Accès gratuit
Numéro
J. Soc. Biol.
Volume 203, Numéro 2, 2009
Angiogenèse : de la biologie à la thérapeutique
Page(s) 125 - 141
DOI https://doi.org/10.1051/jbio/2009016
Publié en ligne 16 juin 2009
  • Aird W.C., Edelberg J.M., Weiler-Guettler H., Simmons W.W., Smith T.W., Rosenberg R.D., Vascular bed-specific expression of an endothelial cell gene is programmed by the tissue microenvironment. J Cell Biol, 1997, 138, 1117–1124. [CrossRef] [PubMed] [Google Scholar]
  • Aird W.C., Jahroudi N., Weiler-Guettler H., Rayburn H.B., Rosenberg R.D., Human von Willebrand factor gene sequences target expression to a subpopulation of endothelial cells in transgenic mice. Proc Natl Acad Sci U S A, 1995, 92, 4567–4571. [CrossRef] [PubMed] [Google Scholar]
  • Akuzawa N., Kurabayashi M., Ohyama Y., Arai M., Nagai R., Zinc finger transcription factor Egr-1 activates Flt-1 gene expression in THP-1 cells on induction for macrophage differentiation. Arterioscler Thromb Vasc Biol, 2000, 20, 377–384. [CrossRef] [PubMed] [Google Scholar]
  • Birdsey G.M., Dryden N.H., Amsellem V., Gebhardt F., Sahnan K., Haskard D.O., Dejana E., Mason J.C., Randi A.M., The transcription factor Erg regulates angiogenesis and endothelial apoptosis through VE-cadherin. Blood, 2008, 111, 3498–3506. [CrossRef] [PubMed] [Google Scholar]
  • Bonthron D., Orkin S.H., The human von Willebrand factor gene. Structure of the 5' region. Eur J Biochem, 1988, 171, 51–57. [CrossRef] [PubMed] [Google Scholar]
  • Breier G., Breviario F., Caveda L., Berthier R., Schnürch H., Gotsch U., Vestweber D., Risau W., Dejana E., Molecular cloning and expression of murine vascular endothelial-cadherin in early stage development of cardiovascular system. Blood, 1996, 87, 630–641. [PubMed] [Google Scholar]
  • Carlson T.R., Yan Y., Wu X., Lam M.T., Tang G.L., Beverly L.J., Messina L.M., Capobianco A.J., Werb Z., Wang R., Endothelial expression of constitutively active Notch4 elicits reversible arteriovenous malformations in adult mice. Proc Natl Acad Sci U S A, 2005, 102, 9884–9889. [CrossRef] [PubMed] [Google Scholar]
  • Carmeliet P., Lampugnani M.G., Moons L., Breviario F., Compernolle V., Bono F., Balconi G., Spagnuolo R., Oostuyse B., Dewerchin M., Zanetti A., Angellilo A., Mattot V., Nuyens D., Lutgens E., Clotman F., de Ruiter M.C., Gittenberger-de Groot A., Poelmann R., Lupu F., Herbert J.M., Collen D., Dejana E., Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell, 1999, 98, 147–157. [CrossRef] [PubMed] [Google Scholar]
  • Caveda L., Martin-Padura I., Navarro P., Breviario F., Corada M., Gulino D., Lampugnani M.G., Dejana E., Inhibition of cultured cell growth by vascular endothelial cadherin (cadherin-5/VE-cadherin). J Clin Invest, 1996, 98, 886–893. [CrossRef] [PubMed] [Google Scholar]
  • Chan Y., Fish J.E., D'Abreo C., Lin S., Robb G.B., Teichert A.M., Karantzoulis-Fegaras F., Keightley A., Steer B.M., Marsden P.A., The cell-specific expression of endothelial nitric-oxide synthase: a role for DNA methylation. J Biol Chem, 2004, 279, 35087–35100. [CrossRef] [PubMed] [Google Scholar]
  • Choi J., Dong L., Ahn J., Dao D., Hammerschmidt M., Chen J.N., FoxH1 negatively modulates flk1 gene expression and vascular formation in zebrafish. Dev Biol, 2007, 304, 735–744. [CrossRef] [PubMed] [Google Scholar]
