte and synthesis of extracellular matrix by a lactose-modified chitosan. Biomaterials, 2005, 26, 987–998. [CrossRef] [PubMed] [Google Scholar]
  • Donovan P.J. & Gearhart J., The end of the beginning for pluripotent stem cells. Nature, 2001, 414, 92–97. [CrossRef] [PubMed] [Google Scholar]
  • Dowthwaite G.P., Bishop J.C., Redman S.N., Khan I.M., Rooney P., Evans D.J., Haughton L., Bayram Z., Boyer S., Thomson B., Wolfe M.S. & Archer C.W., The surface of articular cartilage contains a progenitor cell population. J Cell Sci, 2004, 117, 889–897. [CrossRef] [PubMed] [Google Scholar]
  • Ebert J.R., Robertson W.B., Lloyd D.G., Zheng M.H., Wood D.J. & Ackland T., Traditional vs accelerated approaches to post-operative rehabilitation following matrix-induced autologous chondrocyte implantation (MACI): comparison of clinical, biomechanical and radiographic outcomes. Osteoarthritis Cartilage, 2008, in press. [Google Scholar]
  • Enomoto-Iwamoto M., Kitagaki J., Koyama E., Tamamura Y., Wu C., Kanatani N., Koike T., Okada H., Komori T., Yoneda T., Church V., Francis-West P.H., Kurisu K., Nohno T., Pacifici M. & Iwamoto M., The Wnt antagonist Frzb-1 regulates chondrocyte maturation and long bone development during limb skeletogenesis. Dev Biol, 2002, 251, 142–156. [CrossRef] [PubMed] [Google Scholar]
  • Fiuza U.M. & Arias A.M., Cell and molecular biology of Notch. J Endocrinol, 2007, 194, 459–474. [CrossRef] [PubMed] [Google Scholar]
  • Friedenstein A.J., Petrakova K.V., Kurolesova A.I. & Frolova G.P., Heterotopic transplants of bone marrow. Transplantation, 1968, 6, 230–247. [CrossRef] [PubMed] [Google Scholar]
  • Fujimaki R., Toyama Y., Hozumi N. & Tezuka K., Involvement of Notch signaling in initiation of prechondrogenic condensation and nodule formation in limb bud micromass cultures. J Bone Miner Metab, 2006, 24, 191–198. [CrossRef] [PubMed] [Google Scholar]
  • Gomez-Barrena E., Sanchez-Pernaute O., Largo R., Calvo E., Esbrit P. & Herrero-Beaumont G., Sequential changes of parathyroid hormone related protein (PTHrP) in articular cartilage during progression of inflammatory and degenerative arthritis. Ann Rheum Dis, 2004, 63, 917–922. [CrossRef] [PubMed] [Google Scholar]
  • Grigolo B., Roseti L., Fiorini M., Fini M., Giavaresi G., Aldini N.N., Giardino R. & Facchini A., Transplantation of chondrocytes seeded on a hyaluronan derivative (hyaff-11) into cartilage defects in rabbits. Biomaterials, 2001, 22, 2417–2424. [CrossRef] [PubMed] [Google Scholar]
  • Huch K., Kleffner S., Stove J., Puhl W., Gunther K.P. & Brenner R.E., PTHrP, PTHr, and FGFR3 are involved in the process of endochondral ossification in human osteophytes. Histochem Cell Biol, 2003, 119, 281–287. [PubMed] [Google Scholar]
  • Hunziker E.B., Quinn T.M. & Hauselmann H.J., Quantitative structural organization of normal adult human articular cartilage. Osteoarthritis Cartilage, 2002, 10, 564–572. [Google Scholar]
  • Im G.I., Shin Y.W. & Lee K.B., Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthritis Cartilage, 2005, 13, 845–853. [Google Scholar]
  • Kafienah W., Mistry S., Dickinson S.C., Sims T.J., Learmonth I. & Hollander A.P., Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients. Arthritis Rheum, 2007, 56, 177–187. [CrossRef] [PubMed] [Google Scholar]
  • Kawamura S., Wakitani S., Kimura T., Maeda A., Caplan A.I., Shino K. & Ochi T., Articular cartilage repair. Rabbit experiments with a collagen gel-biomatrix and chondrocytes cultured in it. Acta Orthop Scand, 1998, 69, 56–62. [CrossRef] [PubMed] [Google Scholar]
  • Knutsen G., Drogset J.O., Engebretsen L., Grontvedt T., Isaksen V., Ludvigsen T.C., Roberts S., Solheim E., Strand T. & Johansen O., A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am, 2007, 89, 2105–2112. [CrossRef] [PubMed] [Google Scholar]
  • Kobayashi T. & Kronenberg H., Minireview: transcriptional regulation in development of bone. Endocrinology, 2005, 146, 1012–1017. [CrossRef] [PubMed] [Google Scholar]
  • Krampera M., Pizzolo G., Aprili G. & Franchini M., Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone, 2006, 39, 678–683. [CrossRef] [PubMed] [Google Scholar]
  • Lefebvre V., Huang W., Harley V.R., Goodfellow P.N. & de Crombrugghe B., SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol, 1997, 17, 2336–2346. [PubMed] [Google Scholar]
  • Lindenhayn K., Perka C., Spitzer R., Heilmann H., Pommerening K., Mennicke J. & Sittinger M., Retention of hyaluronic acid in alginate beads: aspects for in vitro cartilage engineering. J Biomed Mater Res, 1999, 44, 149–155. [CrossRef] [PubMed] [Google Scholar]
  • Luyten F.P., Dell'Accio F. & De Bari C., Skeletal tissue engineering: opportunities and challenges. Best Pract Res Clin Rheumatol, 2001, 15, 759–769. [CrossRef] [PubMed] [Google Scholar]
