Accès gratuit
Biologie Aujourd'hui
Volume 204, Numéro 1, 2010
Page(s) 21 - 31
Section La signalisation chez les plantes revue et corrigée
Publié en ligne 8 avril 2010
  • Albrecht V., Weinl S., Blazevic D., D'Angelo C., Batistic O., Kolukisaoglu U., Bock R., Schulz B., Harter K., Kudla J., The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant J, 2003, 36, 457-470. [CrossRef] [PubMed] [Google Scholar]
  • Anil V.S., Rajkumar P., Kumar P., Mathew M.K., A plant Ca2+ pump, ACA2, relieves salt hypersensitivity in yeast. Modulation of cytosolic calcium signature and activation of adaptive Na+ homeostasis. J Biol Chem, 2008, 283, 3497-3506. [CrossRef] [PubMed] [Google Scholar]
  • Batistic O., Kudla J., Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. Planta, 2004, 219, 915-924. [CrossRef] [PubMed] [Google Scholar]
  • Berkowitz G., Zhang X., Mercie R., Leng Q., Lawton M., Co-expression of calcium-dependent protein kinase with the inward rectified guard cell K+ channel KAT1 alters current parameters in Xenopus laevis oocytes. Plant Cell Physiol, 2000, 41, 785-790. [PubMed] [Google Scholar]
  • Bouché N., Yellin A., Snedden W.A., Fromm H., Plant-specific calmodulin-binding proteins. Ann Rev Plant Biol, 2005, 56, 435-466. [CrossRef] [Google Scholar]
  • Boudsocq M., Laurière C., Osmotic signaling in plants. Multiple pathways mediated by emerging kinase families. Plant Physiol, 2005, 138, 1185-1194. [CrossRef] [PubMed] [Google Scholar]
  • Chehab E.W., Patharkar O.R., Hegeman A.D., Taybi T., Cushman J.C., Autophosphorylation and subcellular localization dynamics of a salt- and water deficit-induced calcium-dependent protein kinase from ice plant. Plant Physiol, 2004, 135, 1430-1446. [CrossRef] [PubMed] [Google Scholar]
  • Cheng S.H., Willmann M.R., Chen H.C., Sheen J., Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol, 2002, 129, 469-485. [CrossRef] [PubMed] [Google Scholar]
  • Cheong Y.H., Kim K.N., Pandey G.K., Gupta R., Grant J.J., Luan S., CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell, 2003, 15, 1833-1845. [CrossRef] [PubMed] [Google Scholar]
  • Cheong Y.H., Pandey G.K., Grant J.J., Batistic O., Li L., Kim B.G., Lee S.C., Kudla J., Luan S., Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J, 2007, 52, 223-239. [CrossRef] [PubMed] [Google Scholar]
  • Choi H.I., Park H.J., Park J.H., Kim S., Im M.Y., Seo H.H., Kim Y.W., Hwang I., Kim S.Y., Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol, 2005a, 139, 1750-1761. [CrossRef] [PubMed] [Google Scholar]
  • Choi M.S., Kim M.C., Yoo J.H., Moon B.C., Koo S.C., Park B.O., Lee J.H., Koo Y.D., Han H.J., Lee S.Y., Chung W.S., Lim C.O., Cho M.J., Isolation of a calmodulin-binding transcription factor from rice (Oryza sativa L.). J Biol Chem, 2005b, 280, 40820-40831. [CrossRef] [PubMed] [Google Scholar]
  • Cyert M.S., Calcineurin signaling in Saccharomyces cerevisiae: how yeast go crazy in response to stress. Biochem Biophys Res Commun, 2003, 311, 1143-1150. [CrossRef] [PubMed] [Google Scholar]
  • D'Angelo C., Weinl S., Batistic O., Pandey G.K., Cheong Y.H., Schültke S., Albrecht V., Ehlert B., Schulz B., Harter K., Luan S., Bock R., Kudla J., Alternative complex formation of the Ca2+-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis. Plant J, 2006, 48, 857-872. [CrossRef] [PubMed] [Google Scholar]
  • Deswal R., Sopory S.K., Glyoxalase I from Brassica juncea is a calmodulin stimulated protein. Biochim. Biophys Acta, 1999, 1450, 460-467. [CrossRef] [PubMed] [Google Scholar]