  • Coffin J.D., Harrison J., Schwartz S., Heimark R., Angioblast differentiation and morphogenesis of the vascular endothelium in the mouse embryo. Dev Biol, 1991, 148, 51–62. [CrossRef] [PubMed] [Google Scholar]
  • Conrad K.P., Vill M., McGuire P.G., Dail W.G., Davis A.K., Expression of nitric oxide synthase by syncytiotrophoblast in human placental villi. Faseb J, 1993, 7, 1269–1276. [PubMed] [Google Scholar]
  • Cowan P.J., Tsang D., Pedic C.M., Abbott L.R., Shinkel T.A., d'Apice A.J., Pearse M.J., The human ICAM-2 promoter is endothelial cell-specific in vitro and in vivo and contains critical Sp1 and GATA binding sites. J Biol Chem, 1998, 273, 11737–11744. [CrossRef] [PubMed] [Google Scholar]
  • Deleuze V., Chalhoub E., El-Hajj R., Dohet C., Le Clech M., Couraud P.O., Huber P., Mathieu D., TAL-1/SCL and its partners E47 and LMO2 up-regulate VE-cadherin expression in endothelial cells. Mol Cell Biol, 2007, 27, 2687–2697. [CrossRef] [PubMed] [Google Scholar]
  • Dorfman D.M., Wilson D.B., Bruns G.A., Orkin S.H., Human transcription factor GATA-2. Evidence for regulation of preproendothelin-1 gene expression in endothelial cells. J Biol Chem, 1992, 267, 1279–1285. [PubMed] [Google Scholar]
  • Duarte A., Hirashima M., Benedito R., Trindade A., Diniz P., Bekman E., Costa L., Henrique D., Rossant J., Dosage-sensitive requirement for mouse D114 in artery development. Genes Dev 2004, 18, 2474–2478. [Google Scholar]
  • Dube A., Akbarali Y., Sato T.N., Libermann T.A., Oettgen P., Role of the Ets transcription factors in the regulation of the vascular-specific Tie2 gene. Circ Res, 1999, 84, 1177–1185. [CrossRef] [PubMed] [Google Scholar]
  • Dumont D.J., Fong G.H., Puri M.C., Gradwohl G., Alitalo K., Breitman M.L., Vascularization of the mouse embryo: a study of flk-1, tek, tie, and vascular endothelial growth factor expression during development. Dev Dyn, 1995, 203, 80–92. [CrossRef] [PubMed] [Google Scholar]
  • Dutta D., Ray S., Vivian J.L., Paul S., Activation of the VEGFR1 chromatin domain: an angiogenic signal-ETS1/HIF-2alpha regulatory axis. J Biol Chem, 2008, 283, 25404–25413. [CrossRef] [PubMed] [Google Scholar]
  • Elvert G., Kappel A., Heidenreich R., Englmeier U., Lanz S., Acker T., Rauter M., Plate K., Sieweke M., Breier G., Flamme I., Cooperative interaction of hypoxia-inducible factor-2alpha (HIF-2alpha) and Ets-1 in the transcriptional activation of vascular endothelial growth factor receptor-2 (Flk-1). J Biol Chem, 2003, 278, 7520–7530. [CrossRef] [PubMed] [Google Scholar]
  • Fadel B.M., Boutet S.C., Quertermous T., Functional analysis of the endothelial cell-specific Tie2/Tek promoter identifies unique protein-binding elements. Biochem J, 1998, 330 (Pt 1), 335–343. [Google Scholar]
  • Fischer A., Schumacher N., Maier M., Sendtner M., Gessler M., The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev, 2004, 18, 901–911. [CrossRef] [PubMed] [Google Scholar]
  • Fish J.E., Matouk C.C., Rachlis A., Lin S., Tai S.C., D'Abreo C., Marsden P.A., The expression of endothelial nitric-oxide synthase is controlled by a cell-specific histone code. J Biol Chem, 2005, 280, 24824–24838. [CrossRef] [PubMed] [Google Scholar]
  • Gavard J., Gutkind J.S., VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol, 2006, 8, 1223–1234. [CrossRef] [PubMed] [Google Scholar]
