Accès gratuit
J. Soc. Biol.
Volume 202, Numéro 4, 2008
Os et cartilage - Structure, métabolisme, vieillissement
Page(s) 257 - 264
Publié en ligne 19 décembre 2008
  • Abe E., Marians R.C., Yu W., Wu X.B., Ando T., Li Y., Iqbal J., Eldeiry L., Rajendren G., Blair H.C., Davies T.F., Zaidi M. TSH is a negative regulator of skeletal remodeling. Cell, 2003, 115, 151–62. [CrossRef] [PubMed] [Google Scholar]
  • Bellido T., Ali A.A., Gubrij I., Plotkin L.I., Fu Q., O'Brien C.A., Manolagas S.C., Jilka R.L. Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology, 2005, 146, 4577–83. [CrossRef] [PubMed] [Google Scholar]
  • Berner H.S., Lyngstadaas S.P., Spahr A., Monjo M., Thommesen L., Drevon C.A., Syversen U., Reseland J.E. Adiponectin and its receptors are expressed in bone-forming cells. Bone, 2004, 35, 842–9. [CrossRef] [PubMed] [Google Scholar]
  • Bord S., Horner A., Beavan S., Compston J. Estrogen receptors alpha and beta are differentially expressed in developing human bone. J Clin Endocrinol Metab, 2001, 86, 2309–14. [CrossRef] [PubMed] [Google Scholar]
  • Botolin S., Faugere M.C., Malluche H., Orth M., Meyer R., McCabe L.R. Increased bone adiposity and PPARgamma2 expression in type I diabetic mice. Endocrinology, 2005, 146, 3622–31. [CrossRef] [PubMed] [Google Scholar]
  • Boyden L.M., Mao J., Belsky J., Mitzner L., Farhi A., Mitnick M.A., Wu D., Insogna K., Lifton R.P. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med, 2002, 346, 1513–21. [CrossRef] [PubMed] [Google Scholar]
  • Burguera B., Hofbauer L., Thomas T., Gori F., Lassam J., Laasko K., Evans G., Khosla S., Riggs B.L., Turner R.T. Leptin reduces ovariectomy-induced bone loss in rats. Endocrinology, 2001, 142, 3546–53. [CrossRef] [PubMed] [Google Scholar]
  • Canalis E., Economides A.N., Gazzerro E. Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev, 2003, 24, 218–35. [CrossRef] [PubMed] [Google Scholar]
  • Cheng S.L., Shao J.S., Charlton-Kachigian N., Loewy A.P., Towler D.A. MSX2 promotes osteogenesis and suppresses adipogenic differentiation of multipotent mesenchymal progenitors. J Biol Chem, 2003, 278, 45969–77. [CrossRef] [PubMed] [Google Scholar]
  • Ducy P., Zhang R., Geoffroy V., Ridall A.L., Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell, 1997, 89, 747–54. [CrossRef] [PubMed] [Google Scholar]
  • Ducy P., Amling M., Takeda S., Priemel M., Schilling A.F., Beil F.T., Shen J., Vinson C., Rueger J.M., Karsenty G. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell, 2000, 100, 197–207. [CrossRef] [PubMed] [Google Scholar]
  • Duncan R.L., Turner C.H. Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int, 1995, 57, 344–58. [CrossRef] [PubMed] [Google Scholar]
  • Elefteriou F., Takeda S., Ebihara K., Magre J., Patano N., Kim C.A., Ogawa Y., Liu X., Ware S.M., Craigen W.J., Robert J.J., Vinson C., Nakao K., Capeau J., Karsenty G. Serum leptin level is a regulator of bone mass. Proc Natl Acad Sci USA, 2004, 101, 3258–63. [CrossRef] [Google Scholar]
  • Enomoto H., Enomoto-Iwamoto M., Iwamoto M., Nomura S., Himeno M., Kitamura Y., Kishimoto T., Komori T. Cbfa1 is a positive regulatory factor in chondrocyte maturation. J Biol Chem, 2000, 275, 8695–702. [CrossRef] [PubMed] [Google Scholar]
  • Farooqi I.S., Yeo G.S., Keogh J.M., Aminian S., Jebb S.A., Butler G., Cheetham T., O'Rahilly S. Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest, 2000, 106, 271–9. [CrossRef] [PubMed] [Google Scholar]
  • Frost H.M. Bone “mass” and the “mechanostat”: a proposal. Anat Rec, 1987, 219, 9–19. [CrossRef] [Google Scholar]
