Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 204, Numéro 2, 2010
Journée Claude Bernard 2009 : LA MÉMOIRE - Aspects physiologiques, pathologiques et thérapeutiques
Page(s) 139 - 143
DOI https://doi.org/10.1051/jbio/2010008
Publié en ligne 21 juin 2010
  • Cash S.S., Halgren E., Dehghani N., Rossetti A.O., Thesen T., Wang C., Devinsky O., Kuzniecky R., Doyle W., Madsen J.R., Bromfield E., Eross L., Halasz P., Karmos G., Csercsa R., Wittner L., Ulbert I., The human K-complex represents an isolated cortical down-state. Science, 2009, 324, 1084–1087. [CrossRef] [PubMed] [Google Scholar]
  • Dang-Vu T.T., Schabus M., Desseilles M., Albouy G., Boly M., Darsaud A., Gais S., Rauchs G., Sterpenich V., Vandewalle G., Carrier J., Moonen G., Balteau E., Degueldre C., Luxen A., Phillips C., Maquet P., Spontaneous neural activity during human slow wave sleep. Proc Natl Acad Sci USA, 2008, 105, 15160−15165. [CrossRef] [Google Scholar]
  • Datta S., Avoidance task training potentiates phasic pontine-wave density in the rat: A mechanism for sleep-dependent plasticity. J Neurosci, 2000, 20, 8607−8613. [PubMed] [Google Scholar]
  • Euston D.R., McNaughton B.L., Apparent encoding of sequential context in rat medial prefrontal cortex is accounted for by behavioral variability. J Neurosci, 2006, 26, 13143–13155. [CrossRef] [PubMed] [Google Scholar]
  • Fogel S.M., Smith C.T., Learning-dependent changes in sleep spindles and stage 2 sleep. J Sleep Res, 2006, 15, 250–255. [Google Scholar]
  • Frankland P.W., Bontempi B., The organization of recent and remote memories. Nat Rev Neurosci, 2005, 6, 119−130. [Google Scholar]
  • Gais S., Born J., Low acetylcholine during slow-wave sleep is critical for declarative memory consolidation. Proc Natl Acad Sci USA, 2004, 101, 2140–2144. [CrossRef] [Google Scholar]
  • Gais S., Born J., Declarative memory consolidation: mechanisms acting during human sleep. Learn Mem, 2004, 11, 679–685. [CrossRef] [PubMed] [Google Scholar]
  • Gais S., Plihal W., Wagner U., Born J., Early sleep triggers memory for early visual discrimination skills. Nat Neurosci, 2000, 3, 1335–1339. [CrossRef] [PubMed] [Google Scholar]
  • Gais S., Molle M., Helms K., Born J., Learning-dependent increases in sleep spindle density. J Neurosci, 2002, 22, 6830–6834. [PubMed] [Google Scholar]
  • Gais S., Albouy G., Boly M., Dang-Vu T.T., Darsaud A., Desseilles M., Rauchs G., Schabus M., Sterpenich V., Vandewalle G., Maquet P., Peigneux P., Sleep transforms the cerebral trace of declarative memories. Proc Natl Acad Sci USA, 2007, 104, 18778–18783. [CrossRef] [Google Scholar]
  • Gilestro G.F., Tononi G., Cirelli C., Widespread changes in synaptic markers as a function of sleep and wakefulness in Drosophila. Science, 2009, 324, 109–112. [CrossRef] [PubMed] [Google Scholar]
  • Girardeau G., Benchenane K., Wiener S.I., Buzsaki G., Zugaro M.B., Selective suppression of hippocampal ripples impairs spatial memory. Nat Neurosci, 2009, 12, 1222–1223. [CrossRef] [PubMed] [Google Scholar]
  • Gottselig J.M., Hofer-Tinguely G., Borbely A.A., Regel S.J., Landolt H.P., Retey J.V., Achermann P., Sleep and rest facilitate auditory learning. Neuroscience, 2004, 127, 557–561. [CrossRef] [PubMed] [Google Scholar]