  • Gnanapandithen K., Chen Z., Kau C.L., Gorczynski R.M., Marsden P.A., Cloning and characterization of murine endothelial constitutive nitric oxide synthase. Biochim Biophys Acta, 1996, 1308, 103–106. [CrossRef] [PubMed] [Google Scholar]
  • Gory S., Dalmon J., Prandini M.-H., Kortulewski T., de Launoit Y., Huber P., Requirement of a GT box (Sp1 site) and two Ets binding sites for vascular endothelial cadherin gene transcription. J Biol Chem, 1998, 273, 6750–6755. [CrossRef] [PubMed] [Google Scholar]
  • Gory S., Vernet M., Laurent M., Dejana E., Dalmon J., Huber P., The vascular endothelial-cadherin promoter directs endothelial-specific expression in transgenic mice. Blood, 1999, 93, 184–192. [PubMed] [Google Scholar]
  • Guan J., Guillot P.V., Aird W.C., Characterization of the mouse von Willebrand factor promoter. Blood, 1999, 94, 3405–3412. [PubMed] [Google Scholar]
  • Guillot P.V., Guan J., Liu L., Kuivenhoven J.A., Rosenberg R.D., Sessa W.C., Aird W.C., A vascular bed-specific pathway. J Clin Invest, 1999, 103, 799–805. [CrossRef] [PubMed] [Google Scholar]
  • Hirai H., Samokhvalov I.M., Fujimoto T., Nishikawa S., Imanishi J., Nishikawa S., Involvement of Runx1 in the down-regulation of fetal liver kinase-1 expression during transition of endothelial cells to hematopoietic cells. Blood, 2005, 106, 1948–1955. [CrossRef] [PubMed] [Google Scholar]
  • Hisatsune H., Matsumura K., Ogawa M., Uemura A., Kondo N., Yamashita J.K., Katsuta H., Nishikawa S., Chiba T., High level of endothelial cell-specific gene expression by a combination of the 5' flanking region and the 5' half of the first intron of the VE-cadherin gene. Blood, 2005, 105, 4657–4663. [CrossRef] [PubMed] [Google Scholar]
  • Huber P., Dalmon J., Engiles J., Breviario F., Gory S., Siracusa L.D., Buchberg A.M., Dejana E., Genomic structure and chromosomal mapping of the mouse VE-cadherin gene (Cdh5). Genomics, 1996, 32, 21–28. [CrossRef] [PubMed] [Google Scholar]
  • Huminiecki L., Gorn M., Suchting S., Poulsom R., Bicknell R., Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active angiogenesis. Genomics, 2002, 79, 547–552. [CrossRef] [PubMed] [Google Scholar]
  • Iljin K., Dube A., Kontusaari S., Korhonen J., Lahtinen I., Oettgen P., Alitalo K., Role of Ets factors in the activity and endothelial cell specificity of the mouse Tie gene promoter. Faseb J, 1999, 13, 377–386. [PubMed] [Google Scholar]
  • Jahroudi N., Ardekani A.M., Greenberger J.S., An NF1-like protein functions as a repressor of the von Willebrand factor promoter. J Biol Chem, 1996, 271, 21413–21421. [CrossRef] [PubMed] [Google Scholar]
  • Jahroudi N., Lynch D.C., Endothelial-cell-specific regulation of von Willebrand factor gene expression. Mol Cell Biol, 1994, 14, 999–1008. [PubMed] [Google Scholar]
  • Janel N., Schwachtgen J.L., Bakhshi M.R., Barek L., Meyer D., Kerbiriou-Nabias D., Comparison of the 5'-flanking sequences of the human and bovine von Willebrand factor-encoding genes reveals alternation of highly homologous domains with species-specific Alu-type repeats. Gene, 1995, 167, 291–295. [CrossRef] [PubMed] [Google Scholar]
  • Kallianpur A.R., Jordan J.E., Brandt S.J., The SCL/TAL-1 gene is expressed in progenitors of both the hematopoietic and vascular systems during embryogenesis. Blood, 1994, 83, 1200–1208. [PubMed] [Google Scholar]