  • Fujita T., Fukuyama R., Izumo N., Hirai T., Meguro T., Nakamuta H., Koida M. Transactivation of core binding factor alpha1 as a basic mechanism to trigger parathyroid hormone-induced osteogenesis. Jpn J Pharmacol, 2001, 86, 405–16. [CrossRef] [PubMed] [Google Scholar]
  • Garnero P., Vassy V., Bertholin A., Riou J.P., Delmas P.D. Markers of bone turnover in hyperthyroidism and the effects of treatment. J Clin Endocrinol Metab, 1994, 78, 955–9. [CrossRef] [PubMed] [Google Scholar]
  • Gong Y., Slee B., Fukai N., Rawadi G., Roman-Roman S., Reginato M., Wang H., Cundy T., Glorieux F.H., Lev D., Zacharin M., Oexle K., Marcelino J., Suwairi W., Heeger S., et coll. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell, 2001, 107, 513–23. [CrossRef] [PubMed] [Google Scholar]
  • Hamrick M.W., Pennington C., Newton D., Xie D., Isales C. Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone, 2004, 34, 376–83. [CrossRef] [PubMed] [Google Scholar]
  • Harada S., Rodan G.A. Control of osteoblast function and regulation of bone mass. Nature, 2003, 423, 349–55. [CrossRef] [PubMed] [Google Scholar]
  • Henry B.A., Goding J.W., Alexander W.S., Tilbrook A.J., Canny B.J., Dunshea F., Rao A., Mansell A., Clarke I.J. Central administration of leptin to ovariectomized ewes inhibits food intake without affecting the secretion of hormones from the pituitary gland: evidence for a dissociation of effects on appetite and neuroendocrine function. Endocrinology, 1999, 140, 1175–82. [CrossRef] [PubMed] [Google Scholar]
  • Hoffmann H.M., Catron K.M., van Wijnen A.J., McCabe L.R., Lian J.B., Stein G.S., Stein J.L. Transcriptional control of the tissue-specific, developmentally regulated osteocalcin gene, requires a binding motif for the Msx family of homeodomain proteins. Proc Natl Acad Sci U S A, 1994, 91, 12887–91. [CrossRef] [PubMed] [Google Scholar]
  • Hoshi K., Komori T., Ozawa H. Morphological characterization of skeletal cells in Cbfa1-deficient mice. Bone, 1999, 25, 639–51. [CrossRef] [PubMed] [Google Scholar]
  • Ichida F., Nishimura R., Hata K., Matsubara T., Ikeda F., Hisada K., Yatani H., Cao X., Komori T., Yamaguchi A., Yoneda T. Reciprocal roles of MSX2 in regulation of osteoblast and adipocyte differentiation. J Biol Chem, 2004, 279, 34015–22. [CrossRef] [PubMed] [Google Scholar]
  • Jones G., Strugnell S.A., DeLuca H.F. Current understanding of the molecular actions of vitamin D. Physiol Rev, 1998, 78, 1193–231. [PubMed] [Google Scholar]
  • Klaushofer K., Varga F., Glantschnig H., Fratzl-Zelman N., Czerwenka E., Leis H.J., Koller K., Peterlik M. The regulatory role of thyroid hormones in bone cell growth and differentiation. J Nutr, 1995, 125(Suppl), 1996–2003. [Google Scholar]
  • Kobayashi H., Gao Y., Ueta C., Yamaguchi A., Komori T. Multilineage differentiation of Cbfa1-deficient calvarial cells in vitro. Biochem Biophys Res Commun, 2000, 273, 630–6. [CrossRef] [PubMed] [Google Scholar]
  • Komori T., Yagi H., Nomura S., Yamaguchi A., Sasaki K., Deguchi K., Shimizu Y., Bronson R.T., Gao Y.H., Inada M., Sato M., Okamoto R., Kitamura Y., Yoshiki S., Kishimoto T. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 1997, 89, 755–64. [CrossRef] [PubMed] [Google Scholar]
  • Li X., Zhang Y., Kang H., Liu W., Liu P., Zhang J., Harris S.E., Wu D. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem, 2005, 280, 19883–7. [CrossRef] [PubMed] [Google Scholar]
  • Mannstadt M., Juppner H., Gardella T.J. Receptors for PTH and PTHrP: their biological importance and functional properties. Am J Physiol, 1999, 277, 665–75. [Google Scholar]
