Numéro
Biologie Aujourd'hui
Volume 205, Numéro 1, 2011
Page(s) 63 - 74
Section Plasticité du phénotype cellulaire : entre régénération et tumorigenèse
DOI https://doi.org/10.1051/jbio/2011002
Publié en ligne 19 avril 2011
  • Anchan R.M., Reh T.A., Angello J., Balliet A., Walker M., EGF and TGF-alpha stimulate retinal neuroepithelial cell proliferation in vitro. Neuron, 1991, 6, 923–936. [CrossRef] [PubMed] [Google Scholar]
  • Anton E.S., Marchionni M.A., Lee K.F., Rakic P., Role of GGF/neuregulin signaling in interactions between migrating neurons and radial glia in the developing cerebral cortex. Development, 1997, 124, 3501–3510. [PubMed] [Google Scholar]
  • Bachoo R.M., Maher E.A., Ligon K.L., Sharpless N.E., Chan S.S., You M.J., Tang Y., DeFrances J., Stover E., Weissleder R., Rowitch D.H., Louis D.N., DePinho R.A., Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell, 2002, 1, 269–277. [CrossRef] [PubMed] [Google Scholar]
  • Bao S., Wu Q., McLendon R.E., Hao Y., Shi Q., Hjelmeland A.B., Dewhirst M.W., Bigner D.D., Rich J.N., Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 2006, 444, 756–760. [CrossRef] [PubMed] [Google Scholar]
  • Bax D.A., Little S.E., Gaspar N., Perryman L., Marshall L., Viana-Pereira M., Jones T.A., Williams R.D., Grigoriadis A., Vassal G., Workman P., Sheer D., Reis R.M., Pearson A.D., Hargrave D., Jones C., Molecular and phenotypic characterisation of paediatric glioma cell lines as models for preclinical drug development. PlosOne, 2009, 4, e5209. [Google Scholar]
  • Beier D., Hau P., Proescholdt M., Lohmeier A., Wischhusen J., Oefner P.J., Aigner L., Brawanski A., Bogdahn U., Beier C.P., CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res, 2007, 67, 4010–4015. [CrossRef] [PubMed] [Google Scholar]
  • Bogler O., Nagane M., Gillis J., Huang H.J., Cavenee W.K., Malignant transformation of p53-deficient astrocytes is modulated by environmental cues in vitro. Cell Growth Differ, 1999, 10, 73–86. [PubMed] [Google Scholar]
  • Bredel M., Pollack I.F., Hamilton R.L., James C.D., Epidermal growth factor receptor expression and gene amplification in high-grade non-brainstem gliomas of childhood. Clin Cancer Res, 1999, 5, 1786–1792. [PubMed] [Google Scholar]
  • Buffo A., Rite I., Tripathi P., Lepier A., Colak D., Horn A.P., Mori T., Gotz M., Origin and progeny of reactive gliosis: A source of multipotent cells in the injured brain. Proc Natl Acad Sci USA, 2008, 105, 3581–3586. [CrossRef] [Google Scholar]
  • Burrows R.C., Wancio D., Levitt P., Lillien L., Response diversity and the timing of progenitor cell maturation are regulated by developmental changes in EGFR expression in the cortex. Neuron, 1997, 19, 251–267. [CrossRef] [PubMed] [Google Scholar]
  • Burrows R.C., Lillien L., Levitt P., Mechanisms of progenitor maturation are conserved in the striatum and cortex. Dev Neurosci, 2000, 22, 7–15. [CrossRef] [PubMed] [Google Scholar]
  • Chen R., Nishimura M.C., Bumbaca S.M., Kharbanda S., Forrest W.F., Kasman I.M., Greve J.M., Soriano R.H., Gilmour L.L., Rivers C.S., Modrusan Z., Nacu S., Guerrero S., Edgar K.A., Wallin J.J., Lamszus K., Westphal M., Heim S., James C.D., VandenBerg S.R., Costello J.F., Moorefield S., Cowdrey C.J., Prados M., Phillips H.S., A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell, 2010, 17, 362–375. [CrossRef] [PubMed] [Google Scholar]