  • Kappel A., Ronicke V., Damert A., Flamme I., Risau W., Breier G., Identification of vascular endothelial growth factor (VEGF) receptor-2 (Flk-1) promoter/enhancer sequences sufficient for angioblast and endothelial cell-specific transcription in transgenic mice. Blood, 1999, 93, 4284–4292. [PubMed] [Google Scholar]
  • Kappel A., Schlaeger T.M., Flamme I., Orkin S.H., Risau W., Breier G., Role of SCL/Tal-1, GATA, and Ets transcription factor binding sites for the regulation of Flk-1 expression during murine vascular development. Blood, 2000, 96, 3078–3085. [PubMed] [Google Scholar]
  • Karantzoulis-Fegaras F., Antoniou H., Lai S.L., Kulkarni G., D'Abreo C., Wong G.K., Miller T.L., Chan Y., Atkins J., Wang Y., Marsden P.A., Characterization of the human endothelial nitric-oxide synthase promoter. J Biol Chem, 1999, 274, 3076–3093. [CrossRef] [PubMed] [Google Scholar]
  • Korhonen J., Lahtinen I., Halmekyto M., Alhonen L., Janne J., Dumont D., Alitalo K., Endothelial-specific gene expression directed by the tie gene promoter in vivo. Blood, 1995, 86, 1828–1835. [PubMed] [Google Scholar]
  • Landry J.R., Kinston S., Knezevic K., Donaldson I.J., Green A.R., Gottgens B., Fli1, Elf1, and Ets1 regulate the proximal promoter of the LMO2 gene in endothelial cells. Blood, 2005, 106, 2680–2687. [CrossRef] [PubMed] [Google Scholar]
  • Laumonnier Y., Nadaud S., Agrapart M., Soubrier F., Characterization of an upstream enhancer region in the promoter of the human endothelial nitric-oxide synthase gene. J Biol Chem, 2000, 275, 40732–40741. [CrossRef] [PubMed] [Google Scholar]
  • Lawson N.D., Scheer N., Pham V.N., Kim C.H., Chitnis A.B., Campos-Ortega J.A., Weinstein B.M., Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development, 2001, 128, 3675–3683. [PubMed] [Google Scholar]
  • Le Bras A., Lionneton F., Mattot V., Lelièvre E., Caetano B., Spruyt N., Soncin F., HIF-2alpha specifically activates the VE-cadherin promoter independently of hypoxia and in synergy with Ets-1 through two essential ETS-binding sites. Oncogene, 2007, [Google Scholar]
  • Lelièvre E., Mattot V., Huber P., Vandenbunder B., Soncin F., Ets1 lowers capillary endothelial cell density at confluence and induces the expression of VE-cadherin., Oncogene, 2000, 19, 2438–2446. [Google Scholar]
  • Liu F., Walmsley M., Rodaway A., Patient R., Fli1 acts at the top of the transcriptional network driving blood and endothelial development. Curr Biol, 2008, 18, 1234–1240. [CrossRef] [PubMed] [Google Scholar]
  • Marsden P.A., Heng H.H., Scherer S.W., Stewart R.J., Hall A.V., Shi X.M., Tsui L.C., Schappert K.T., Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene. J Biol Chem, 1993, 268, 17478–17488. [PubMed] [Google Scholar]
  • Millauer B., Wizigmann-Voos S., Schnurch H., Martinez R., Moller N.P., Risau W., Ullrich A., High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell, 1993, 72, 835–846. [CrossRef] [PubMed] [Google Scholar]
  • Mochida S., Ishikawa K., Inao M., Shibuya M., Fujiwara K., Increased expressions of vascular endothelial growth factor and its receptors, flt-1 and KDR/flk-1, in regenerating rat liver. Biochem Biophys Res Commun, 1996, 226, 176–179. [CrossRef] [PubMed] [Google Scholar]