  • Marcus R. Skeletal effects of growth hormone and IGF-I in adults. Endocrine Rev, 1997, 7, 53–5. [CrossRef] [Google Scholar]
  • Martin A., de Vittoris R., David V., Moraes R., Begeot M., Lafage-Proust M.H., Alexandre C., Vico L., Thomas T. Leptin modulates both resorption and formation while preventing disuse-induced bone loss in tail-suspended female rats. Endocrinology, 2005, 146, 3652–9. [CrossRef] [PubMed] [Google Scholar]
  • Nakashima K., Zhou X., Kunkel G., Zhang Z., Deng J.M., Behringer R.R., de Crombrugghe B. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell, 2002, 108, 17–29. [CrossRef] [PubMed] [Google Scholar]
  • Oshima K., Nampei A., Matsuda M., Iwaki M., Fukuhara A., Hashimoto J., Yoshikawa H., Shimomura I. Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun, 2005, 331, 520–526. [CrossRef] [PubMed] [Google Scholar]
  • Owen T.A., Aronow M., Shalhoub V., Barone L.M., Wilming L., Tassinari M.S., Kennedy M.B., Pockwinse S., Lian J.B., Stein G.S. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol, 1990, 143, 420–30. [CrossRef] [PubMed] [Google Scholar]
  • Paech K., Webb P., Kuiper G.G., Nilsson S., Gustafsson J., Kushner P.J., Scanlan T.S. Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites. Science, 1997, 277, 1508–10. [CrossRef] [PubMed] [Google Scholar]
  • Panganiban G., Rubenstein J.L.R. Developmental function of the Distal-less/Dlx homeobox genes. Development, 2002, 129, 4371–86. [PubMed] [Google Scholar]
  • Pfeilschifter J., Wolf O., Naumann A., Minne H.W., Mundy G.R., Ziegler R. Chemotactic response of osteoblastlike cells to transforming growth factor beta. J Bone Miner Res, 1990, 5, 825–30. [CrossRef] [PubMed] [Google Scholar]
  • Rickard D.J., Subramaniam M., Spelsberg T.C. Molecular and cellular mechanisms of estrogen action on the skeleton. J Cell Biochem, 1999, 33, 123–32. [CrossRef] [Google Scholar]
  • Rodan S.B., Wesolowski G., Yoon K, Rodan G.A.R. Opposing effects of FGF and pertussis toxin on alkalin Phosphatase, osteopontin osteoclacin and type I collagen mRNA levels in ROS 17/2.8 cells. J Biol Chem, 1989, 264, 19934–41. [PubMed] [Google Scholar]
  • Rouayrenc J.F., Vignon F., Bringer J., Pujol P. Non-genomic steroid effects: estrogen action revisited. Ann Endocrinol, 2000, 61, 517–523. [Google Scholar]
  • Ryoo H.M., Hoffmann H.M., Beumer T., Frenkel B., Towler D.A., Stein G.S., Stein J.L., van Wijnen A.J., Lian J.B. Stage-specific expression of Dlx-5 during osteoblast differentiation: involvement in regulation of osteocalcin gene expression. Mol Endocrinol, 1997, 11, 1681–94. [CrossRef] [PubMed] [Google Scholar]
  • Ryoo H.M., Lee M.H., Kim Y.J. Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells. Gene, 2006, 366, 51–7. [Google Scholar]
  • Shirakabe K., Terasawa K., Miyama K., Shibuya H., Nishida E. Regulation of the activity of the transcription factor Runx2 by two homeobox proteins, Msx2 and Dlx5. Genes Cells, 2001, 6, 851–6. [CrossRef] [PubMed] [Google Scholar]
  • Spelsberg T.C., Subramaniam M., Riggs B.L., Khosla S. The actions and interactions of sex steroids and growth factors/cytokines on the skeleton. Mol Endocrinol, 1999, 13, 819–28. [CrossRef] [PubMed] [Google Scholar]
  • Spiegelman B.M., Flier J.S. Obesity and the regulation of energy balance. Cell, 2001, 104, 531–43. [CrossRef] [PubMed] [Google Scholar]
  • Stein G.S., Lian J.B. Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Update Endocrin Rev, 1995, 4, 290–7. [Google Scholar]
