Accès gratuit
Numéro
J. Soc. Biol.
Volume 203, Numéro 2, 2009
Angiogenèse : de la biologie à la thérapeutique
Page(s) 143 - 153
DOI https://doi.org/10.1051/jbio/2009017
Publié en ligne 16 juin 2009
  • Adams R.H., Alitalo K., Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol, 2007, 8, 464–478. [CrossRef] [PubMed] [Google Scholar]
  • Benezra R., Role of Id proteins in embryonic and tumor angiogenesis. Trends Cardiovasc Med, 2001, 11, 237–241. [CrossRef] [PubMed] [Google Scholar]
  • Benezra R., Rafii S., Lyden D., The Id proteins and angiogenesis. Oncogene, 2001, 20, 8334–8341. [CrossRef] [PubMed] [Google Scholar]
  • Bernard O., Azogui O., Lecointe N., Mugneret F., Berger R., Larsen C.J., Mathieu-Mahul D., A third tal-1 promoter is specifically used in human T cell leukemias. J Exp Med, 1992, 176, 919–925. [CrossRef] [PubMed] [Google Scholar]
  • Bernard O., Lecointe N., Jonveaux P., Souyri M., Mauchauffé M., Berger R., Larsen C.J., Mathieu-Mahul, D., Two site-specific deletions and t(1;14) translocation restricted to human T-cell acute leukemias disrupt the 5' part of the tal-1 gene. Oncogene, 1991, 6, 1477–1488. [PubMed] [Google Scholar]
  • Birdsey G.M., Dryden N.H., Amsellem V., Gebhardt F., Sahnan K., Haskard D.O., Dejana E., Mason J.C., Randi A.M., Transcription factor Erg regulates angiogenesis and endothelial apoptosis through VE-cadherin. Blood, 2008, 111, 3498–3506. [CrossRef] [PubMed] [Google Scholar]
  • Bruyère F., Melen-Lamalle L., Blacher S., Roland G., Thiry M., Moons L., Frankenne F., Carmeliet P., Alitalo K., Libert C., Sleeman J.P., Foidart J.M., Noël A., Modeling lymphangiogenesis in a three-dimensional culture system. Nat Methods, 2008, 5, 431–437. [CrossRef] [PubMed] [Google Scholar]
  • Calkhoven C.F., Muller C., Martin R., Krosl G., Pietsch H., Hoang T., Leutz A., Translational control of SCL-isoform expression in hematopoietic lineage choice. Genes & Development, 2003, 17, 959–964. [CrossRef] [PubMed] [Google Scholar]
  • Capron C., Lécluse Y., Kaushik A.L., Foudi A., Lacout C., Sekkai D., Godin I., Albagli O., Poullion I., Svinartchouk F., Schanze E., Vainchenker W., Sablitzky F., Bennaceur-Griscelli A., Duménil D., The SCL relative LYL-1 is required for fetal and adult hematopoietic stem cell function and B-cell differentiation. Blood, 2006, 107, 4678–4686. [CrossRef] [PubMed] [Google Scholar]
  • Carmeliet P., Lampugnani M.G., Moons L., Breviario F., Compernolle V., Bono F., Balconi G., Spagnuolo R., Oostuyse B., Dewerchin M., Zanetti A., Angellilo A., Mattot V., Nuyens D., Lutgens E., Clotman F., de Ruiter M.C., Gittenberger-de Groot A., Poelmann R., Lupu F., Herbert J.M., Collen D., Dejana E., Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell, 1999, 98, 147–157. [CrossRef] [PubMed] [Google Scholar]
  • Chan W.Y., Follows G.A., Lacaud G., Pimanda J.E., Landry J.R., Kinston S., Knezevic K., Piltz S., Donaldson I.J., Gambardella L., Sablitzky F., Green A.R., Kouskoff V., Gottgens B., The paralogous hematopoietic regulators Lyl1 and Scl are coregulated by Ets and GATA factors, but Lyl1 cannot rescue the early Scl-/- phenotype. Blood, 2007, 109, 1908–1916. [CrossRef] [PubMed] [Google Scholar]
  • Chetty R., Dada M.A., Boshoff C.H., Comley M.A., Biddolph S.C., Schneider J.W., Mason D.Y., Pulford K.A., Gatter K.C., TAL-1 protein expression in vascular lesions. J Pathol, 1997, 181, 311–315. [CrossRef] [PubMed] [Google Scholar]
