Accès gratuit
Biologie Aujourd'hui
Volume 204, Numéro 2, 2010
Journée Claude Bernard 2009 : LA MÉMOIRE - Aspects physiologiques, pathologiques et thérapeutiques
Page(s) 131 - 137
Publié en ligne 21 juin 2010
  • Abel T., Zukin R.S., Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr Opin Pharmacol, 2008, 8, 57–64. [CrossRef] [PubMed] [Google Scholar]
  • Alarcon J.M., Malleret G., Touzani K., Vronskaya S., Ishii S., Kandel E.R., Barco A., Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron, 2004, 42, 947–959. [CrossRef] [PubMed] [Google Scholar]
  • Bird A., DNA methylation patterns and epigenetic memory. Genes Dev, 2002, 16, 6–21. [CrossRef] [PubMed] [Google Scholar]
  • Bird A., Perceptions of epigenetics. Nature, 2007, 447, 396−398. [CrossRef] [PubMed] [Google Scholar]
  • Bredy T.W., Wu H., Crego C., Zellhoefer J., Sun Y.E., Barad M., Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learn Mem, 2007, 14, 268–276. [CrossRef] [PubMed] [Google Scholar]
  • Cheung P., Allis C.D., Sassone-Corsi P., Signaling to chromatin through histone modifications. Cell, 2000, 103, 263–271. [CrossRef] [PubMed] [Google Scholar]
  • Chwang W.B., O’Riordan K.J., Levenson J.M., Sweatt J.D., ERK/MAPK regulates hippocampal histone phosphorylation following contextual fear conditioning. Learn Memory, 2006, 13, 322–328. [CrossRef] [Google Scholar]
  • Crick F., Neurobiology – Memory and Molecular Turnover. Nature, 1984, 312, 101. [CrossRef] [PubMed] [Google Scholar]
  • Fan M., Yan P.S., Hartman-Frey C., Chen L., Paik H., Oyer S.L., Salisbury J.D., Cheng A.S., Li L., Abbosh P.H., Huang T.H., Nephew K.P., Diverse gene expression and DNA methylation profiles correlate with differential adaptation of breast cancer cells to the antiestrogens tamoxifen and fulvestrant. Cancer Res, 2006, 66, 11954–11966. [CrossRef] [PubMed] [Google Scholar]
  • Fischer A., Sananbenesi F., Wang X.Y., Dobbin M., Tsai L.H., Recovery of learning and memory is associated with chromatin remodelling. Nature, 2007, 447, 178−U2. [CrossRef] [PubMed] [Google Scholar]
  • Genoux D., Haditsch U., Knobloch M., Michalon A., Storm D., Mansuy I.M., Protein phosphatase 1 is a molecular constraint on learning and memory. Nature, 2002, 418, 970–975. [CrossRef] [PubMed] [Google Scholar]
  • Gräff J., Mansuy I.M., Epigenetic codes in cognition and behaviour. Behav Brain Res, 2008, 192, 70–87. [CrossRef] [PubMed] [Google Scholar]
  • Gräff J., Mansuy I.M., Epigenetic dysregulation in cognitive disorders. Eur J Neurosci, 2009, 30, 1–8. [CrossRef] [PubMed] [Google Scholar]
  • Guan J.S., Haggarty S.J., Giacometti E., Dannenberg J.H., Joseph N., Gao J., Nieland T.J., Zhou Y., Wang X., Mazitschek R., Bradner J.E., DePinho R.A., Jaenisch R., Tsai L.H., HDAC2 negatively regulates memory formation and synaptic plasticity. Nature, 2009, 459, 55–60. [CrossRef] [PubMed] [Google Scholar]
  • He H., Lehming N., Global effects of histone modifications. Brief Funct Genomic Proteomic, 2003, 2, 234–43. [CrossRef] [PubMed] [Google Scholar]
  • Jaenisch R., Bird A., Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics, 2003, 33, 245–254. [CrossRef] [PubMed] [Google Scholar]
  • Jenuwein T., Allis C.D., Translating the histone code. Science, 2001, 293, 1074–1080. [CrossRef] [PubMed] [Google Scholar]
  • Jouvenceau A., Hedou G., Potier B., Kollen M., Dutar P., Mansuy I.M., Partial inhibition of PP1 alters bidirectional synaptic plasticity in the hippocampus. Eur J Neurosci, 2006, 24, 564–572. [CrossRef] [PubMed] [Google Scholar]
  • Kandel E.R., The molecular biology of memory storage: a dialogue between genes and synapses. Science, 2001, 294, 1030–1038. [CrossRef] [PubMed] [Google Scholar]
  • Keppler B.R., Archer T.K., Chromatin-modifying enzymes as therapeutic targets–Part 1. Expert Opin Ther Targets, 2008, 12, 1301–1312. [CrossRef] [PubMed] [Google Scholar]
  • Keppler B.R., Archer T.K., Chromatin-modifying enzymes as therapeutic targets–Part 2. Expert Opin Ther Targets, 2008, 12, 1457–1467. [CrossRef] [PubMed] [Google Scholar]
  • Klose R.J., Bird A.P., Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci, 2006, 31, 89–97. [CrossRef] [PubMed] [Google Scholar]
  • Klose R.J., Zhang Y., Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol, 2007, 8, 307–18. [CrossRef] [PubMed] [Google Scholar]
  • Korzus E., Rosenfeld M.G., Mayford M., CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron, 2004, 42, 961–972. [CrossRef] [PubMed] [Google Scholar]
  • Koshibu K., Gräff J., Beullens M., Heitz F.D., Berchtold D., Russig H., Farinelli M., Bollen M., Mansuy I.M., Protein phosphatase 1 regulates the histone code for long-term memory. J Neurosci, 2009, 29, 13079–13089. [CrossRef] [PubMed] [Google Scholar]
