Accès gratuit
J. Soc. Biol.
Volume 203, Numéro 1, 2009
Neurocytologie moléculaire et neuroendocrinologie
Page(s) 87 - 97
Publié en ligne 10 avril 2009
  • Ataka T., Kumamoto E., Shimoji K., Yoshimura M. Baclofen inhibits more effectively C-afferent than Adelta-afferent glutamatergic transmission in substantia gelatinosa neurons of adult rat spinal cord slices. Pain, 2000, 86, 273–282. [CrossRef] [PubMed] [Google Scholar]
  • Becker R., Uhle E.I., Alberti O., Bertalanffy H. Continuous intrathecal baclofen infusion in the management of central deafferentation pain. J Pain Symptom Manage, 2000, 20, 313–315. [CrossRef] [PubMed] [Google Scholar]
  • Bettler B., Tiao J.Y.H. Molecular diversity, trafficking and subcellular localization of GABAB receptors. Pharmacol Therap, 2006, 110, 533–543. [CrossRef] [PubMed] [Google Scholar]
  • Billinton A., Upton N., Bowery N.G. GABAB receptor isoforms GBR1a and GBR1b, appear to be asssociated with pre- and post-synaptic elements respectively in rat and human cerebellum. Br J Pharmacol, 1999, 126, 1387–1392. [CrossRef] [PubMed] [Google Scholar]
  • Bischoff S., Leonhard S., Reymann N., Schuler V., Shigemoto R., Kaupmann K., Bettler B. Spatial distribution of GABA(B)R1 receptor mRNA and binding sites in the rat brain. J Comp Neurol, 1999, 412, 1–16. [CrossRef] [PubMed] [Google Scholar]
  • Blein S., Ginham R., Uhrin D., Smith B.O., Soares D.C., Veltel S., McIlhinney R.A., White J.H., Barlow P.N. Structural analysis of the complement control protein (CCP) modules of GABA(B) receptor 1a: only one of the two CCP modules is compactly folded. J Biol Chem, 2004, 279, 48292–48306. [CrossRef] [PubMed] [Google Scholar]
  • Bockaert J., Pin J.P. Molecular tinkering of G protein-coupled receptors: an evolutionary success. Embo J, 1999, 18, 1723–1729. [CrossRef] [PubMed] [Google Scholar]
  • Bowery N.G. GABAB receptor pharmacology. Annu Rev Pharmacol Toxicol, 1993, 33, 109–147. [CrossRef] [PubMed] [Google Scholar]
  • Bowery N.G. GABAB receptor: a site of therapeutic benefit. Curr Opin Pharmacol, 2006, 6, 37–43. [CrossRef] [PubMed] [Google Scholar]
  • Brauner-Osborne H., Wellendorph P., Jensen A.A. Structure, pharmacology and therapeutic prospects of family C G-protein coupled receptors. Curr Drug Targets, 2007, 8, 169–184. [CrossRef] [PubMed] [Google Scholar]
  • Brock C., Boudier L., Maurel D., Blahos J., Pin J.P. Assembly-dependent Surface Targeting of the Heterodimeric GABAB Receptor Is Controlled by COPI but Not 14-3-3. Mol Biol Cell, 2005, 16, 5572–5578. [CrossRef] [PubMed] [Google Scholar]
  • Calver A.R., Medhurst A.D., Robbins M.J., Charles K.J., Evans M.L., Harrison D.C., Stammers M., Hughes S.A., Hervieu G., Couve A., Moss S.J., Middlemiss D.N., Pangalos M.N. The expression of GABA(B1) and GABA(B2) receptor subunits in the CNS differs from that in peripheral tissues. Neuroscience, 2000, 100, 155–170. [CrossRef] [PubMed] [Google Scholar]
  • Charles K.J., Evans M.L., Robbins M.J., Calver A.R., Leslie R.A., Pangalos M.N. Comparative immunohistochemical localisation of GABA(B1a), GABA(B1b) and GABA(B2) subunits in rat brain, spinal cord and dorsal root ganglion. Neuroscience, 2001, 106, 447–467. [CrossRef] [PubMed] [Google Scholar]
  • Chen S.R., Pan H.L. Activation of muscarinic receptors inhibits spinal dorsal horn projection neurons: role of GABAB receptors. Neuroscience, 2004, 125, 141–148. [CrossRef] [PubMed] [Google Scholar]