  • Mollica L.R., Crawley J.T., Liu K., Rance J.B., Cockerill P.N., Follows G.A., Landry J.R., Wells D.J., Lane D.A., Role of a 5'-enhancer in the transcriptional regulation of the human endothelial cell protein C receptor gene. Blood, 2006, 108, 1251–1259. [CrossRef] [PubMed] [Google Scholar]
  • Morishita K., Johnson D.E., Williams L.T., A novel promoter for vascular endothelial growth factor receptor (flt-1) that confers endothelial-specific gene expression. J Biol Chem, 1995, 270, 27948–27953. [CrossRef] [PubMed] [Google Scholar]
  • Okada Y., Jin E., Nikolova-Krstevski V., Yano K., Liu J., Beeler D., Spokes K., Kitayama M., Funahashi N., Doi T., Janes L., Minami T., Oettgen P., Aird W.C., A GABP-binding element in the Robo4 promoter is necessary for endothelial expression in vivo. Blood, 2008, 112, 2336–2339. [CrossRef] [PubMed] [Google Scholar]
  • Okada Y., Yano K., Jin E., Funahashi N., Kitayama M., Doi T., Spokes K., Beeler D.L., Shih S.C., Okada H., Danilov T.A., Maynard E., Minami T., Oettgen P., Aird W.C., A three-kilobase fragment of the human Robo4 promoter directs cell type-specific expression in endothelium. Circ Res, 2007, 100, 1712–1722. [CrossRef] [PubMed] [Google Scholar]
  • Park K.W., Morrison C.M., Sorensen L.K., Jones C.A., Rao Y., Chien C.B., Wu J.Y., Urness L.D., Li D.Y., Robo4 is a vascular-specific receptor that inhibits endothelial migration. Dev Biol, 2003, 261, 251–267. [CrossRef] [PubMed] [Google Scholar]
  • Patterson C., Perrella M.A., Hsieh C.M., Yoshizumi M., Lee M.E., Haber E., Cloning and functional analysis of the promoter for KDR/flk-1, a receptor for vascular endothelial growth factor. J Biol Chem, 1995, 270, 23111–23118. [CrossRef] [PubMed] [Google Scholar]
  • Patterson C., Wu Y., Lee M.E., DeVault J.D., Runge M.S., Haber E., Nuclear protein interactions with the human KDR/flk-1 promoter in vivo. Regulation of Sp1 binding is associated with cell type-specific expression. J Biol Chem, 1997, 272, 8410–8416. [CrossRef] [PubMed] [Google Scholar]
  • Peng Y., Jahroudi N., The NFY transcription factor functions as a repressor and activator of the von Willebrand factor promoter. Blood, 2002, 99, 2408–2417. [CrossRef] [PubMed] [Google Scholar]
  • Peng Y., Jahroudi N., The NFY transcription factor inhibits von Willebrand factor promoter activation in non-endothelial cells through recruitment of histone deacetylases. J Biol Chem, 2003, 278, 8385–8394. [CrossRef] [PubMed] [Google Scholar]
  • Peters K.G., Coogan A., Berry D., Marks J., Iglehart J.D., Kontos C.D., Rao P., Sankar S., Trogan E., Expression of Tie2/Tek in breast tumour vasculature provides a new marker for evaluation of tumour angiogenesis. Br J Cancer, 1998, 77, 51–56. [CrossRef] [PubMed] [Google Scholar]
  • Piovella F., Nalli G., Malamani G.D., Majolino I., Frassoni F., Sitar G.M., Ruggeri A., Dell'Orbo C., Ascari E., The ultrastructural localization of factor VIII-antigen in human platelets, megakaryocytes and endothelial cells utilizing a ferritin-labelled antibody. Br J Haematol, 1978, 39, 209–213. [CrossRef] [PubMed] [Google Scholar]
  • Plate K.H., Breier G., Millauer B., Ullrich A., Risau W., Up-regulation of vascular endothelial growth factor and its cognate receptors in a rat glioma model of tumor angiogenesis. Cancer Res, 1993, 53, 5822–5827. [PubMed] [Google Scholar]