  • Levenson J.M., O’Riordan K.J., Brown K.D., Trinh M.A., Molfese D.L., Sweatt J.D., Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem, 2004, 279, 40545–40559. [CrossRef] [PubMed] [Google Scholar]
  • Levenson J.M., Sweatt J.D., Epigenetic mechanisms in memory formation. Nat Rev Neurosci, 2005, 6, 108–118. [Google Scholar]
  • Levenson J.M., Sweatt J.D., Epigenetic mechanisms: a common theme in vertebrate and invertebrate memory formation. Cell Mol Life Sci, 2006, 63, 1009–1016. [CrossRef] [PubMed] [Google Scholar]
  • Li B., Carey M., Workman J.L., The role of chromatin during transcription. Cell, 2007, 128, 707–719. [CrossRef] [PubMed] [Google Scholar]
  • Lubin F.D., Roth T.L., Sweatt J.D., Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J Neurosci, 2008, 28, 10576−10586. [CrossRef] [PubMed] [Google Scholar]
  • Mansuy I.M., Shenolikar S., Protein serine/threonine phosphatases in neuronal plasticity and disorders of learning and memory. Trends Neurosci, 2006, 29, 679−686. [CrossRef] [PubMed] [Google Scholar]
  • Miller C.A., Campbell S.L., Sweatt J.D., DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity. Neurobiol Learn Mem, 2008, 89, 599−603. [CrossRef] [PubMed] [Google Scholar]
  • Miller C.A., Sweatt J.D., Covalent modification of DNA regulates memory formation. Neuron, 2007, 53, 857−869. [CrossRef] [PubMed] [Google Scholar]
  • Nathan D., Ingvarsdottir K., Sterner D.E., Bylebyl G.R., Dokmanovic M., Dorsey L.A., Whelan K.A., Krsmanovic M., Lane W.S., Meluh P.B., Johnson E.S., Berger S.L., Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev, 2006, 20, 966–976. [CrossRef] [PubMed] [Google Scholar]
  • Oliveira A.M.M., Wood M.A., McDonough C.B., Abel T., Transgenic mice expressing an inhibitory truncated form of p300 exhibit long-term memory deficits. Learn Mem, 2007, 14, 564–572. [CrossRef] [PubMed] [Google Scholar]
  • Ooi S.K., O’Donnell A.H., Bestor T.H., Mammalian cytosine methylation at a glance. J Cell Sci, 2009, 122, 2787–2791. [CrossRef] [PubMed] [Google Scholar]
  • Peters A.H., Schubeler D., Methylation of histones: playing memory with DNA. Curr Opin Cell Biol, 2005, 17, 230–238. [CrossRef] [PubMed] [Google Scholar]
  • Shiio Y., Eisenman R.N., Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci USA, 2003, 100, 13225–13230. [CrossRef] [Google Scholar]
  • Shilatifard A., Chromatin modifications by methylation and ubiquitination: Implications in the regulation of gene expression. Ann Rev Biochem, 2006, 75, 243–269. [CrossRef] [Google Scholar]
  • Stefanko D.P., Barrett R.M., Ly A.R., Reolon G.K., Wood M.A., Modulation of long-term memory for object recognition via HDAC inhibition. Proc Natl Acad Sci USA, 2009, 106, 9447–9452. [CrossRef] [Google Scholar]
  • Suzuki M.M., Bird A., DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet, 2008, 9, 465–467. [Google Scholar]
  • Turner B.M., Cellular memory and the histone code. Cell, 2002, 111, 285–291. [CrossRef] [PubMed] [Google Scholar]
  • Turner B.M., Defining an epigenetic code. Nat Cell Biol, 2007, 9, 2–6. [CrossRef] [PubMed] [Google Scholar]
  • Tweedie-Cullen R.Y., Reck J.M., Mansuy I.M., Comprehensive mapping of post-translational modifications on synaptic, nuclear, and histone proteins in the adult mouse brain. J Proteome Res, 2009, 8, 4966–4982. [CrossRef] [PubMed] [Google Scholar]
  • Vaissière T., Sawan C., Herceg Z., Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res, 2008, 659, 40–48. [CrossRef] [PubMed] [Google Scholar]
  • Vecsey C.G., Hawk J.D., Lattal K.M., Stein J.M., Fabian S.A., Attner M.A., Cabrera S.M., McDonough C.B., Brindle P.K., Abel T., Wood M.A., Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB: CBP-dependent transcriptional activation. J Neurosci, 2007, 27, 6128–6140. [CrossRef] [PubMed] [Google Scholar]
  • Weber M., Davies J.J., Wittig D., Oakeley E.J., Haase M., Lam W.L., Schübeler D., Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet, 2005, 37, 853–862. [CrossRef] [PubMed] [Google Scholar]
  • Weber M., Hellmann I., Stadler M.B., Ramos L., Paabo S., Rebhan M., Schübeler D., Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet, 2007, 39, 457–466. [CrossRef] [PubMed] [Google Scholar]
  • Zhao X., Ueba T., Christie B.R., Barkho B., McConnell M.J., Nakashima K., Lein E.S., Eadie B.D., Willhoite A.R., Muotri A.R., Summers R.G., Chun J., Lee K.F., Gage F.H., Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc Natl Acad Sci USA, 2003, 100, 6777−6782. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.