  • Couve A., Kittler J.T., Uren J.M., Calver A.R., Pangalos M.N., Walsh F.S., Moss S.J. Association of GABA(B) receptors and members of the 14-3-3 family of signaling proteins. Mol Cell Neurosci, 2001, 17, 317–328. [CrossRef] [PubMed] [Google Scholar]
  • Derjean D., Bertrand S., Le Masson G., Landry M., Morisset V., Nagy F. Dynamic balance of metabotropic inputs causes dorsal horn neurons to switch functional states. Nat Neurosci, 2003, 6, 274–281. [CrossRef] [PubMed] [Google Scholar]
  • Dirig D.M., Yaksh T.L. Intrathecal baclofen and muscimol, but not midazolam, are antinociceptive using the rat-formalin model. J Pharmacol Exp Ther, 1995, 275, 219–227. [PubMed] [Google Scholar]
  • Duthey B., Caudron S., Perroy J., Bettler B., Fagni L., Pin J.P., Prezeau L. A single subunit (GB2) is required for G-protein activation by the heterodimeric GABA(B) receptor. J Biol Chem, 2002, 277, 3236–3241. [CrossRef] [PubMed] [Google Scholar]
  • Engle M.P., Gassman M., Sykes K.T., Bettler B., Hammond D.L. Spinal nerve ligation does not alter the expression or function of GABA(B) receptors in spinal cord and dorsal root ganglia of the rat. Neuroscience, 2006, 138, 1277–1287. [CrossRef] [PubMed] [Google Scholar]
  • Fairfax B.P., Pitcher J.A., Scott M.G., Calver A.R., Pangalos M.N., Moss S.J., Couve A. Phosphorylation and chronic agonist treatment atypically modulate GABAB receptor cell surface stability. J Biol Chem, 2004, 279, 12565–12573. [CrossRef] [PubMed] [Google Scholar]
  • Filippov A.K., Couve A., Pangalos M.N., Walsh F.S., Brown D.A., Moss S.J. Heteromeric assembly of GABA(B)R1 and GABA(B)R2 receptor subunits inhibits Ca(2+) current in sympathetic neurons. J Neurosci, 2000, 20, 2867–2874. [PubMed] [Google Scholar]
  • Franek M., Vaculin S., Rokyta R. GABA(B) receptor agonist baclofen has non-specific antinociceptive effect in the model of peripheral neuropathy in the rat. Physiol Res, 2004, 53, 351–355. [PubMed] [Google Scholar]
  • Fritschy J.M., Meskenaite V., Weinmann O., Honer M., Benke D., Mohler H. GABAB-receptor splice variants GB1a and GB1b in rat brain: developmental regulation, cellular distribution and extrasynaptic localization. Eur J Neurosci, 1999, 11, 761–768. [Google Scholar]
  • Galvez T., Duthey B., Kniazeff J., Blahos J., Rovelli G., Bettler B., Prezeau L., Pin J.P. Allosteric interactions between GB1 and GB2 subunits are required for optimal GABA(B) receptor function. Embo J, 2001, 20, 2152–2159. [CrossRef] [PubMed] [Google Scholar]
  • Goudet C., Gaven F., Kniazeff J., Vol C., Liu J., Cohen-Gonsaud M., Acher F., Prezeau L., Pin J.P. Heptahelical domain of metabotropic glutamate receptor 5 behaves like rhodopsin-like receptors. Proc Natl Acad Sci U S A, 2004, 101, 378–383. [CrossRef] [PubMed] [Google Scholar]
  • Goudet C., Kniazeff J., Hlavackova V., Malhaire F., Maurel D., Acher F., Blahos J., Prezeau L., Pin J.P. Asymmetric functioning of dimeric metabotropic glutamate receptors disclosed by positive allosteric modulators. J Biol Chem, 2005, 280, 24380–24385. [CrossRef] [PubMed] [Google Scholar]
  • Gwak Y.S., Tan H.Y., Nam T.S., Paik K.S., Hulsebosch C.E., Leem J.W. Activation of Spinal GABA Receptors Attenuates Chronic Central Neuropathic Pain after Spinal Cord Injury. J Neurotrauma, 2006, 23, 1111–1124. [CrossRef] [PubMed] [Google Scholar]