  • Collins V.P., Brain tumours: classification and genes. J Neurol Neurosurg Psychiatry, 75 Suppl, 2004, 2, ii2–11. [CrossRef] [Google Scholar]
  • Dai C., Holland E.C., Astrocyte differentiation states and glioma formation. Cancer J, 2003, 9, 72–81. [CrossRef] [PubMed] [Google Scholar]
  • Ding H., Shannon P., Lau N., Wu X., Roncari L., Baldwin R.L., Takebayashi H., Nagy A., Gutmann D.H., Guha A., Oligodendrogliomas result from the expression of an activated mutant epidermal growth factor receptor in a RAS transgenic mouse astrocytoma model. Cancer Res, 2003, 63, 1106–1113. [PubMed] [Google Scholar]
  • Dufour C., Cadusseau J., Varlet P., Surena A.L., de Faria G.P., Dias-Morais A., Auger N., Leonard N., Daudigeos E., Dantas-Barbosa C., Grill J., Lazar V., Dessen P., Vassal G., Prévot V., Sharif A., Chneiweiss H., Junier M.P., Astrocytes reverted to a neural progenitor-like state with transforming growth factor alpha are sensitized to cancerous transformation. Stem Cells, 2009, 27, 2373–2382. [CrossRef] [PubMed] [Google Scholar]
  • Ferri R.T., Levitt P., Regulation of regional differences in the differentiation of cerebral cortical neurons by EGF family-matrix interactions. Development, 1995, 121, 1151–1160. [PubMed] [Google Scholar]
  • Ferri R.T., Eagleson K.L., Levitt P., Environmental signals influence expression of a cortical areal phenotype in vitro independent of effects on progenitor cell proliferation. Dev Biol, 1996, 175, 184–190. [CrossRef] [PubMed] [Google Scholar]
  • Galli R., Binda E., Orfanelli U., Cipelletti B., Gritti A., De Vitis S., Fiocco R., Foroni C., Dimeco F., Vescovi A., Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res, 2004, 64, 7011–7021. [CrossRef] [PubMed] [Google Scholar]
  • Gregg C., Weiss S., Generation of functional radial glial cells by embryonic and adult forebrain neural stem cells. J Neurosci, 2003, 23, 11587–11601. [PubMed] [Google Scholar]
  • Grimmer M.R., Weiss W.A., Childhood tumors of the nervous system as disorders of normal development. Curr Opin Pediatr, 2006, 18, 634–638. [CrossRef] [PubMed] [Google Scholar]
  • Gunther H.S., Schmidt N.O., Phillips H.S., Kemming D., Kharbanda S., Soriano R., Modrusan Z., Meissner H., Westphal M., Lamszus K., Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene, 2008, 27, 2897–2909. [CrossRef] [PubMed] [Google Scholar]
  • Harris H., Tumour suppression: putting on the brakes. Nature, 2004, 427, 201. [CrossRef] [PubMed] [Google Scholar]
  • Hemmati H.D., Nakano I., Lazareff J.A., Masterman-Smith M., Geschwind D.H., Bronner-Fraser M., Kornblum H.I., Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA, 2003, 100, 15178–15183. [CrossRef] [Google Scholar]
  • Ignatova T.N., Kukekov V.G., Laywell E.D., Suslov O.N., Vrionis F.D., Steindler D.A., Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia, 2002, 39, 193–206. [CrossRef] [PubMed] [Google Scholar]
  • Imura T., Kornblum H.I., Sofroniew M.V., The predominant neural stem cell isolated from postnatal and adult forebrain but not early embryonic forebrain expresses GFAP. J Neurosci, 2003, 23, 2824–2832. [PubMed] [Google Scholar]
  • Jhappan C., Stahle C., Harkins R.N., Fausto N., Smith G.H., Merlino G.T., TGF alpha overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas. Cell, 1990, 61, 1137–1146. [CrossRef] [PubMed] [Google Scholar]