  • Montembault A., Tahiri K., Korwin-Zmijowska C., Chevalier X., Corvol M.T. & Domard A., A material decoy of biological media based on chitosan physical hydrogels: application to cartilage tissue engineering. Biochimie, 2006, 88, 551–564. [CrossRef] [PubMed] [Google Scholar]
  • Noth U., Osyczka A.M., Tuli R., Hickok N.J., Danielson K.G. & Tuan R.S., Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J Orthop Res, 2002, 20, 1060–1069. [CrossRef] [PubMed] [Google Scholar]
  • Pacifici M., Koyama E., Iwamoto M. & Gentili C., Development of articular cartilage: what do we know about it and how may it occur? Connect Tissue Res, 2000, 41, 175–184. [Google Scholar]
  • Pelttari K., Winter A., Steck E., Goetzke K., Hennig T., Ochs B.G., Aigner T. & Richter W., Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum, 2006, 54, 3254–3266. [CrossRef] [PubMed] [Google Scholar]
  • Pittenger M.F., Mackay A.M., Beck S.C., Jaiswal R.K., Douglas R., Mosca J.D., Moorman M.A., Simonetti D.W., Craig S. & Marshak D.R., Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284, 143–147. [CrossRef] [PubMed] [Google Scholar]
  • Quinn T.M., Schmid P., Hunziker E.B. & Grodzinsky A.J., Proteoglycan deposition around chondrocytes in agarose culture: construction of a physical and biological interface for mechanotransduction in cartilage. Biorheology, 2002, 39, 27–37. [PubMed] [Google Scholar]
  • Ringe J., Kaps C., Schmitt B., Buscher K., Bartel J., Smolian H., Schultz O., Burmester G.R., Haupl T. & Sittinger M., Porcine mesenchymal stem cells. Induction of distinct mesenchymal cell lineages. Cell Tissue Res, 2002, 307, 321–327. [CrossRef] [PubMed] [Google Scholar]
  • Sandell L.J. & Aigner T., Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res, 2001, 3, 107–113. [CrossRef] [PubMed] [Google Scholar]
  • Tahiri K., Korwin-Zmijowska C., Richette P., Heraud F., Chevalier X., Savouret J.F. & Corvol M.T., Natural chondroitin sulphates increase aggregation of proteoglycan complexes and decrease ADAMTS-5 expression in interleukin 1 beta-treated chondrocytes. Ann Rheum Dis, 2008, 67, 696–702. [CrossRef] [PubMed] [Google Scholar]
  • Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K. & Yamanaka S., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007, 131, 861–872. [CrossRef] [PubMed] [Google Scholar]
  • Tamamura Y., Otani T., Kanatani N., Koyama E., Kitagaki J., Komori T., Yamada Y., Costantini F., Wakisaka S., Pacifici M., Iwamoto M. & Enomoto-Iwamoto M., Developmental regulation of Wnt/beta-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. J Biol Chem, 2005, 280, 19185–19195. [CrossRef] [PubMed] [Google Scholar]
  • Temenoff J.S. & Mikos A.G., Review: tissue engineering for regeneration of articular cartilage. Biomaterials, 2000, 21, 431–440. [CrossRef] [PubMed] [Google Scholar]
  • Terkeltaub R., Lotz M., Johnson K., Deng D., Hashimoto S., Goldring M.B., Burton D. & Deftos L.J., Parathyroid hormone-related proteins is abundant in osteoarthritic cartilage, and the parathyroid hormone-related protein 1-173 isoform is selectively induced by transforming growth factor beta in articular chondrocytes and suppresses generation of extracellular inorganic pyrophosphate. Arthritis Rheum, 1998, 41, 2152–2164. [CrossRef] [PubMed] [Google Scholar]
  • Van Damme A., Vanden Driessche T., Collen D. & Chuah M.K., Bone marrow stromal cells as targets for gene therapy. Curr Gene Ther, 2002, 2, 195–209. [CrossRef] [PubMed] [Google Scholar]
  • Wilmut I., Schnieke A.E., McWhir J., Kind A.J. & Campbell K.H., Viable offspring derived from fetal and adult mammalian cells. Nature, 1997, 385, 810–813. [CrossRef] [PubMed] [Google Scholar]
  • Wilson A. & Radtke F., Multiple functions of Notch signaling in self-renewing organs and cancer. FEBS Lett, 2006, 580, 2860–2868. [CrossRef] [PubMed] [Google Scholar]
  • Yamane S., Iwasaki N., Majima T., Funakoshi T., Masuko T., Harada K., Minami A., Monde K. & Nishimura S., Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials, 2005, 26, 611–619. [CrossRef] [PubMed] [Google Scholar]
  • Yu J., Vodyanik M.A., Smuga-Otto K., Antosiewicz-Bourget J., Frane J.L., Tian S., Nie J., Jonsdottir G.A., Ruotti V., Stewart R., Slukvin I. & Thomson J.A., Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007, 318, 1917–1920. [CrossRef] [PubMed] [Google Scholar]
  • Zuk P.A., Zhu M., Ashjian P., De Ugarte D.A., Huang J.I., Mizuno H., Alfonso Z.C., Fraser J.K., Benhaim P. & Hedrick M.H., Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 2002, 13, 4279–4295. [CrossRef] [PubMed] [Google Scholar]
  • Zuscik M.J., Baden J.F., Wu Q., Sheu T.J., Schwarz E.M., Drissi H., O'Keefe R.J., Puzas J.E. & Rosier R.N., 5-azacytidine alters TGF-beta and BMP signaling and induces maturation in articular chondrocytes. J Cell Biochem, 2004, 92, 316–331. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.