  • Havlickova M., Prezeau L., Duthey B., Bettler B., Pin J.P., Blahos J. The intracellular loops of the GB2 subunit are crucial for G-protein coupling of the heteromeric gamma-aminobutyrate B receptor. Mol Pharmacol, 2002, 62, 343–350. [CrossRef] [PubMed] [Google Scholar]
  • Hlavackova V., Goudet C., Kniazeff J., Zikova A., Maurel D., Vol C., Trojanova J., Prezeau L., Pin J.P., Blahos J. Evidence for a single heptahelical domain being turned on upon activation of a dimeric GPCR. Embo J, 2005, 24, 499–509. [CrossRef] [PubMed] [Google Scholar]
  • Iyadomi M., Iyadomi I., Kumamoto E., Tomokuni K., Yoshimura M. Presynaptic inhibition by baclofen of miniature EPSCs and IPSCs in substantia gelatinosa neurons of the adult rat spinal dorsal horn. Pain, 2000, 85, 385–393. [CrossRef] [PubMed] [Google Scholar]
  • Kangrga I., Jiang M.C., Randic M. Actions of (-)-baclofen on rat dorsal horn neurons. Brain Res, 1991, 562, 265–275. [CrossRef] [PubMed] [Google Scholar]
  • Kew J.N. Positive and negative allosteric modulation of metabotropic glutamate receptors: emerging therapeutic potential. Pharmacol Ther 2004, 104, 233–244. [Google Scholar]
  • Kniazeff J., Bessis A.S., Maurel D., Ansanay H., Prezeau L., Pin J.P. Closed state of both binding domains of homodimeric mGlu receptors is required for full activity. Nat Struct Mol Biol, 2004, 11, 706–713. [CrossRef] [PubMed] [Google Scholar]
  • Kniazeff J., Galvez T., Labesse G., Pin J.P. No ligand binding in the GB2 subunit of the GABA(B) receptor is required for activation and allosteric interaction between the subunits. J Neurosci, 2002, 22, 7352–7361. [PubMed] [Google Scholar]
  • Kulik A., Vidal I., Lujan R., Haas C.A., Lopez-Bendito G., Shigemoto R., Frotscher M. Subcellular localizatrion of metabotropic GABAB receptor subunits GABAB1a/b and GABAB2 in the rat hippocampus. J Neurosci, 2003, 23, 11026–11035. [PubMed] [Google Scholar]
  • Laffray S., Tan K., Dulluc J., Bouali-Benazzouz R., Calver A.R., Nagy F., Landry M. Dissociation and trafficking of rat GABAB receptor heterodimer upon capsaicin treatment. Eur J Neurosci, 2007, 25, 1402–1416. [CrossRef] [PubMed] [Google Scholar]
  • Loubser P.G., Akman N.M. Effects of intrathecal baclofen on chronic spinal cord injury pain. J Pain Symptom Manage, 1996, 12, 241–247. [CrossRef] [PubMed] [Google Scholar]
  • Lujan R. Subcellular regulation of metabotropic GABA receptors in the developing cerebellum. The Cerebellum, 2007, 6, 123–129. [CrossRef] [Google Scholar]
  • Lujan R., Shigemoto R. Localization of metabotropic GABA receptor subunits GABAB1 and GABAB2 relative to synaptic sites in the rat developing cerebellum. Eur J Neurosci, 2006, 23, 1479–1490. [CrossRef] [PubMed] [Google Scholar]
  • Magnaghi V. GABA and Neuroactive Steroid Interactions in Glia: New Roles for Old Players? Curr Neuropharmacol, 2007, 5, 47–64. [Google Scholar]
  • Magnaghi V., Ballabio M., Camozzi F., Colleoni M., Consoli A., Gassmann M., Lauria G., Motta M., Procacci P., Trovato A.E., Bettler B. Altered peripheral myelination in mice lacking GABAB receptors. Mol Cell Neurosci, 2008, 37, 599–609. [CrossRef] [PubMed] [Google Scholar]
  • Magnaghi V., Ballabio M., Cavarretta I.T., Froestl W., Lambert J.J., Zucchi I., Melcangi R.C. GABAB receptors in Schwann cells influence proliferation and myelin protein expression. Eur J Neurosci, 2004, 19, 2641–2649. [CrossRef] [PubMed] [Google Scholar]