  • Prandini M.H., Dreher I., Bouillot S., Benkerri S., Moll T., Huber P., The human VE-cadherin promoter is subjected to organ-specific regulation and is activated in tumour angiogenesis. Oncogene, 2005, 24, 2992–3001. [CrossRef] [PubMed] [Google Scholar]
  • Pugh B.F., Tjian R., Transcription from a TATA-less promoter requires a multisubunit TFIID complex. Genes Dev, 1991, 5, 1935–1945. [CrossRef] [PubMed] [Google Scholar]
  • Robb G.B., Carson A.R., Tai S.C., Fish J.E., Singh S., Yamada T., Scherer S.W., Nakabayashi K., Marsden P.A., Post-transcriptional regulation of endothelial nitric-oxide synthase by an overlapping antisense mRNA transcript. J Biol Chem, 2004, 279, 37982–37996. [CrossRef] [PubMed] [Google Scholar]
  • Robb L., Elwood N.J., Elefanty A.G., Kontgen F., Li R., Barnett L.D., Begley C.G., The scl gene product is required for the generation of all hematopoietic lineages in the adult mouse. Embo J, 1996, 15, 4123–4129. [PubMed] [Google Scholar]
  • Ronicke V., Risau W., Breier G., Characterization of the endothelium-specific murine vascular endothelial growth factor receptor-2 (Flk-1) promoter. Circ Res, 1996, 79, 277–285. [CrossRef] [PubMed] [Google Scholar]
  • Schlaeger T.M., Bartunkova S., Lawitts J.A., Teichmann G., Risau W., Deutsch U., Sato T.N., Uniform vascular-endothelial-cell-specific gene expression in both embryonic and adult transgenic mice. Proc Natl Acad Sci U S A, 1997, 94, 3058–3063. [CrossRef] [PubMed] [Google Scholar]
  • Schlaeger T.M., Qin Y., Fujiwara Y., Magram J., Sato T.N., Vascular endothelial cell lineage-specific promoter in transgenic mice. Development, 1995, 121, 1089–1098. [PubMed] [Google Scholar]
  • Schniirch H., Risau W., Expression of tie-2, a member of a novel family of receptor tyrosine kinases, in the endothelial cell lineage. Development, 1993, 119, 957–968. [PubMed] [Google Scholar]
  • Schwachtgen J.L., Janel N., Barek L., Duterque-Coquillaud M., Ghysdael J., Meyer D., Kerbiriou-Nabias D., Ets transcription factors bind and transactivate the core promoter of the von Willebrand factor gene. Oncogene, 1997, 15, 3091–3102. [CrossRef] [PubMed] [Google Scholar]
  • Schwachtgen J.L., Remacle J.E., Janel N., Brys R., Huylebroeck D., Meyer D., Kerbiriou-Nabias D., Oct-1 is involved in the transcriptional repression of the von Willebrand factor gene promoter. Blood, 1998, 92, 1247–1258. [PubMed] [Google Scholar]
  • Sessa W.C., The nitric oxide synthase family of proteins. J Vasc Res, 1994, 31, 131–143. [CrossRef] [PubMed] [Google Scholar]
  • Shimokawa T., Ra C., C/EBPalpha functionally and physically interacts with GABP to activate the human myeloid IgA Fc receptor (Fc alphaR, CD89) gene promoter. Blood, 2005, 106, 2534–2542. [CrossRef] [PubMed] [Google Scholar]
  • Shirayoshi Y., Yuasa Y., Suzuki T., Sugaya K., Kawase E., Ikemura T., Nakatsuji N., Proto-oncogene of int-3, a mouse Notch homologue, is expressed in endothelial cells during early embryogenesis. Genes Cells, 1997, 2, 213–224. [CrossRef] [PubMed] [Google Scholar]
  • Shore V.H., Wang T.H., Wang C.L., Torry R.J., Caudle M.R., Torry D.S., Vascular endothelial growth factor, placenta growth factor and their receptors in isolated human trophoblast. Placenta, 1997, 18, 657–665. [CrossRef] [PubMed] [Google Scholar]
