Accès gratuit
Numéro
J. Soc. Biol.
Volume 203, Numéro 2, 2009
Angiogenèse : de la biologie à la thérapeutique
Page(s) 119 - 123
DOI https://doi.org/10.1051/jbio/2009015
Publié en ligne 16 juin 2009
  • Allport J.R., Muller W.A., Luscinskas F.W., Monocytes induce reversible focal changes in vascular endothelial cadherin complex during transendothelial migration under flow. J Cell Biol, 2000, 148, 203–216. [CrossRef] [PubMed] [Google Scholar]
  • Antonetti D.A., Barber A.J., Hollinger L.A., Wolpert E.B., Gardner T.W., Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occludens 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem, 1999, 274, 23463–23467. [CrossRef] [PubMed] [Google Scholar]
  • Baumeister U., Funke R., Ebnet K., Vorschmitt H., Koch S., Vestweber D., Association of Csk to VE-cadherin and inhibition of cell proliferation. Embo J, 2005, 24, 1686–1695. [CrossRef] [PubMed] [Google Scholar]
  • Behzadian M.A., Windsor L.J., Ghaly N., Liou G., Tsai N.T., Caldwell R.B., VEGF-induced paracellular permeability in cultured endothelial cells involves urokinase and its receptor. Faseb J, 2003, 17, 752–754. [PubMed] [Google Scholar]
  • Carmeliet P., Jain R.K., Angiogenesis in cancer and other diseases. Nature, 2000, 407, 249–257. [CrossRef] [PubMed] [Google Scholar]
  • Carmeliet P., Lampugnani M.G., Moons L., Breviario F., Compernolle V., Bono F., Balconi G., Spagnuolo R., Oostuyse B., Dewerchin M., Zanetti A., Angellilo A., Mattot V., Nuyens D., Lutgens E., Clotman F., de Ruiter M.C., Gittenberger-de Groot A., Poelmann R., Lupu F., Herbert J.M., Collen D., Dejana E., Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell, 1999, 98, 147–157. [CrossRef] [PubMed] [Google Scholar]
  • Cooke V.G., Naik M.U., Naik U.P., Fibroblast growth factor-2 failed to induce angiogenesis in junctional adhesion molecule-A-deficient mice. Arterioscler Thromb Vasc Biol, 2006, 26, 2005–2011. [CrossRef] [PubMed] [Google Scholar]
  • Corada M., Zanetta L., Orsenigo F., Breviario F., Lampugnani M.G., Bernasconi S., Liao F., Hicklin D.J., Bohlen P., Dejana E., A monoclonal antibody to vascular endothelial-cadherin inhibits tumor angiogenesis without side effects on endothelial permeability. Blood, 2002, 100, 905–911. [CrossRef] [PubMed] [Google Scholar]
  • Dejana E., Bazzoni G., Lampugnani M.G., Vascular endothelial (VE)-cadherin: only an intercellular glue? Exp Cell Res, 1999, 252, 13–19. [Google Scholar]
  • Eriksson U., Alitalo K., Structure, expression and receptor-binding properties of novel vascular endothelial growth factors. Curr Top Microbiol Immunol, 1999, 237, 41–57. [CrossRef] [PubMed] [Google Scholar]
  • Gavard J., Gutkind J.S., VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol, 2006, 8, 1223–1234. [CrossRef] [PubMed] [Google Scholar]
  • Gory-Fauré S., Prandini M.H., Pointu H., Roullot V., Pignot-Paintrand I., Vernet M., Huber P., Role of vascular endothelial-cadherin in vascular morphogenesis. Development, 1999, 126, 2093–2102. [PubMed] [Google Scholar]
  • Harhaj N.S., Felinski E.A., Wolpert E.B., Sundstrom J.M., Gardner T.W., Antonetti D.A., VEGF activation of protein kinase C stimulates occludin phosphorylation and contributes to endothelial permeability. Invest Ophthalmol Vis Sci, 2006, 47, 5106–5115. [CrossRef] [PubMed] [Google Scholar]
  • Hashizume H., Baluk P., Morikawa S., McLean J.W., Thurston G., Roberge S., Jain R.K., McDonald D.M., Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol, 2000, 156, 1363–1380. [Google Scholar]
  • Hirase T., Staddon J.M., Saitou M., Ando-Akatsuka Y., Itoh M., Furuse M., Fujimoto K., Tsukita S., Rubin L.L., Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci, 1997, 110 (Pt 14), 1603–1613. [Google Scholar]
  • Ishida T., Kundu R.K., Yang E., Hirata K., Ho Y.D., Quertermous T., Targeted disruption of endothelial cell-selective adhesion molecule inhibits angiogenic processes in vitro and in vivo. J Biol Chem, 2003, 278, 34598–34604. [CrossRef] [PubMed] [Google Scholar]