  • Malcangio M., Bowery N.G. Possible therapeutic application of GABAB receptor agonists and antagonists. Clin Neuropharmacol, 1995, 18, 285–305. [CrossRef] [PubMed] [Google Scholar]
  • Malcangio M., Bowery N.G. GABA and its receptors in the spinal cord. Trends Pharmacol Sci, 1996, 17, 457–462. [CrossRef] [PubMed] [Google Scholar]
  • Malcangio M., Ghelardini C., Giotti A., Malmberg-Aiello P., Bartolini A. CGP 35348, a new GABAB antagonist, prevents antinociception and muscle-relaxant effect induced by baclofen. Br J Pharmacol, 1991, 103, 1303–1308. [CrossRef] [PubMed] [Google Scholar]
  • Margeta-Mitrovic M., Jan Y.N., Jan L.Y. Function of GB1 and GB2 subunits in G protein coupling of GABA(B) receptors. Proc Natl Acad Sci U S A, 2001a, 98, 14649–14654. [CrossRef] [PubMed] [Google Scholar]
  • Margeta-Mitrovic M., Jan Y.N., Jan L.Y. Ligand-induced signal transduction within heterodimeric GABA(B) receptor. Proc Natl Acad Sci U S A, 2001b, 98, 14643–14648. [CrossRef] [PubMed] [Google Scholar]
  • Morisset V., Nagy F. Ionic basis for plateau potentials in deep dorsal horn neurons of the rat spinal cord. J Neurosci, 1999, 19, 7309–7316. [PubMed] [Google Scholar]
  • Naderi N., Shafaghi B., Khodayar M.J., Zarindast M.R. Interaction between gamma-aminobutyric acid GABAB and cannabinoid CB1 receptors in spinal pain pathways in rat. Eur J Pharmacol, 2005, 514, 159–164. [CrossRef] [PubMed] [Google Scholar]
  • Overington J.P., Al-Lazikani B., Hopkins A.L. How many drug targets are there? Nat Rev Drug Discov, 2006, 5, 993–996. [Google Scholar]
  • Patel S., Naeem S., Kesingland A., Froestl W., Capogna M., Urban L., Fox A. The effects of GABA(B) agonists and gabapentin on mechanical hyperalgesia in models of neuropathic and inflammatory pain in the rat. Pain, 2001, 90, 217–226. [CrossRef] [PubMed] [Google Scholar]
  • Perez-Garci E., Gassmann M., Bettler B., Larkum M.E. The GABAB1b isoform mediates long-lasting inhibition of dendritic Ca2+ spikes in layer 5 somatosensory pyramidal neurons. Neuron, 2006, 50, 603–616. [CrossRef] [PubMed] [Google Scholar]
  • Perroy J., Adam L., Qanbar R., Chenier S., Bouvier M. Phosphorylation-independent desensitization of GABA(B) receptor by GRK4. Embo J, 2003, 22, 3816–3824. [CrossRef] [PubMed] [Google Scholar]
  • Pin J.P., Kniazeff J., Binet V., Liu J., Maurel D., Galvez T., Duthey B., Havlickova M., Blahos J., Prezeau L., Rondard P. Activation mechanism of the heterodimeric GABA(B) receptor. Biochem Pharmacol, 2004a, 68, 1565–1572. [CrossRef] [PubMed] [Google Scholar]
  • Pin J.P., Kniazeff J., Goudet C., Bessis A.S., Liu J., Galvez T., Acher F., Rondard P., Prezeau L. The activation mechanism of class-C G-protein coupled receptors. Biol Cell, 2004b, 96, 335–342. [PubMed] [Google Scholar]
  • Pooler A.M., McIlhinney R.A.J. Lateral diffusion of the GABAB receptor is regulated by the GABAB2 CTerminus. J Biol Chem, 2007, 282, 25349–25356. [CrossRef] [PubMed] [Google Scholar]
  • Potes C.S., Neto F.L., Castro-Lopes J.M. Inhibition of pain behavior by GABA(B) receptors in the thalamic ventrobasal complex: effect on normal rats subjected to the formalin test of nociception. Brain Res, 2006, 1115, 37–47. [CrossRef] [PubMed] [Google Scholar]
  • Price G.W., Wilkin G.P., Turnbull M.J., Bowery N.G. Are baclofen-sensitive GABAB receptors present on primary afferent terminals of the spinal cord? Nature, 1984, 307, 71–74. [Google Scholar]