  • Smith J.M., Meinkoth J.H., Hochstatter T., Meyers K.M., Differential distribution of von Willebrand factor in canine vascular endothelium. Am J Vet Res, 1996, 57, 750–755. [PubMed] [Google Scholar]
  • Teichert A.M., Karantzoulis-Fegaras F., Wang Y., Mawji I.A., Bei X., Gnanapandithen K., Marsden P.A., Characterization of the murine endothelial nitric oxide synthase promoter. Biochim Biophys Acta, 1998, 1443, 352–357. [CrossRef] [PubMed] [Google Scholar]
  • Teichert A.M., Miller T.L., Tai S.C., Wang Y., Bei X., Robb G.B., Phillips M.J., Marsden P.A., In vivo expression profile of an endothelial nitric oxide synthase promoter-reporter transgene. Am J Physiol Heart Circ Physiol, 2000, 278, H1352–H1361. [PubMed] [Google Scholar]
  • Valter M.M., Hugel A., Huang H.J., Cavenee W.K., Wiestler O.D., Pietsch T., Wernert N., Expression of the Ets-1 transcription factor in human astrocytomas is associated with Fms-like tyrosine kinase-1 (Flt-1)/vascular endothelial growth factor receptor-1 synthesis and neoangiogenesis. Cancer Res, 1999, 59, 5608–5614. [PubMed] [Google Scholar]
  • Venema R.C., Nishida K., Alexander R.W., Harrison D.G., Murphy T.J., Organization of the bovine gene encoding the endothelial nitric oxide synthase. Biochim Biophys Acta, 1994, 1218, 413–420. [CrossRef] [PubMed] [Google Scholar]
  • Visvader J.E., Fujiwara Y., Orkin S.H., Unsuspected role for the T-cell leukemia protein SCL/tal-1 in vascular development. Genes Dev, 1998, 12, 473–479. [CrossRef] [PubMed] [Google Scholar]
  • Wadman I.A., Osada H., Grutz G.G., Agulnick A.D., Westphal H., Forster A., Rabbitts T.H., The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. Embo J, 1997, 16, 3145–3157. [CrossRef] [PubMed] [Google Scholar]
  • Wakiya K., Bègue A., Stehelin D., Shibuya M., A cAMP response element and an Ets motif are involved in the transcriptional regulation of flt-1 tyrosine kinase (vascular endothelial growth factor receptor 1) gene., J Biol Chem, 1996, 271, 30823–30828. [Google Scholar]
  • Wang X., Peng Y., Ma Y., Jahroudi N., Histone H1-like protein participates in endothelial cell-specific activation of the von Willebrand factor promoter. Blood, 2004, 104, 1725–1732. [CrossRef] [PubMed] [Google Scholar]
  • Wei C., Jiang S., Lust J.A., Daly R.C., McGregor C.G., Genetic expression of endothelial nitric oxide synthase in human atrial myocardium. Mayo Clin Proc, 1996, 71, 346–350. [CrossRef] [PubMed] [Google Scholar]
  • Wilcox J.N., Subramanian R.R., Sundell C.L., Tracey W.R., Pollock J.S., Harrison D.G., Marsden P.A., Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels. Arterioscler Thromb Vasc Biol, 1997, 17, 2479–2488. [CrossRef] [PubMed] [Google Scholar]
  • Wu J., Iwata F., Grass J.A., Osborne C.S., Elnitski L., Fraser P., Ohneda O., Yamamoto M., Bresnick E.H., Molecular determinants of NOTCH4 transcription in vascular endothelium. Mol Cell Biol, 2005, 25, 1458–1474. [CrossRef] [PubMed] [Google Scholar]
  • Yamaguchi T.P., Dumont D.J., Conlon R.A., Breitman M.L., Rossant J., Flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors., Development, 1993, 118, 489–498. [Google Scholar]
  • Zhang J., Patel J.M., Block E.R., Molecular cloning, characterization and expression of a nitric oxide synthase from porcine pulmonary artery endothelial cells. Comp Biochem Physiol B Biochem Mol Biol, 1997, 116, 485–491. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.