  • Hirase H., Leinekugel X., Czurko A., Csicsvari J., Buzsaki G., Firing rates of hippocampal neurons are preserved during subsequent sleep episodes and modified by novel awake experience. Proc Natl Acad Sci USA, 2001, 98, 9386–9390. [CrossRef] [Google Scholar]
  • Hoffman K.L., McNaughton B.L., Coordinated reactivation of distributed memory traces in primate neocortex. Science, 2002, 297, 2070–2073. [CrossRef] [PubMed] [Google Scholar]
  • Huber R., Ghilardi M.F., Massimini M., Tononi G., Local sleep and learning. Nature, 2004, 430, 78–81. [CrossRef] [PubMed] [Google Scholar]
  • Huber R., Ghilardi M.F., Massimini M., Ferrarelli F., Riedner B.A., Peterson M.J., Tononi G., Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity. Nat Neurosci, 2006, 9, 1169–1176. [CrossRef] [PubMed] [Google Scholar]
  • Isomura Y., Sirota A., Ozen S., Montgomery S., Mizuseki K., Henze D.A., Buzsaki G., Integration and segregation of activity in entorhinal-hippocampal subregions by neocortical slow oscillations. Neuron, 2006, 52, 871−882. [CrossRef] [PubMed] [Google Scholar]
  • Ji D., Wilson M.A., Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat Neurosci, 2007, 10, 100–107. [CrossRef] [PubMed] [Google Scholar]
  • Karni A., Tanne D., Rubenstein B.S., Askenasy J.J., Sagi D., Dependence on REM sleep of overnight improvement of a perceptual skill. Science, 1994, 265, 679–682. [CrossRef] [PubMed] [Google Scholar]
  • Lansink C.S., Goltstein P.M., Lankelma J.V., McNaughton B.L., Pennartz C.M., Hippocampus leads ventral striatum in replay of place-reward information. PLoS Biol, 2009, 7, e1000173. [CrossRef] [PubMed] [Google Scholar]
  • Maquet P., The role of sleep in learning and memory. Science, 2001, 294, 1048–1052. [CrossRef] [PubMed] [Google Scholar]
  • Maquet P., Dive D., Salmon E., Sadzot B., Franco G., Poirrier R., von Frenckell R., Franck G., Cerebral glucose utilization during sleep-wake cycle in man determined by positron emission tomography and [18F]2-fluoro-2-deoxy-D-glucose method. Brain Res, 1990, 513, 136–143. [CrossRef] [PubMed] [Google Scholar]
  • Maquet P., Laureys S., Peigneux P., Fuchs S., Petiau C., Phillips C., Aerts J., Del Fiore G., Degueldre C., Meulemans T., Luxen A., Franck G., Van Der Linden M., Smith C., Cleeremans A., Experience-dependent changes in cerebral activation during human REM sleep. Nat Neurosci, 2000, 3, 831–836. [Google Scholar]
  • Orban P., Rauchs G., Balteau E., Degueldre C., Luxen A., Maquet P., Peigneux P., Sleep after spatial learning promotes covert reorganization of brain activity. Proc Natl Acad Sci USA, 2006, 103, 7124–7129. [CrossRef] [Google Scholar]
  • Peigneux P., Laureys S., Fuchs S., Collette F., Perrin F., Reggers J., Phillips C., Degueldre C., Del Fiore G., Aerts J., Luxen A., Maquet P., Are spatial memories strengthened in the human hippocampus during slow wave sleep? Neuron, 2004, 44, 535–545. [CrossRef] [PubMed] [Google Scholar]
  • Peigneux P., Orban P., Balteau E., Degueldre C., Luxen A., Laureys S., Maquet P., Offline persistence of memory-related cerebral activity during active wakefulness. PLoS Biol, 2006, 4, e100. [CrossRef] [PubMed] [Google Scholar]