  • Johe K.K., Hazel T.G., Muller T., Dugich-Djordjevic M.M., McKay R.D., Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev, 1996, 10, 3129–3140. [CrossRef] [PubMed] [Google Scholar]
  • Jonakait G.M., Luskin M.B., Ni L., Transforming growth factor-alpha expands progenitor cells of the basal forebrain, but does not promote cholinergic differentiation. J Neurobiol, 1998, 37, 405–412. [CrossRef] [PubMed] [Google Scholar]
  • Junier M.P., What role(s) for TGFalpha in the central nervous system? Prog Neurobiol, 2000, 62, 443–473. [CrossRef] [PubMed] [Google Scholar]
  • Kalifa C., Grill J., The therapy of infantile malignant brain tumors: current status? J Neurooncol, 2005, 75, 279–285. [CrossRef] [PubMed] [Google Scholar]
  • Kelly P.N., Dakic A., Adams J.M., Nutt S.L., Strasser A., Tumor growth need not be driven by rare cancer stem cells. Science, 2007, 317, 337. [CrossRef] [PubMed] [Google Scholar]
  • Kondo T., Raff M., Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science, 2000, 289, 1754–1757. [CrossRef] [PubMed] [Google Scholar]
  • Kornblum H.I., Zurcher S.D., Werb Z., Derynck R., Seroogy K.B., Multiple trophic actions of heparin-binding epidermal growth factor (HB-EGF) in the central nervous system. Eur J Neurosci, 1999, 11, 3236–3246. [CrossRef] [PubMed] [Google Scholar]
  • Kornblum H.I., Hussain R., Wiesen J., Miettinen P., Zurcher S.D., Chow K., Derynck R., Werb Z., Abnormal astrocyte development and neuronal death in mice lacking the epidermal growth factor receptor. J Neurosci Res, 1998, 53, 697–717. [CrossRef] [PubMed] [Google Scholar]
  • Kriegstein A.R., Gotz M., Radial glia diversity: a matter of cell fate. Glia, 2003, 43, 37–43. [CrossRef] [PubMed] [Google Scholar]
  • Laks D.R., Masterman-Smith M., Visnyei K., Angenieux B., Orozco N.M., Foran I., Yong W.H., Vinters H.V., Liau L.M., Lazareff J.A., Mischel P.S., Cloughesy T.F., Horvath S., Kornblum H.I., Neurosphere formation is an independent predictor of clinical outcome in malignant glioma. Stem Cells, 2009, 27, 980–987. [CrossRef] [PubMed] [Google Scholar]
  • Laywell E.D., Rakic P., Kukekov V.G., Holland E.C., Steindler D.A., Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc Natl Acad Sci USA, 2000, 97, 13883–13888. [CrossRef] [Google Scholar]
  • Lee D.C., Fenton S.E., Berkowitz E.A., Hissong M.A., Transforming growth factor alpha: expression, regulation, and biological activities. Pharmacol Rev, 1995, 47, 51–85. [PubMed] [Google Scholar]
  • Lillien L., Changes in retinal cell fate induced by overexpression of EGF receptor. Nature, 1995, 377, 158–162. [CrossRef] [PubMed] [Google Scholar]
  • Lillien L., Cepko C., Control of proliferation in the retina: temporal changes in responsiveness to FGF and TGF alpha. Development, 1992, 115, 253–266. [PubMed] [Google Scholar]
  • Lillien L., Wancio D., Changes in Epidermal Growth Factor Receptor Expression and Competence to Generate Glia Regulate Timing and Choice of Differentiation in the Retina. Mol Cell Neurosci, 1998, 10, 296–308. [CrossRef] [Google Scholar]
  • Liu B., Neufeld A.H., Activation of epidermal growth factor receptors directs astrocytes to organize in a network surrounding axons in the developing rat optic nerve. Dev Biol, 2004, 273, 297–307. [CrossRef] [PubMed] [Google Scholar]
  • Louis S.A., Rietze R.L., Deleyrolle L., Wagey R.E., Thomas T.E., Eaves A.C., Reynolds B.A., Enumeration of neural stem and progenitor cells in the neural colony-forming cell assay. Stem Cells, 2008, 26, 988–996. [CrossRef] [PubMed] [Google Scholar]