  • D'Souza S.L., Elefanty A.G., Keller G., SCL/Tal-1 is essential for hematopoietic commitment of the hemangioblast but not for its development. Blood, 2005, 105, 3862–3870. [CrossRef] [PubMed] [Google Scholar]
  • Dejana E., Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol, 2004, 5, 261–270. [Google Scholar]
  • Dejana E., Taddei A., Randi A.M., Foxs and Ets in the transcriptional regulation of endothelial cell differentiation and angiogenesis. Biochim Biophys Acta, 2007, 1775, 298–312. [PubMed] [Google Scholar]
  • Deleuze V., Chalhoub E., El-Hajj R., Dohet C., Le Clech M., Couraud P.O., Huber P., Mathieu D., TAL-1/SCL and its partners E47 and LMO2 up-regulate VE-cadherin expression in endothelial cells. Mol Cell Biol, 2007, 27, 2687–2697. [CrossRef] [PubMed] [Google Scholar]
  • Drake C.J., Brandt S.J., Trusk T.C., Little C.D., TAL1/SCL is expressed in endothelial progenitor cells/angioblasts and defines a dorsal-to-ventral gradient of vasculogenesis. Dev Biol, 1997, 192, 17–30. [CrossRef] [PubMed] [Google Scholar]
  • Drake C.J., Fleming P.A., Vasculogenesis in the day 6.5 to 9.5 mouse embryo. Blood, 2000, 95, 1671–1679. [PubMed] [Google Scholar]
  • Elwood N.J., Green A.R., Melder A., Begley C.G., Nicola N., The SCL protein displays cell-specific heterogeneity in size. Leukemia, 1994, 8, 106–114. [PubMed] [Google Scholar]
  • Ferrier R., Nougarède R., Doucet S., Kahn-Perlès B., Imbert J., Mathieu-Mahul D., Physical interaction of the bHLH LYL1 protein and NF-kappaB1 p105. Oncogene, 1999, 18, 995–1005. [CrossRef] [PubMed] [Google Scholar]
  • Gao D., Nolan D.J., Mellick A.S., Bambino K., McDonnell K., Mittal V., Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science, 2008, 319, 195–198. [CrossRef] [PubMed] [Google Scholar]
  • Gering M., Rodaway A.R., Gottgens B., Patient R.K., Green A.R., The SCL gene specifies haemangioblast development from early mesoderm. Embo J, 1998, 17, 4029–4045. [CrossRef] [PubMed] [Google Scholar]
  • Giroux S., Kaushik A.L., Capron C., Jalil A., Kelaidi C., Sablitzky F., Duménil D., Albagli O., Godin I., lyl-1 and tal-1/scl, two genes encoding closely related bHLH transcription factors, display highly overlapping expression patterns during cardiovascular and hematopoietic ontogeny. Gene Expr Patterns, 2007, 7, 215–226. [CrossRef] [PubMed] [Google Scholar]
  • Goardon N., Lambert J.A., Rodriguez P., Nissaire P., Herblot S., Thibault P., Duménil D., Strouboulis J., Romeo P.H., Hoang T., ETO2 coordinates cellular proliferation and differentiation during erythropoiesis. Embo J, 2006, 25, 357–366. [Google Scholar]
  • Hall M.A., Curtis D.J., Metcalf D., Elefanty A.G., Sourris K., Robb L., Gothert J.R., Jane S.M., Begley C.G., The critical regulator of embryonic hematopoiesis, SCL, is vital in the adult for megakaryopoiesis, erythropoiesis, and lineage choice in CFU-S12. Proc Natl Acad Sci USA, 2003, 100, 992–997. [CrossRef] [Google Scholar]
  • Henderson A.M., Wang S.J., Taylor A.C., Aitkenhead M., Hughes C.C.W., The basic helix-loop-helix transcription factor HESR1 regulates endothelial cell tube formation. J. Biol. Chem., 2001, 276, 6169–6176. [CrossRef] [PubMed] [Google Scholar]