  • Ruscheweyh R., Forsthuber L., Schoffnegger D., Sandkuhler J. Modification of classical neurochemical markers in identified primary afferent neurons with A-, Adelta-, and C-fibers after chronic constriction injury in mice. J Comp Neurol, 2007, 502, 325–336. [CrossRef] [PubMed] [Google Scholar]
  • Sands S.A., McCarson K.E., Enna S.J. Differential regulation of GABA B receptor subunit expression and function. J Pharmacol Exp Ther, 2003, 305, 191–196. [CrossRef] [PubMed] [Google Scholar]
  • Sawynok J. GABAergic mechanisms in antinociception. Prog Neuropsychopharmacol Biol Psychiatry, 1984, 8, 581–586. [CrossRef] [PubMed] [Google Scholar]
  • Schuler V., Luscher C., Blanchet C., Klix N., Sansig G., Klebs K., Schmutz M., Heid J., Gentry C., Urban L., Fox A., Spooren W., Jaton A.L., Vigouret J., Pozza M., Kelly P.H., Mosbacher J., Froestl W., Kaslin E., Korn R., Bischoff S., Kaupmann K., van der Putten H., Bettler B. Epilepsy, hyperalgesia, impaired memory, and loss of pre- and postsynaptic GABA(B) responses in mice lacking GABA(B(1)). Neuron, 2001, 31, 47–58. [CrossRef] [PubMed] [Google Scholar]
  • Smith G.D., Harrison S.M., Birch P.J., Elliott P.J., Malcangio M., Bowery N.G. Increased sensitivity to the antinociceptive activity of (+/-)-baclofen in an animal model of chronic neuropathic, but not chronic inflammatory hyperalgesia. Neuropharmacology, 1994, 33, 1103–1108. [CrossRef] [PubMed] [Google Scholar]
  • Suzuki T., Nurrochmad A., Ozaki M., Khotib J., Nakamura A., Imai S., Shibasaki M., Yajima Y., Narita M. Effect of a selective GABA(B) receptor agonist baclofen on the mu-opioid receptor agonist-induced antinociceptive, emetic and rewarding effects. Neuropharmacology, 2005, 49, 1121–1131. [CrossRef] [PubMed] [Google Scholar]
  • Tombler E., Cabanilla N.J., Carman P., Pernaul N., Hall J.J., Richman R.W., Lee J.H., Rodriguez J., Felsenfeld D.P., Hennigan R.F., Diversé-Pierluissi M.A. G protein-induced trafficking of voltage-dependent calcium channels. J Biol Chem, 2006, 281, 1827–1839. [CrossRef] [PubMed] [Google Scholar]
  • Towers S., Princivalle A., Billinton A., Edmunds M., Bettler B., Urban L., Castro-Lopes J., Bowery N.G. GABAB receptor protein and mRNA distribution in rat spinal cord and dorsal root ganglia. Eur J Neurosci, 2000, 12, 3201–3210. [CrossRef] [PubMed] [Google Scholar]
  • Ulrich D., Bettler B. GABAB receptors: synaptic functions and mechanisms of diversity. Curr Opin Neurobiol, 2007, 17, 1–6. [CrossRef] [Google Scholar]
  • Vigot R., Barbieri S., Brauner-Osborne H., Turecek R., Shigemoto R., Zhang Y.P., Lujan R., Jacobson L.H., Biermann B., Fritschy J.M., Vacher C.M., Muller M., Sansig G., Guetg N., Cryan J.F., Kaupmann K., Gassmann M., Oertner T.G., Bettler B. Differential compartmentalization and distinct functions of GABAB receptor variants. Neuron, 2006, 50, 589–601. [CrossRef] [PubMed] [Google Scholar]
  • Voisin D.L., Nagy F. Sustained L-type calcium currents in dissociated deep dorsal horn neurons of the rat: characteristics and modulation. Neuroscience, 2001, 102, 461–472. [CrossRef] [PubMed] [Google Scholar]
  • Wang X.L., Zhang H.M., Chen S.R., Pan H.L. Altered synaptic input and GABAB receptor function in spinal superficial dorsal horn neurons in rats with diabetic neuropathy. J Physiol, 2007, 579(Pt 3), 849–861. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.