  • Kouklis P., Konstantoulaki M., Malik A.B., VE-cadherin-induced Cdc42 signaling regulates formation of membrane protrusions in endothelial cells. J Biol Chem, 2003, 278, 16230–16236. [CrossRef] [PubMed] [Google Scholar]
  • Lambeng N., Wallez Y., Rampon C., Cand F., Christe G., Gulino-Debrac D., Vilgrain I., Huber P., Vascular endothelial-cadherin tyrosine phosphorylation in angiogenic and quiescent adult tissues. Circ Res, 2005, 96, 384–391. [CrossRef] [PubMed] [Google Scholar]
  • Lampugnani M.G., Zanetti A., Corada M., Takahashi T., Balconi G., Breviario F., Orsenigo F., Cattelino A., Kemler R., Daniel T.O., Dejana E., Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the phosphatase DEP-1/CD148. J Cell Biol, 2003, 161, 793–804. [CrossRef] [PubMed] [Google Scholar]
  • Liao F., Doody J.F., Overholser J., Finnerty B., Bassi R., Wu Y., Dejana E., Kussie P., Bohlen P., Hicklin D.J., Selective targeting of angiogenic tumor vasculature by vascular endothelial-cadherin antibody inhibits tumor growth without affecting vascular permeability. Cancer Res, 2002, 62, 2567–2575. [PubMed] [Google Scholar]
  • Liao F., Li Y., O'Connor W., Zanetta L., Bassi R., Santiago A., Overholser J., Hooper A., Mignatti P., Dejana E., Hicklin D.J., Bohlen P., Monoclonal antibody to vascular endothelial-cadherin is a potent inhibitor of angiogenesis, tumor growth, and metastasis. Cancer Res, 2000, 60, 6805–6810. [PubMed] [Google Scholar]
  • Naik M.U., Mousa S.A., Parkos C.A., Naik U.P., Signaling through JAM-1 and alphavbeta3 is required for the angiogenic action of bFGF: dissociation of the JAM-1 and alphavbeta3 complex. Blood, 2003a, 102, 2108–2114. [CrossRef] [PubMed] [Google Scholar]
  • Naik M.U., Vuppalanchi D., Naik U.P., Essential role of junctional adhesion molecule-1 in basic fibroblast growth factor-induced endothelial cell migration. Arterioscler Thromb Vasc Biol, 2003b, 23, 2165–2171. [CrossRef] [PubMed] [Google Scholar]
  • Nelson C.M., Chen C.S., VE-cadherin simultaneously stimulates and inhibits cell proliferation by altering cytoskeletal structure and tension. J Cell Sci, 2003, 116, 3571–3581. [CrossRef] [PubMed] [Google Scholar]
  • Nelson C.M., Pirone D.M., Tan J.L., Chen C.S., Vascular endothelial-cadherin regulates cytoskeletal tension, cell spreading, and focal adhesions by stimulating RhoA. Mol Biol Cell, 2004, 15, 2943–2953. [CrossRef] [PubMed] [Google Scholar]
  • Rampon C., Bouillot S., Climescu-Haulica A., Prandini M.H., Cand F., Vandenbrouck Y., Huber P., Protocadherin 12 deficiency alters morphogenesis and transcriptional profile of the placenta. Physiol Genomics, 2008, 34, 193–204. [CrossRef] [PubMed] [Google Scholar]
  • Shaw S.K., Bamba P.S., Perkins B.N., Luscinskas F.W., Real-time imaging of vascular endothelial-cadherin during leukocyte transmigration across endothelium. J Immunol, 2001, 167, 2323–2330. [PubMed] [Google Scholar]
  • Su W.H., Chen H.I., Jen C.J., Differential movements of VE-cadherin and PECAM-1 during transmigration of polymorphonuclear leukocytes through human umbilical vein endothelium. Blood, 2002, 100, 3597–3603. [CrossRef] [PubMed] [Google Scholar]
  • Wallez Y., Huber P., Endothelial adherens and tight junctions in vascular homeostasis, inflammation and angiogenesis. Biochim Biophys Acta, 2008, 1778, 794–809. [CrossRef] [PubMed] [Google Scholar]
  • Wallez Y., Cand F., Cruzalegui F., Wernstedt C., Souchelnytskyi S., Vilgrain I., Huber P., Src kinase phosphorylates vascular endothelial-cadherin in response to vascular endothelial growth factor: identification of tyrosine 685 as the unique target site. Oncogene, 2007, 26, 1067–1077. [CrossRef] [PubMed] [Google Scholar]
  • Wallez Y., Vilgrain I., Huber P., Angiogenesis: the VE-cadherin switch. Trends Cardiovasc Med, 2006, 16, 55–59. [CrossRef] [PubMed] [Google Scholar]
  • Wegmann F., Petri B., Khandoga A.G., Moser C., Khandoga A., Volkery S., Li H., Nasdala I., Brandau O., Fassler R., Butz S., Krombach F., Vestweber D., ESAM supports neutrophil extravasation, activation of Rho, and VEGF-induced vascular permeability. J Exp Med, 2006, 203, 1671–1677. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.