  • Huang S., Brandt S.J., mSin3A regulates murine erythroleukemia cell differentiation through association with the TAL1 (or SCL) transcription factor. Mol Cell Biol, 2000, 20, 2248–2259. [CrossRef] [PubMed] [Google Scholar]
  • Huang S., Qiu Y., Stein R.W., Brandt S.J., p300 functions as a transcriptional coactivator for the TAL1/SCL oncoprotein. Oncogene, 1999, 18, 4958–4967. [CrossRef] [PubMed] [Google Scholar]
  • Kallianpur A.R., Jordan J.E., Brandt S.J., The SCL/TAL-1 gene is expressed in progenitors of both the hematopoietic and vascular systems during embryogenesis. Blood, 1994, 83, 1200–1208. [PubMed] [Google Scholar]
  • Kamei M., Saunders W.B., Bayless K.J., Dye L., Davis G.E., Weinstein B.M., Endothelial tubes assemble from intracellular vacuoles in vivo. Nature, 2006, 442, 453–456. [CrossRef] [PubMed] [Google Scholar]
  • Lahlil R., Lécuyer E., Herblot S., Hoang T., SCL assembles a multifactorial complex that determines glycophorin A expression. Mol Cell Biol, 2004, 24, 1439–1452. [CrossRef] [PubMed] [Google Scholar]
  • Landry J.R., Kinston S., Knezevic K., de Bruijn M.F., Wilson N., Nottingham W.T., Peitz M., Edenhofer F., Pimanda J.E., Ottersbach K., Gottgens B., Runx genes are direct targets of Scl/Tal1 in the yolk sac and fetal liver. Blood, 2008, 111, 3005–3014. [CrossRef] [PubMed] [Google Scholar]
  • Lazrak M., Deleuze V., Noël D., Haouzi D., Chalhoub E., Dohet C., Robbins I., Mathieu D., The bHLH TAL-1/SCL regulates endothelial cell migration and morphogenesis. J Cell Sci, 2004, 117, 1161–1171. [CrossRef] [PubMed] [Google Scholar]
  • Lécuyer E., Herblot S., Saint-Denis M., Martin R., Begley C.G., Porcher C., Orkin S.H., Hoang T., The SCL complex regulates c-kit expression in hematopoietic cells through functional interaction with Sp1. Blood, 2002, 100, 2430–2440. [CrossRef] [PubMed] [Google Scholar]
  • Lécuyer E., Hoang T., SCL: from the origin of hematopoiesis to stem cells and leukemia. Exp Hematol, 2004, 32, 11–24. [CrossRef] [PubMed] [Google Scholar]
  • Lyden D., Hattori K., Dias S., Costa C., Blaikie P., Butros L., Chadburn A., Heissig B., Marks W., Witte L., Wu Y., Hicklin D., Zhu Z., Hackett N.R., Crystal R.G., Moore M.A.S., Hajjar K.A., Manova K., Benezra R., Rafii S., Impaired recrutement of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature Med., 2001, 7, 1194–1201. [CrossRef] [Google Scholar]
  • Lyden D., Young A.Z., Zagzag D., Yan W., Gerald W., O'Reilly R., Bader B.L., Hynes R.O., Zhuang Y., Manova K., Benezra R., Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature, 1999, 401, 670–677. [CrossRef] [PubMed] [Google Scholar]
  • Massari M.E., Murre C., Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol, 2000, 20, 429–440. [CrossRef] [PubMed] [Google Scholar]
  • Masson V.V., Devy L., Grignet-Debrus C., Bernt S., Bajou K., Blacher S., Roland G., Chang Y., Fong T., Carmeliet P., Foidart J.M., Noël A., Mouse Aortic Ring Assay: A New Approach of the Molecular Genetics of Angiogenesis. Biol Proced Online, 2002, 4, 24–31. [CrossRef] [PubMed] [Google Scholar]
  • McCormack M.P., Hall M.A., Schoenwaelder S.M., Zhao Q., Ellis S., Prentice J.A., Clarke A.J., Slater N.J., Salmon J.M., Jackson S.P., Jane S.M., Curtis D.J., A critical role for the transcription factor Scl in platelet production during stress thrombopoiesis. Blood, 2006, 108, 2248–2256. [CrossRef] [PubMed] [Google Scholar]