  • Doherty C.J., Van Buskirk H.A., Myers S.J., Thomashow M.F., Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell, 2009, 21, 972-984. [CrossRef] [PubMed] [Google Scholar]
  • Franklin R.A., Rodriguez-Mora O.G., Lahair M.M., McCubrey J.A., Activation of the calcium/calmodulin-dependent protein kinases as a consequence of oxidative stress. Antioxid Redox Signal, 2006, 8, 1807-1817. [CrossRef] [PubMed] [Google Scholar]
  • Furihata T., Maruyama K., Fujita Y., Umezawa T., Yoshida R., Shinozaki K., Yamaguchi-Shinozaki K., Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci USA, 2006, 103, 1988-1993. [Google Scholar]
  • Geisler M., Frangne N., Gomes E., Martinoia E., Palmgren M.G., The ACA4 gene of Arabidopsis encodes a vacuolar membrane calcium pump that improves salt tolerance in yeast. Plant Physiol, 2000, 124, 1814-1827. [CrossRef] [PubMed] [Google Scholar]
  • Gong D., Guo Y., Schumaker K.S., Zhu J.K., The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis. Plant Physiol, 2004, 134, 919-926. [CrossRef] [PubMed] [Google Scholar]
  • Guo Y., Xiong L., Song C.P., Gong D., Halfter U., Zhu J.K., A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev Cell, 2002, 3, 233-244. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Harding S.A., Oh S.H., Roberts D.M., Transgenic tobacco expressing a foreign calmodulin gene shows an enhanced production of active oxygen species. EMBO J, 1997, 16, 1137-1144. [CrossRef] [PubMed] [Google Scholar]
  • Harper J.F., Breton G., Harmon A., Decoding Ca2+ signals through plant protein kinases. Ann Rev Plant Biol, 2004, 55, 263-288. [CrossRef] [Google Scholar]
  • Hegeman A.D., Rodriguez M., Han B.W., Uno Y., Phillips G.N.J., Hrabak E.M., Cushman J.C., Harper J.F., Harmon A.C., Sussman M.R., A phyloproteomic characterization of in vitro autophosphorylation in calcium-dependent protein kinases. Proteomics, 2006, 6, 3649-3664. [CrossRef] [PubMed] [Google Scholar]
  • Hepler P.K., Calcium: a central regulator of plant growth and development. Plant Cell, 2005, 17, 2142-2155. [CrossRef] [PubMed] [Google Scholar]
  • Hwang I., Sze H., Harper J.F., A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca2+ pump (ACA2) located in the endoplasmic reticulum of Arabidopsis. Proc Natl Acad Sci USA, 2000, 97, 6224-6229. [CrossRef] [Google Scholar]
  • Johansson I., Larsson C., Ek B., Kjellbom P., The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca2+ and apoplastic water potential. Plant Cell, 1996, 8, 1181-1191. [CrossRef] [PubMed] [Google Scholar]
  • Kim B.G., Waadt R., Cheong Y.H., Pandey G.K., Dominguez-Solis J.R., Schultke S., Lee S.C., Kudla J., Luan S., The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. Plant J, 2007, 52, 473-484. [CrossRef] [PubMed] [Google Scholar]
  • Kim K.N., Cheong Y.H., Grant J.J., Pandey G.K., Luan S., CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell, 2003, 15, 411-423. [CrossRef] [PubMed] [Google Scholar]
  • Klimecka M., Muszynska G., Structure and functions of plant calcium-dependent protein kinases. Acta Biochim Pol, 2007, 54, 219-233. [PubMed] [Google Scholar]
  • Kudla J., Xu Q., Harter K., Gruissem W., Luan S., Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proc Natl Acad Sci USA, 1999, 96, 4718-4723. [CrossRef] [Google Scholar]
  • Lee S.C., Lan W.Z., Kim B.G., Li L., Cheong Y.H., Pandey G.K., Lu G., Buchanan B.B., Luan S., A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Proc Natl Acad Sci USA, 2007, 104, 15959-15964. [CrossRef] [Google Scholar]
