Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 204, Numéro 1, 2010
Page(s) 11 - 19
Section La signalisation chez les plantes revue et corrigée
DOI https://doi.org/10.1051/jbio/2009045
Publié en ligne 8 avril 2010
  • Anthony R.G., Henriques R., Helfer A., Meszaros T., Rios G., Testerink C., Munnik T., Deak M., Koncz C., Bogre L., A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis. EMBO J, 2004, 23, 572-581. [Google Scholar]
  • Arisz S.A., Testerink C., Munnik T., Plant PA signalling via diacylglycerol kinase. Biochim Biophys Acta, 2009, 1791, 869-875. [PubMed] [Google Scholar]
  • Backer J.M., The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem J, 2008, 410, 1-17. [CrossRef] [PubMed] [Google Scholar]
  • Balla A., Balla T., Phosphatidylinositol 4-kinases: old enzymes with emerging functions. Trends Cell Biol, 2006, 16, 351-361. [CrossRef] [PubMed] [Google Scholar]
  • Bargmann B.O., Laxalt A.M., ter Riet B., van Schooten B., Merquiol E., Testerink C., Haring M.A., Bartels D., Munnik T., Multiple PLDs required for high salinity and water deficit tolerance in plants. Plant Cell Physiol, 2009, 50, 78-89. [CrossRef] [PubMed] [Google Scholar]
  • Choi Y., Lee Y., Jeon B.W., Staiger C.J., Phosphatidylinositol 3- and 4-phosphate modulate actin filament reorganization in guard cells of day flower. Plant Cell Environ, 2008, 31, 366-377. [CrossRef] [PubMed] [Google Scholar]
  • Davies W., Kudoyarova G., Hartung W., Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant's response to drought. J Plant Growth Regul 2005, 24, 285-295. [Google Scholar]
  • Deak M., Casamayor A., Currie R.A., Downes C.P., Alessi D.R., Characterisation of a plant 3-phosphoinositide-dependent protein kinase-1 homologue which contains a pleckstrin homology domain. FEBS Lett, 1999, 451, 220-226. [CrossRef] [PubMed] [Google Scholar]
  • den Hartog M., Musgrave A., Munnik T., Nod factor-induced phosphatidic acid and diacylglycerol pyrophosphate formation: a role for phospholipase C and D in root hair deformation. Plant J, 2001, 25, 55-65. [Google Scholar]
  • den Hartog M., Verhoef N., Munnik T., Nod factor and elicitors activate different phospholipid signaling pathways in suspension-cultured alfalfa cells. Plant Physiol, 2003, 132, 311-317. [CrossRef] [PubMed] [Google Scholar]
  • Devaiah S.P., Roth M.R., Baughman E., Li M., Tamura P., Jeannotte R., Welti R., Wang X., Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a phospholipase Dalpha1 knockout mutant. Phytochem, 2006, 67, 1907-1924. [CrossRef] [Google Scholar]
  • DeWald D.B., Torabinejad J., Jones C.A., Shope J.C., Cangelosi A.R., Thompson J.E., Prestwich G.D., Hama H., Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol, 2001, 126, 759-769. [CrossRef] [PubMed] [Google Scholar]
  • Distefano A.M., Garcia-Mata C., Lamattina L., Laxalt A.M., Nitric oxide-induced phosphatidic acid accumulation: a role for phospholipases C and D in stomatal closure. Plant Cell Environ, 2008, 31, 187-194. [CrossRef] [PubMed] [Google Scholar]
  • Fan L., Zheng S., Cui D., Wang X., Subcellular distribution and tissue expression of phospholipase Dalpha, Dbeta, and Dgamma in Arabidopsis. Plant Physiol, 1999, 119, 1371-1378. [Google Scholar]
  • Heilmann I., Towards understanding the function of stress-inducible PtdIns(4,5)P(2) in plants. Commun Integr Biol, 2008, 1, 204-206. [CrossRef] [PubMed] [Google Scholar]
  • Hirayama T., Ohto C., Mizoguchi T., Shinozaki K., A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proc Natl Acad Sci USA, 1995, 92, 3903-3907. [CrossRef] [Google Scholar]