  • Mikkola H.K., Klintman J., Yang H., Hock H., Schlaeger T.M., Fujiwara Y., Orkin S.H., Haematopoietic stem cells retain long-term repopulating activity and multipotency in the absence of stem-cell leukaemia SCL/tal-1 gene. Nature, 2003, 421, 547–551. [CrossRef] [PubMed] [Google Scholar]
  • Nie L., Wu H., Sun X.H., Ubiquitination and degradation of Tal1/SCL are induced by Notch signaling and depend on Skp2 and CHIP. J Biol Chem, 2008, 283, 684–692. [CrossRef] [PubMed] [Google Scholar]
  • Nishiyama K., Takaji K., Uchijima Y., Kurihara Y., Asano T., Yoshimura M., Ogawa H., Kurihara H., Protein kinase A-regulated nucleocytoplasmic shuttling of Id1 during angiogenesis. J Biol Chem, 2007, 282, 17200–17209. [CrossRef] [PubMed] [Google Scholar]
  • Nolan D.J., Ciarrocchi A., Mellick A.S., Jaggi J.S., Bambino K., Gupta S., Heikamp E., McDevitt M.R., Scheinberg D.A., Benezra R., Mittal V., Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev, 2007, 21, 1546–1558. [CrossRef] [PubMed] [Google Scholar]
  • Palamarchuk A., Efanov A., Maximov V., Aqeilan R.I., Croce C.M., Pekarsky Y., Akt phosphorylates Tal1 oncoprotein and inhibits its repressor activity. Cancer Res, 2005, 65, 4515–4519. [CrossRef] [PubMed] [Google Scholar]
  • Patterson L.J., Gering M., Eckfeldt C.E., Green A.R., Verfaillie C.M., Ekker S.C., Patient R., The transcription factors Scl and Lmo2 act together during development of the hemangioblast in zebrafish. Blood, 2007, 109, 2389–2398. [CrossRef] [PubMed] [Google Scholar]
  • Porcher C., Liao E.C., Fujiwara Y., Zon L.I., Orkin S.H., Specification of hematopoietic and vascular development by the bHLH transcription factor SCL without direct DNA binding. Development, 1999, 126, 4603–4615. [PubMed] [Google Scholar]
  • Porcher C., Swat W., Rockwell K., Fujiwara Y., Alt F.W., Orkin S.H., The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell, 1996, 86, 47–57. [CrossRef] [PubMed] [Google Scholar]
  • Prandini M.H., Dreher I., Bouillot S., Benkerri S., Moll T., Huber P., The human VE-cadherin promoter is subjected to organ-specific regulation and is activated in tumour angiogenesis. Oncogene, 2005, 24, 2992–3001. [CrossRef] [PubMed] [Google Scholar]
  • Prasad K.S., Brandt S.J., Target-dependent effect of phosphorylation on the DNA binding activity of the TAL1/SCL oncoprotein. J Biol Chem, 1997, 272, 11457–11462. [CrossRef] [PubMed] [Google Scholar]
  • Pulford K., Lecointe N., Leroy V.K., Jones M., Mathieu M.D., Mason D.Y., Expression of TAL-1 proteins in human tissues. Blood, 1995, 85, 675–684. [PubMed] [Google Scholar]
  • Robertson S.M., Kennedy M., Shannon J.M., Keller G., A transitional stage in the commitment of mesoderm to hematopoiesis requiring the transcription factor SCL/tal-1. Development, 2000, 127, 2447–2459. [PubMed] [Google Scholar]
  • Ruzinova M.B., Schoer R.A., Gerald W., Egan J.E., Pandolfi P.P., Rafii S., Manova K., Mittal V., Benezra R., Effect of angiogenesis inhibition by Id loss and the contribution of bone-marrow-derived endothelial cells in spontaneous murine tumors. Cancer Cell, 2003, 4, 277–289. [CrossRef] [PubMed] [Google Scholar]
  • San-Marina S., Han Y., Suarez Saiz F., Trus M.R., Minden M.D., Lyl1 interacts with CREB1 and alters expression of CREB1 target genes. Biochim Biophys Acta, 2008, 1783, 503–517. [CrossRef] [PubMed] [Google Scholar]