  • Matsui Y., Halter S.A., Holt J.T., Hogan B.L., Coffey R.J., Development of mammary hyperplasia and neoplasia in MMTV-TGF alpha transgenic mice. Cell, 1990, 61, 1147–1155. [CrossRef] [PubMed] [Google Scholar]
  • Nakai E., Park K., Yawata T., Chihara T., Kumazawa A., Nakabayashi H., Shimizu K., Enhanced MDR1 expression and chemoresistance of cancer stem cells derived from glioblastoma. Cancer Invest, 2009, 27, 901–908. [CrossRef] [PubMed] [Google Scholar]
  • Nakamura M., Shimada K., Ishida E., Higuchi T., Nakase H., Sakaki T., Konishi N., Molecular pathogenesis of pediatric astrocytic tumors. Neuro Oncol, 2007, 9, 113–123. [CrossRef] [PubMed] [Google Scholar]
  • Pallini R., Ricci-Vitiani L., Banna G.L., Signore M., Lombardi D., Todaro M., Stassi G., Martini M., Maira G., Larocca L.M., De Maria R., Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme. Clin Cancer Res, 2008, 14, 8205–8212. [CrossRef] [PubMed] [Google Scholar]
  • Panosyan E.H., Laks D.R., Masterman-Smith M., Mottahedeh J., Yong W.H., Cloughesy T.F., Lazareff J.A., Mischel P.S., Moore T.B., Kornblum H.I., Clinical outcome in pediatric glial and embryonal brain tumors correlates with in vitro multi-passageable neurosphere formation. Pediatr Blood Cancer, 2010. [Google Scholar]
  • Park D.M., Rich J.N., Biology of glioma cancer stem cells. Mol Cells, 2009, 28, 7–12. [CrossRef] [PubMed] [Google Scholar]
  • Patru C., Romao L., Varlet P., Coulombel L., Raponi E., Cadusseau J., Renault-Mihara F., Thirant C., Leonard N., Berhneim A., Mihalescu-Maingot M., Haiech J., Bieche I., Moura-Neto V., Daumas-Duport C., Junier M.P., Chneiweiss H., CD133, CD15/SSEA-1, CD34 or side populations do not resume tumor-initiating properties of long-term cultured cancer stem cells from human malignant glio-neuronal tumors. BMC Cancer, 2010, 10, 66. [CrossRef] [PubMed] [Google Scholar]
  • Platet N., Liu S.Y., Atifi M.E., Oliver L., Vallette F.M., Berger F., Wion D., Influence of oxygen tension on CD133 phenotype in human glioma cell cultures. Cancer Lett, 2007, 258, 286–290. [CrossRef] [PubMed] [Google Scholar]
  • Quintana E., Shackleton M., Sabel M.S., Fullen D.R., Johnson T.M., Morrison S.J., Efficient tumour formation by single human melanoma cells. Nature, 2008, 456, 593–598. [CrossRef] [PubMed] [Google Scholar]
  • Rabchevsky A.G., Weinitz J.M., Coulpier M., Fages C., Tinel M., Junier M.P., A role for transforming growth factor alpha as an inducer of astrogliosis. J Neurosci, 1998, 18, 10541–10552. [PubMed] [Google Scholar]
  • Real C., Glavieux-Pardanaud C., Le Douarin N.M., Dupin E., Clonally cultured differentiated pigment cells can dedifferentiate and generate multipotent progenitors with self-renewing potential. Dev Biol, 2006, 300, 656–669. [CrossRef] [PubMed] [Google Scholar]
  • Reynolds B.A., Weiss S., Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol, 1996, 175, 1–13. [CrossRef] [PubMed] [Google Scholar]
  • Reynolds B.A., Tetzlaff W., Weiss S., A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci, 1992, 12, 4565–4574. [PubMed] [Google Scholar]
  • Sanai N., Alvarez-Buylla A., Berger M.S., Neural stem cells and the origin of gliomas. N Engl J Med, 2005, 353, 811–822. [CrossRef] [PubMed] [Google Scholar]