  • Hong Y., Devaiah S.P., Bahn S.C., Thamasandra B.N., Li M., Welti R., Wang X., Phospholipase D epsilon and phosphatidic acid enhance Arabidopsis nitrogen signaling and growth. Plant J, 2009, 58, 376-387. [CrossRef] [PubMed] [Google Scholar]
  • Hong Y., Pan X., Welti R., Wang X., Phospholipase Dalpha3 is involved in the hyperosmotic response in Arabidopsis. Plant Cell, 2008, 20, 803-816. [CrossRef] [PubMed] [Google Scholar]
  • Hunt L., Otterhag L., Lee J.C., Lasheen T., Hunt J., Seki M., Shinozaki K., Sommarin M., Gilmour D.J., Pical C., Gray J.E., Gene-specific expression and calcium activation of Arabidopsis thaliana phospholipase C isoforms. New Phytologist, 2004, 162, 643-654. [CrossRef] [Google Scholar]
  • Jung J.Y., Kim Y.W., Kwak J.M., Hwang J.U., Young J., Schroeder J.I., Hwang I., Lee Y., Phosphatidylinositol 3- and 4-phosphate are required for normal stomatal movements. Plant Cell, 2002, 14, 2399-2412. [CrossRef] [PubMed] [Google Scholar]
  • Katagiri T., Takahashi S., Shinozaki K., Involvement of a novel Arabidopsis phospholipase D, AtPLDdelta, in dehydration-inducible accumulation of phosphatidic acid in stress signalling. Plant J, 2001, 26, 595-605. [Google Scholar]
  • Kavi Kishor P.B., Sangam S., Amrutha R.N., Sri Laxm P., Naidu K.R., Rao K.R.S.S., Rao S., Reddy K.J., Theriappan P., Sreenivasulu N., Regulation of proline biosynthesis, degradation,uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Curr Sci, 2005, 88, 424-438. [Google Scholar]
  • Konig S., Ischebeck T., Lerche J., Stenzel I., Heilmann I., Salt-stress-induced association of phosphatidylinositol 4,5-bisphosphate with clathrin-coated vesicles in plants. Biochem J, 2008, 415, 387-399. [CrossRef] [PubMed] [Google Scholar]
  • Lee Y., Kim E.S., Choi Y., Hwang I., Staiger C.J., Chung Y.Y., The Arabidopsis phosphatidylinositol 3-kinase is important for pollen development. Plant Physiol, 2008, 147, 1886-1897. [CrossRef] [PubMed] [Google Scholar]
  • Lemmon M.A., Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol, 2008, 9, 99-111. [CrossRef] [PubMed] [Google Scholar]
  • Lemtiri-Chlieh F., MacRobbie E.A., Brearley C.A., Inositol hexakisphosphate is a physiological signal regulating the K+-inward rectifying conductance in guard cells. Proc Natl Acad Sci USA, 2000, 97, 8687-8692. [CrossRef] [Google Scholar]
  • Lemtiri-Chlieh F., MacRobbie E.A., Webb A.A., Manison N.F., Brownlee C., Skepper J.N., Chen J., Prestwich G.D., Brearley C.A., Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells. Proc Natl Acad Sci USA, 2003, 100, 10091-10095. [CrossRef] [Google Scholar]
  • Leshem Y., Seri L., Levine A., Induction of phosphatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance. Plant J, 2007, 51, 185-197. [CrossRef] [PubMed] [Google Scholar]
  • Li M., Hong Y., Wang X., Phospholipase D- and phosphatidic acid-mediated signaling in plants. Biochim Biophys Acta, 2009, 1791, 927-935. [PubMed] [Google Scholar]
  • Liu H.T., Gao F., Cui S.J., Han J.L., Sun D.Y., Zhou R.G., Primary evidence for involvement of IP3 in heat-shock signal transduction in Arabidopsis. Cell Res, 2006, 16, 394-400. [Google Scholar]
  • Mahajan S., Tuteja N., Cold, salinity and drought stresses : An overview. Arch Biochem Biophys, 2005, 444, 139-158. [Google Scholar]
  • Meijer H.J., Berrie C.P., Iurisci C., Divecha N., Musgrave A., Munnik T., Identification of a new polyphosphoinositide in plants, phosphatidylinositol 5-monophosphate (PtdIns5P), and its accumulation upon osmotic stress. Biochem J, 2001, 360, 491-498. [CrossRef] [PubMed] [Google Scholar]