  • Lee S.H., Johnson J.D., Walsh M.P., Van Lierop J.E., Sutherland C., Xu A., Snedden W.A., Kosk-Kosicka D., Fromm H., Narayanan N., Cho M.J., Differential regulation of Ca2+/calmodulin-dependent enzymes by plant calmodulin isoforms and free Ca2+ concentration. Biochem J, 2000, 350, 299-306. [CrossRef] [PubMed] [Google Scholar]
  • Li J., Lee Y.R., Assmann S.M., Guard cells possess a calcium-dependent protein kinase that phosphorylates the KAT1 potassium channel. Plant Physiol, 1998, 116, 785-795. [CrossRef] [PubMed] [Google Scholar]
  • Liu F., Yoo B.C., Lee J.Y., Pan W., Harmon A.C., Calcium-regulated phosphorylation of soybean serine acetyltransferase in response to oxidative stress. J Biol Chem, 2006, 281, 27405-27415. [CrossRef] [PubMed] [Google Scholar]
  • Luan S., The CBL-CIPK network in plant calcium signaling. Trends Plant Sci, 2009, 14, 37-42. [CrossRef] [PubMed] [Google Scholar]
  • Ma S.Y., Wu W.H., AtCPK23 functions in Arabidopsis responses to drought and salt stresses. Plant Mol Biol, 2007, 65, 511-518. [CrossRef] [PubMed] [Google Scholar]
  • Martin M.L., Busconi L., Membrane localization of a rice calcium-dependent protein kinase (CDPK) is mediated by myristoylation and palmitoylation. Plant J, 2000, 24, 429-435. [CrossRef] [PubMed] [Google Scholar]
  • McAinsh M.R., Pittman J.K., Shaping the calcium signature. New Phytol, 2009, 181, 275-294. [CrossRef] [PubMed] [Google Scholar]
  • McCormack E., Tsai Y.C., Braam J., Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plant Sci, 2005, 10, 383-389. [CrossRef] [PubMed] [Google Scholar]
  • Mori I.C., Murata Y., Yang Y., Munemasa S., Wang Y.F., Andreoli S., Tiriac H., Alonso J.M., Harper J.F., Ecker J.R., Kwak J.M., Schroeder J.I., CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+-permeable channels and stomatal closure. PLoS Biol, 2006, 4, 1749-1762. [Google Scholar]
  • Olsson P., Yilmaz J.L., Sommarin M., Persson S., Bülow L., Expression of bovine calmodulin in tobacco plants confers faster germination on saline media. Plant Sci, 2004, 166, 1595-1604. [CrossRef] [Google Scholar]
  • Pandey G.K., Cheong Y.H., Kim K.N., Grant J.J., Li L., Hung W., D'Angelo C., Weinl S., Kudla J., Luan S., The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell, 2004, 16, 1912-1924. [CrossRef] [PubMed] [Google Scholar]
  • Pandey G.K., Grant J.J., Cheong Y.H., Kim B.G., Li L.G., Luan S., Calcineurin B-like protein CBL9 interacts with target kinase CIPK3 in the regulation of ABA response in seed germination. Mol Plant, 2008, 1, 238-248. [CrossRef] [PubMed] [Google Scholar]
  • Pardo J.M., Reddy M.P., Yang S., Maggio A., Huh G.H., Matsumoto T., Coca M.A., Paino-D'Urzo M., Koiwa H., Yun D.J., Watad A.A., Bressan R.A., Hasegawa P.M., Stress signaling through Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants. Proc Natl Acad Sci USA, 1998, 95, 9681-9686. [CrossRef] [Google Scholar]
  • Patharkar O.R., Cushman J.C., A stress-induced calcium-dependent protein kinase from Mesembryanthemum crystallinum phosphorylates a two-component pseudo-response regulator. Plant J, 2000, 24, 679-691. [CrossRef] [PubMed] [Google Scholar]
  • Pei Z.M., Ward J.M., Harper J.F., Schroeder J.I., A novel chloride channel in Vicia faba guard cell vacuoles activated by the serine/threonine kinase, CDPK. EMBO J, 1996, 15, 6564-6574. [PubMed] [Google Scholar]