  • Sandgren E.P., Luetteke N.C., Palmiter R.D., Brinster R.L., Lee D.C., Overexpression of TGF alpha in transgenic mice: induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast. Cell, 1990, 61, 1121–1135. [CrossRef] [PubMed] [Google Scholar]
  • Santa-Olalla J., Covarrubias L., Epidermal growth factor (EGF), transforming growth factor-alpha (TGF-alpha), and basic fibroblast growth factor (bFGF) differentially influence neural precursor cells of mouse embryonic mesencephalon. J Neurosci Res, 1995, 42, 172–183. [CrossRef] [PubMed] [Google Scholar]
  • Shankar V., Ciardiello F., Kim N., Derynck R., Liscia D.S., Merlo G., Langton B.C., Sheer D., Callahan R., Bassin R.H., et al., Transformation of an established mouse mammary epithelial cell line following transfection with a human transforming growth factor alpha cDNA. Mol Carcinog, 1989, 2, 1–11. [CrossRef] [PubMed] [Google Scholar]
  • Sharif A., Prévot V., ErbB receptor signaling in astrocytes: a mediator of neuron-glia communication in the mature central nervous system. Neurochem Int, 2010, 57, 344–358. [CrossRef] [PubMed] [Google Scholar]
  • Sharif A., Prévot V., Renault-Mihara F., Allet C., Studler J.M., Canton B., Chneiweiss H., Junier M.P., Transforming growth factor alpha acts as a gliatrophin for mouse and human astrocytes. Oncogene, 2006, 25, 4076–4085. [CrossRef] [PubMed] [Google Scholar]
  • Sharif A., Legendre P., Prévot V., Allet C., Romao L., Studler J.M., Chneiweiss H., Junier M.P., Transforming growth factor alpha promotes sequential conversion of mature astrocytes into neural progenitors and stem cells. Oncogene, 2007, 26, 2695–2706. [CrossRef] [PubMed] [Google Scholar]
  • Shih A.H., Holland E.C., Developmental neurobiology and the origin of brain tumors. J Neurooncol, 2004, 70, 125–136. [CrossRef] [PubMed] [Google Scholar]
  • Sibilia M., Steinbach J.P., Stingl L., Aguzzi A., Wagner E.F., A strain-independent postnatal neurodegeneration in mice lacking the EGF receptor. Embo J, 1998, 17, 719–731. [CrossRef] [PubMed] [Google Scholar]
  • Singh S.K., Clarke I.D., Hide T., Dirks P.B., Cancer stem cells in nervous system tumors. Oncogene, 2004a, 23, 7267–7273. [CrossRef] [PubMed] [Google Scholar]
  • Singh S.K., Clarke I.D., Terasaki M., Bonn V.E., Hawkins C., Squire J., Dirks P.B., Identification of a cancer stem cell in human brain tumors. Cancer Res, 2003, 63, 5821–5828. [Google Scholar]
  • Singh S.K., Hawkins C., Clarke I.D., Squire J.A., Bayani J., Hide T., Henkelman R.M., Cusimano M.D., Dirks P.B., Identification of human brain tumour initiating cells. Nature, 2004b, 432, 396–401. [CrossRef] [PubMed] [Google Scholar]
  • Sun Y., Goderie S.K., Temple S., Asymmetric distribution of EGFR receptor during mitosis generates diverse CNS progenitor cells. Neuron, 2005, 45, 873–886. [CrossRef] [PubMed] [Google Scholar]
  • Sutter R., Yadirgi G., Marino S., Neural stem cells, tumour stem cells and brain tumours: dangerous relationships? Biochim Biophys Acta, 2007, 1776, 125–137. [PubMed] [Google Scholar]
  • Tang P., Steck P.A., Yung W.K., The autocrine loop of TGF-alpha/EGFR and brain tumors. J Neurooncol, 1997, 35, 303–314. [CrossRef] [PubMed] [Google Scholar]
  • Taylor M.D., Poppleton H., Fuller C., Su X., Liu Y., Jensen P., Magdaleno S., Dalton J., Calabrese C., Board J., Macdonald T., Rutka J., Guha A., Gajjar A., Curran T., Gilbertson R.J., Radial glia cells are candidate stem cells of ependymoma. Cancer Cell, 2005, 8, 323–335. [CrossRef] [PubMed] [Google Scholar]