  • Meijer H.J., Munnik T., Phospholipid-based signaling in plants. Annu Rev Plant Biol, 2003, 54, 265-306. [Google Scholar]
  • Monteiro D., Liu Q., Lisboa S., Scherer G.E., Quader H., Malho R., Phosphoinositides and phosphatidic acid regulate pollen tube growth and reorientation through modulation of [Ca2+]c and membrane secretion. J Exp Bot, 2005, 56, 1665-1674. [CrossRef] [PubMed] [Google Scholar]
  • Mueller-Roeber B., Pical C., Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C. Plant Physiol, 2002, 130, 22-46. [CrossRef] [PubMed] [Google Scholar]
  • Munnik T., Phosphatidic acid: an emerging plant lipid second messenger. Trends Plant Sci, 2001, 6, 227-233. [Google Scholar]
  • Munnik T., Arisz S.A., De Vrije T., Musgrave A., G Protein activation stimulates phospholipase D signaling in plants. Plant Cell, 1995, 7, 2197-2210. [CrossRef] [PubMed] [Google Scholar]
  • Munnik T., Meijer H.J., Ter Riet B., Hirt H., Frank W., Bartels D., Musgrave A., Hyperosmotic stress stimulates phospholipase D activity and elevates the levels of phosphatidic acid and diacylglycerol pyrophosphate. Plant J, 2000, 22, 147-154. [CrossRef] [PubMed] [Google Scholar]
  • Munnik T., Testerink C., Plant phospholipid signaling: “in a nutshell”. J Lipid Res, 2009, 50 Suppl, S260-S265. [Google Scholar]
  • Munns R., Tester M., Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59, 651-681. [Google Scholar]
  • Park K.Y., Jung J.Y., Park J., Hwang J.U., Kim Y.W., Hwang I., Lee Y., A role for phosphatidylinositol 3-phosphate in abscisic acid-induced reactive oxygen species generation in guard cells. Plant Physiol, 2003, 132, 92-98. [CrossRef] [PubMed] [Google Scholar]
  • Parre E., Ghars M.A., Leprince A.S., Thiery L., Lefebvre D., Bordenave M., Richard L., Mazars C., Abdelly C., Savouré A., Calcium signaling via phospholipase C is essential for proline accumulation upon ionic but not nonionic hyperosmotic stresses in Arabidopsis. Plant Physiol, 2007, 144, 503-512. [CrossRef] [PubMed] [Google Scholar]
  • Pical C., Westergren T., Dove S.K., Larsson C., Sommarin M., Salinity and hyperosmotic stress induce rapid increases in phosphatidylinositol 4,5-bisphosphate, diacylglycerol pyrophosphate, and phosphatidylcholine in Arabidopsis thaliana cells. J Biol Chem, 1999, 274, 38232-38240. [CrossRef] [PubMed] [Google Scholar]
  • Rajashekar C.B., Zhou H.E., Zhang Y., Li W., Wang X., Suppression of phospholipase Dalpha1 induces freezing tolerance in Arabidopsis: response of cold-responsive genes and osmolyte accumulation. J Plant Physiol, 2006, 163, 916-926. [CrossRef] [PubMed] [Google Scholar]
  • Ruelland E., Cantrel C., Gawer M., Kader J.C., Zachowski A., Activation of phospholipases C and D is an early response to a cold exposure in Arabidopsis suspension cells. Plant Physiol, 2002, 130, 999-1007. [CrossRef] [PubMed] [Google Scholar]
  • Staxen I., Pical C., Montgomery L.T., Gray J.E., Hetherington A.M., McAinsh M.R., Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. Proc Natl Acad Sci USA, 1999, 96, 1779-1784. [CrossRef] [Google Scholar]
  • Tasma I.M., Brendel V., Whitham S.A., Bhattacharyya M.K., Expression and evolution of the phosphoinositide-specific phospholipase C gene family in Arabidopsis thaliana. Plant Physiol Biochem, 2008, 46, 627-637. [CrossRef] [PubMed] [Google Scholar]
  • Testerink C., Munnik T., Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci, 2005, 10, 368-375. [Google Scholar]