  • Peyrache A., Khamassi M., Benchenane K., Wiener S.I., Battaglia F.P., Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nat Neurosci, 2009, 7, 919–926 [CrossRef] [Google Scholar]
  • Plihal W., Born J., Effects of early, late nocturnal sleep on priming and spatial memory. Psychophysiology, 1999, 36, 571–582. [CrossRef] [PubMed] [Google Scholar]
  • Schabus M., Gruber G., Parapatics S., Sauter C., Klosch G., Anderer P., Klimesch W., Saletu B., Zeitlhofer J., Sleep spindles and their significance for declarative memory consolidation. Sleep, 2004, 27, 1479–1485. [PubMed] [Google Scholar]
  • Schabus M., Dang-Vu T.T., Albouy G., Balteau E., Boly M., Carrier J., Darsaud A., Degueldre C., Desseilles M., Gais S., Phillips C., Rauchs G., Schnakers C., Sterpenich V., Vandewalle G., Luxen A., Maquet P., Hemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep. Proc Natl Acad Sci USA, 2007, 104, 13164–13169. [CrossRef] [Google Scholar]
  • Steriade M., Amzica F., Coalescence of sleep rhythms and their chronology in corticothalamic networks. Sleep Res Online, 1998, 1, 1–10. [PubMed] [Google Scholar]
  • Steriade M., McCarley R.W., Brain control of wakefulness and sleep. 2005, Kluwer Academic, New York [Google Scholar]
  • Steriade M., Nunez A., Amzica F., Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J Neurosci, 1993, 13, 3266–3283. [PubMed] [Google Scholar]
  • Steriade M., Nunez A., Amzica F., A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci, 1993, 13, 3252–3265. [Google Scholar]
  • Steriade M., Contreras D., Curro Dossi R., Nunez A., The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J Neurosci, 1993, 13, 3284–3299. [PubMed] [Google Scholar]
  • Sterpenich V., Albouy G., Boly M., Vandewalle G., Darsaud A., Balteau E., Dang-Vu T.T., Desseilles M., D’Argembeau A., Gais S., Rauchs G., Schabus M., Degueldre C., Luxen A., Collette F., Maquet P., Sleep-related hippocampo-cortical interplay during emotional memory recollection. PLoS Biol, 2007, 5, e282. [CrossRef] [PubMed] [Google Scholar]
  • Stickgold R., James L., Hobson J.A., Visual discrimination learning requires sleep after training. Nat Neurosci, 2000, 3, 1237–1238. [CrossRef] [PubMed] [Google Scholar]
  • Tononi G., Cirelli C., Sleep and synaptic homeostasis: a hypothesis. Brain Res Bull, 2003, 62, 143–150. [Google Scholar]
  • Tononi G., Cirelli C., Sleep function and synaptic homeostasis. Sleep Med Rev, 2006, 10, 49–62. [Google Scholar]
  • Vyazovskiy V.V., Cirelli C., Pfister-Genskow M., Faraguna U., Tononi G., Molecular, electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat Neurosci, 2008, 11, 200–208. [CrossRef] [PubMed] [Google Scholar]
  • Wagner U., Gais S., Born J., Emotional memory formation is enhanced across sleep intervals with high amounts of rapid eye movement sleep. Learn Mem, 2001, 8, 112−119. [CrossRef] [PubMed] [Google Scholar]
  • Wagner U., Hallschmid M., Rasch B., Born J., Brief sleep after learning keeps emotional memories alive for years. Biol Psychiatry, 2006, 60, 788–790. [CrossRef] [PubMed] [Google Scholar]
  • Walker M.P., Brakefield T., Morgan A., Hobson J.A., Stickgold R., Practice with sleep makes perfect: sleep-dependent motor skill learning. Neuron, 2002, 35, 205−211. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.