  • Temple S., The development of neural stem cells. Nature, 2001, 414, 112–117. [CrossRef] [PubMed] [Google Scholar]
  • Thirant C., Bessette B., Varlet P., Puget S., Cadusseau J., Dos Reis Tavares S., Studler J.M., Silvestre D.C., Susini A., Villa C., Miquel C., Bogeas A., Surena A.L., Dias-Morais A., Léonard N., Pflumio F., Bièche I., Boussin F.D., Sainte-Rose C., Grill J., Daumas-Duport C., Chneiweiss H., Junier M.P., Clinical relevance of tumor cells with stem-like properties in pediatric brain tumors. PlosOne sous presse. [Google Scholar]
  • Todaro G.J., Fryling C., De Larco J.E., Transforming growth factors produced by certain human tumor cells: polypeptides that interact with epidermal growth factor receptors. Proc Natl Acad Sci USA, 1980, 77, 5258–5262. [CrossRef] [Google Scholar]
  • Varlet P., Soni D., Miquel C., Roux F.X., Meder J.F., Chneiweiss H., Daumas-Duport C., New variants of malignant glioneuronal tumors: a clinicopathological study of 40 cases. Neurosurgery, 2004, 55, 1377–1391: discussion 1391–1372. [CrossRef] [PubMed] [Google Scholar]
  • Vescovi A.L., Gritti A., Galli R., Parati E.A., Isolation and intracerebral grafting of nontransformed multipotential embryonic human CNS stem cells. J Neurotrauma, 1999, 16, 689–693. [CrossRef] [PubMed] [Google Scholar]
  • Wang J., Sakariassen P.O., Tsinkalovsky O., Immervoll H., Boe S.O., Svendsen A., Prestegarden L., Rosland G., Thorsen F., Stuhr L., Molven A., Bjerkvig R., Enger P.O., CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer, 2008, 122, 761–768. [CrossRef] [PubMed] [Google Scholar]
  • Watanabe S., Lazar E., Sporn M.B., Transformation of normal rat kidney (NRK) cells by an infectious retrovirus carrying a synthetic rat type alpha transforming growth factor gene. Proc Natl Acad Sci USA, 1987, 84, 1258–1262. [CrossRef] [Google Scholar]
  • Wechsler-Reya R., Scott M.P., The developmental biology of brain tumors. Annu Rev Neurosci, 2001, 24, 385–428. [CrossRef] [PubMed] [Google Scholar]
  • Weickert C.S., Blum M., Striatal TGF-alpha: postnatal developmental expression and evidence for a role in the proliferation of subependymal cells. Brain Res Dev Brain Res, 1995, 86, 203–216. [CrossRef] [PubMed] [Google Scholar]
  • Weiss S., Dunne C., Hewson J., Wohl C., Wheatley M., Peterson A.C., Reynolds B.A., Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci, 1996, 16, 7599–7609. [PubMed] [Google Scholar]
  • Weiss W.A., Israel M., Cobbs C., Holland E., James C.D., Louis D.N., Marks C., McClatchey A.I., Roberts T., Van Dyke T., Wetmore C., Chiu I.M., Giovannini M., Guha A., Higgins R.J., Marino S., Radovanovic I., Reilly K., Aldape K., Neuropathology of genetically engineered mice: consensus report and recommendations from an international forum. Oncogene, 2002, 21, 7453–7463. [CrossRef] [PubMed] [Google Scholar]
  • Yahanda A.M., Bruner J.M., Donehower L.A., Morrison R.S., Astrocytes derived from p53-deficient mice provide a multistep in vitro model for development of malignant gliomas. Mol Cell Biol, 1995, 15, 4249–4259. [PubMed] [Google Scholar]
  • Yuan X., Curtin J., Xiong Y., Liu G., Waschsmann-Hogiu S., Farkas D.L., Black K.L., Yu J.S., Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene, 2004, 23, 9392–9400. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.