  • Thiery L., Leprince A.S., Lefebvre D., Ghars M.A., Debarbieux E., Savouré A., Phospholipase D is a negative regulator of proline biosynthesis in Arabidopsis thaliana. J Biol Chem, 2004, 279, 14812-14818. [CrossRef] [PubMed] [Google Scholar]
  • Tran L.S., Urao T., Qin F., Maruyama K., Kakimoto T., Shinozaki K., Yamaguchi-Shinozaki K., Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci USA, 2007, 104, 20623-20628. [CrossRef] [Google Scholar]
  • Urao T., Yakubov B., Satoh R., Yamaguchi-Shinozaki K., Seki M., Hirayama T., Shinozaki K., A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell, 1999, 11, 1743-1754. [CrossRef] [PubMed] [Google Scholar]
  • van der Luit A.H., Piatti T., van Doorn A., Musgrave A., Felix G., Boller T., Munnik T., Elicitation of suspension-cultured tomato cells triggers the formation of phosphatidic acid and diacylglycerol pyrophosphate. Plant Physiol, 2000, 123, 1507-1516. [CrossRef] [PubMed] [Google Scholar]
  • van Leeuwen W., Okresz L., Bogre L., Munnik T., Learning the lipid language of plant signalling. Trends Plant Sci, 2004, 9, 378-384. [CrossRef] [PubMed] [Google Scholar]
  • van Schooten B., Testerink C., Munnik T., Signalling diacylglycerol pyrophosphate, a new phosphatidic acid metabolite. Biochim Biophys Acta, 2006, 1761, 151-159. [PubMed] [Google Scholar]
  • Wang X., Lipid signaling. Curr Opin Plant Biol, 2004, 7, 329-336. [CrossRef] [PubMed] [Google Scholar]
  • Wang X., Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses. Plant Physiol, 2005, 139, 566-573. [CrossRef] [PubMed] [Google Scholar]
  • Welters P., Takegawa K., Emr S.D., Chrispeels M.J., AtVPS34, a phosphatidylinositol 3-kinase of Arabidopsis thaliana, is an essential protein with homology to a calcium-dependent lipid binding domain. Proc Natl Acad Sci USA, 1994, 91, 11398-11402. [CrossRef] [Google Scholar]
  • Wissing J.B., Behrbohm H., Phosphatidate kinase, a novel enzyme in phospholipid metabolism (purification, subcellular localization, and occurrence in the plant kingdom). Plant Physiol, 1993, 102, 1243-1249. [PubMed] [Google Scholar]
  • Wissing J.B., Kornak B., Funke A., Riedel B., Phosphatidate kinase, a novel enzyme in phospholipid metabolism (characterization of the enzyme from suspension-cultured Catharanthus roseus cells). Plant Physiol, 1994, 105, 903-909. [PubMed] [Google Scholar]
  • Yamaryo Y., Dubots E., Albrieux C., Baldan B., Block M.A., Phosphate availability affects the tonoplast localization of PLDzeta2, an Arabidopsis thaliana phospholipase D. FEBS Lett, 2008, 582, 685-690. [CrossRef] [PubMed] [Google Scholar]
  • Yang L., Tang R., Zhu J., Liu H., Mueller-Roeber B., Xia H., Zhang H., Enhancement of stress tolerance in transgenic tobacco plants constitutively expressing AtIpk2beta, an inositol polyphosphate 6-/3-kinase from Arabidopsis thaliana. Plant Mol Biol, 2008, 66, 329-343. [CrossRef] [PubMed] [Google Scholar]
  • Zalejski C., Zhang Z., Quettier A.L., Maldiney R., Bonnet M., Brault M., Demandre C., Miginiac E., Rona J.P., Sotta B., Jeannette E., Diacylglycerol pyrophosphate is a second messenger of abscisic acid signaling in Arabidopsis thaliana suspension cells. Plant J, 2005, 42, 145-152. [CrossRef] [PubMed] [Google Scholar]
  • Zhang W., Qin C., Zhao J., Wang X., Phospholipase D alpha 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci USA, 2004, 101, 9508-9513. [CrossRef] [Google Scholar]
  • Zhu J.K., Salt and drought stress signal transduction in plants. Ann Rev Plant Biol, 2002, 53, 247-273. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.