  • Sun L., Peng Y., Sharrow A.C., Iqbal J., Zhang Z., Papachristou D.J., Zaidi S., Zhu L.L., Yaroslavskiy B.B., Zhou H., Zallone A., Sairam M.R., Kumar T.R., Bo W., Braun J., Cardoso-Landa L., Schaffler M.B., Moonga B.S., Blair H.C., Zaidi M. FSH directly regulates bone mass. Cell, 2006, 125, 247–60. [CrossRef] [PubMed] [Google Scholar]
  • Swarthout J.T., D'Alonzo R.C., Selvamurugan N., Partridge N.C. Parathyroid hormone-dependent signaling pathways regulating genes in bone cells. Gene, 2002, 282, 1–17. [CrossRef] [PubMed] [Google Scholar]
  • Takahashi Y., Okimura Y., Mizuno I., Iida K., Takahashi T., Kaji H., Abe H., Chihara K. Leptin induces mitogen-activated protein kinase-dependent proliferation of C3H10T1/2 cells. J Biol Chem, 1997, 272, 12897–900. [CrossRef] [PubMed] [Google Scholar]
  • Takeda S., Elefteriou F., Levasseur R., Liu X., Zhao L., Parker K.L., Armstrong D., Ducy P., Karsenty G. Leptin regulates bone formation via the sympathetic nervous system. Cell, 2002, 111, 305–17. [CrossRef] [PubMed] [Google Scholar]
  • Thomas T., Gori F., Khosla S., Jensen M.D., Burguera B., Riggs B.L. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology, 1999, 140, 1630–8. [CrossRef] [PubMed] [Google Scholar]
  • Tintut Y., Parhami F., Le V., Karsenty G., Demer L.L. Inhibition of osteoblast-specific transcription factor Cbfa1 by the cAMP pathway in osteoblastic cells. Ubiquitin/proteasome-dependent regulation. J Biol Chem, 1999, 274, 28875–9. [CrossRef] [PubMed] [Google Scholar]
  • Wallace H., McLaren K., Al-Shawi R., Bishop J.O. Consequences of thyroid hormone deficiency induced by the specific ablation of thyroid follicle cells in adult transgenic mice. J Endocrinol, 1994, 143, 107–20. [CrossRef] [PubMed] [Google Scholar]
  • Wells T., Houston P.A. Skeletal growth acceleration with growth hormone secretagogues in transgenic growth retarded rats: pattern-dependent effects and mechanisms of desensitization. J Neuroendocrinol, 2001, 13, 496–504. [CrossRef] [PubMed] [Google Scholar]
  • White C., Gardiner E., Eisman J. Tissue specific and vitamin D responsive gene expression in bone. Mol Biol Rep, 1998, 25, 45–61. [CrossRef] [PubMed] [Google Scholar]
  • Winkler D.G., Sutherland M.K., Geoghegan J.C., Yu C., Hayes T., Skonier J.E., Shpektor D., Jonas M., Kovacevich B.R., Staehling-Hampton K., Appleby M., Brunkow M.E., Latham J.A. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J, 2003, 22, 6267–76. [CrossRef] [PubMed] [Google Scholar]
  • Yamaguchi A., Komori T., Suda T. Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr Rev, 2000, 21, 393–411. [CrossRef] [PubMed] [Google Scholar]
  • Yamaguchi A., Ishizuya T., Kintou N., Wada Y., Katagiri T., Wozney J.M., Rosen V., Yoshiki S. Effects of BMP-2, BMP-4, and BMP-6 on osteoblastic differentiation of bone marrow-derived stromal cell lines, ST2 and MC3T3-G2/PA6. Biochem. Biophys Res Commun, 1996, 220, 366–71. [CrossRef] [Google Scholar]
  • Yamaguchi M., Kishi S., Hoshi T. Effect of insulin administration on bone formation is impaired in rats with skeletal unloading. Biol Pharm Bull, 1993, 16, 1179–81. [CrossRef] [PubMed] [Google Scholar]
  • Yang X., Karsenty G. ATF4, the osteoblast accumulation of which is determined post-translationally, can induce osteoblast-specific gene expression in non-osteoblastic cells. J Biol Chem, 2004, 279, 47109–14. [CrossRef] [PubMed] [Google Scholar]
  • Yang X., Schinke T., Karsenty G. An Osteoblast-Specific Transcription Factor Required for Osteogenesis In Vivo But Transcribed from a Ubiquitous Gene. J Bone Miner Res, 2002, 17, 156. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.