  • Schlaeger T.M., Schuh A., Flitter S., Fisher A., Mikkola H., Orkin S.H., Vyas P., Porcher C., Decoding hematopoietic specificity in the helix-loop-helix domain of the transcription factor SCL/Tal-1. Mol Cell Biol, 2004, 24, 7491–7502. [CrossRef] [PubMed] [Google Scholar]
  • Schuh A.H., Tipping A.J., Clark A.J., Hamlett I., Guyot B., Iborra F.J., Rodriguez P., Strouboulis J., Enver T., Vyas P., Porcher C., ETO-2 associates with SCL in erythroid cells and megakaryocytes and provides repressor functions in erythropoiesis. Mol Cell Biol, 2005, 25, 10235–10250. [CrossRef] [PubMed] [Google Scholar]
  • Shivdasani R.A., Mayer E.L., Orkin S.H., Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature, 1995, 373, 432–434. [CrossRef] [PubMed] [Google Scholar]
  • Shojaei F., Zhong C., Wu X., Yu L., Ferrara N., Role of myeloid cells in tumor angiogenesis and growth. Trends Cell Biol, 2008, 18, 372–378. [CrossRef] [PubMed] [Google Scholar]
  • Tang T., Arbiser J.L., Brandt S.J., Phosphorylation by Mitogen-activated Protein Kinase Mediates the Hypoxia-induced Turnover of the TAL1/SCL Transcription Factor in Endothelial Cells. J Biol Chem, 2002, 277, 18365–18372. [CrossRef] [PubMed] [Google Scholar]
  • Tang T., Shi Y., Opalenik S.R., Brantley-Sieders D.M., Chen J., Davidson J.M., Brandt S.J., Expression of the TAL1/SCL transcription factor in physiological and pathological vascular processes. J Pathol, 2006, 210, 121–129. [CrossRef] [PubMed] [Google Scholar]
  • Timmerman L.A., Grego-Bessa J., Raya A., Bertran E., Perez-Pomares J.M., Diez J., Aranda S., Palomo S., McCormick F., Izpisua-Belmonte J.C., de la Pompa J.L., Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev, 2004, 18, 99–115. [CrossRef] [PubMed] [Google Scholar]
  • Visvader J.E., Fujiwara Y., Orkin S.H., Unsuspected role for the T-cell leukemia protein SCL/tal-1 in vascular development. Genes Dev, 1998, 12, 473–479. [CrossRef] [PubMed] [Google Scholar]
  • Wadman I.A., Hsu H.L., Cobb M.H., Baer R., The MAP kinase phosphorylation site of TAL1 occurs within a transcriptional activation domain. Oncogene, 1994, 9, 3713–3716. [PubMed] [Google Scholar]
  • Warren A.J., Colledge W.H., Carlton M.B., Evans M.J., Smith A.J., Rabbitts T.H., The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development. Cell, 1994, 78, 45–57. [CrossRef] [PubMed] [Google Scholar]
  • Xu Z., Huang S., Chang L.S., Agulnick A.D., Brandt S.J., Identification of a TAL1 target gene reveals a positive role for the LIM domain-binding protein Ldb1 in erythroid gene expression and differentiation. Mol Cell Biol, 2003, 23, 7585–7599. [CrossRef] [PubMed] [Google Scholar]
  • Yamada Y., Pannell R., Forster A., Rabbitts T.H., The oncogenic LIM-only transcription factor Lmo2 regulates angiogenesis but not vasculogenesis in mice. Proc Natl Acad Sci USA, 2000, 97, 320–324. [CrossRef] [Google Scholar]
  • Zeuner A., Eramo A., Testa U., Felli N., Pelosi E., Mariani G., Srinivasula S.M., Alnemri E.S., Condorelli G., Peschle C., De Maria R., Control of erythroid cell production via caspase-mediated cleavage of transcription factor SCL/Tal-1. Cell Death Differ, 2003, 10, 905–913. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.