  • Popescu S.C., Popescu G.V., Bachan S., Zhang Z., Seay M., Gerstein M., Snyder M. Dinesh-Kumar S.P., Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proc Natl Acad Sci USA, 2007, 104, 4730-4735. [CrossRef] [Google Scholar]
  • Qiu Q.S., Guo Y., Quintero F.J., Pardo J.M., Schumaker K.S., Zhu J.K., Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt overly sensitive (SOS) pathway. J Biol Chem, 2004, 279, 207-215. [CrossRef] [PubMed] [Google Scholar]
  • Quan R., Lin H., Mendoza I., Zhang Y., Cao W., Yang Y., Shang M., Chen S., Pardo J.M., Guo Y., SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell, 2007, 19, 1415-1431. [CrossRef] [PubMed] [Google Scholar]
  • Raichaudhuri A., Bhattacharyya R., Chaudhuri S., Dasgupta M., Domain analysis of a groundnut calcium-dependent protein kinase: nuclear localization sequence in the junction domain is coupled with nonconsensus calcium binding domains. J Biol Chem, 2006, 281, 10399-10409. [CrossRef] [PubMed] [Google Scholar]
  • Reddy V.S., Reddy A.S.N., Proteomics of calcium-signaling components in plants. Phytochemistry, 2004, 65, 1745-1776. [CrossRef] [PubMed] [Google Scholar]
  • Saijo Y., Hata S., Kyozuka J., Shimamoto K., Izui K., Overexpression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J, 2000, 23, 319-327. [CrossRef] [PubMed] [Google Scholar]
  • Sanchez-Barrena M.J., Martinez-Ripoll M., Zhu J.K., Albert A., The structure of the Arabidopsis thaliana SOS3: molecular mechanism of sensing calcium for salt stress response. J Mol Biol, 2005, 345, 1253-1264. [CrossRef] [PubMed] [Google Scholar]
  • Sheen J., Ca2+-dependent protein kinases and stress signal transduction in plants. Science, 1996, 274, 1900-1902. [CrossRef] [PubMed] [Google Scholar]
  • Snedden W.A. Blumwald E., Alternative splicing of a novel diacylglycerol kinase in tomato leads to a calmodulin-binding isoform. Plant J, 2000, 24, 317-326. [CrossRef] [PubMed] [Google Scholar]
  • Song C.P., Agarwal M., Ohta M., Guo Y., Halfter U., Wang P., Zhu J.K., Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell, 2005, 17, 2384-2396. [CrossRef] [PubMed] [Google Scholar]
  • Townley H.E., Knight M.R., Calmodulin as a potential negative regulator of Arabidopsis COR gene expression. Plant Physiol, 2002, 128, 1169-1172. [CrossRef] [PubMed] [Google Scholar]
  • White P.J., Broadley M.R., Calcium in plants. Ann Bot, 2003, 92, 487-511. [CrossRef] [PubMed] [Google Scholar]
  • Xu J., Li H.D., Chen L.Q., Wang Y., Liu L.L., He L., Wu W.H., A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell, 2006, 125, 1347-1360. [CrossRef] [PubMed] [Google Scholar]
  • Yamakawa H., Katou S., Seo S., Mitsuhara I., Kamada H., Ohashi Y., Plant MAPK phosphatase interacts with calmodulins. J Biol Chem, 2004, 279, 928-936. [CrossRef] [PubMed] [Google Scholar]
  • Yang T. Poovaiah B.W., Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci, 2003, 8, 505-512. [CrossRef] [PubMed] [Google Scholar]
  • Yoo J.H., Park C.Y., Kim J.C., Heo W.D., Cheong M.S., Park H.C., Kim M.C., Moon B.C., Choi M.S., Kang Y.H., Lee J.H., Kim H.S., Lee S.M., Yoon H.W., Lim C.O., Yun D.J., Lee S.Y., Chung W.S., Cho M.J., Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J Biol Chem, 2005, 280, 3697-3706. [PubMed] [Google Scholar]
  • Zhu S.Y., Yu X.C., Wang X.J., Zhao R., Li Y., Fan R.C., Shang Y., Du S.Y., Wang X.F., Wu F.Q., Xu Y.H., Zhang X.Y., Zhang D.P., Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell, 2007, 19, 3019-3036. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.