Accès gratuit
Biologie Aujourd'hui
Volume 205, Numéro 2, 2011
Journées Claude Bernard 2010
Page(s) 111 - 124
Section Biologie et génétique du développement : Clés du passé et de l'avenir / Developmental biology and genetics: Keys to the past and the future
Publié en ligne 11 août 2011
  • Ahituv N., Zhu Y., Visel A., Holt A., Afzal V., Pennacchio L.A., Rubin E.M., Deletion of ultraconserved elements yields viable mice. PLoS Biol, 2007, 5, e234. [CrossRef] [PubMed] [Google Scholar]
  • Bagheri-Fam S., Barrionuevo F., Dohrmann U., Gunther T., Schule R., Kemler R., Mallo M., Kanzler B., Scherer G., Long-range upstream and downstream enhancers control distinct subsets of the complex spatiotemporal Sox9 expression pattern. Dev Biol, 2006, 291, 382–397. [CrossRef] [PubMed] [Google Scholar]
  • Barrionuevo F., Bagheri-Fam S., Klattig J., Kist R., Taketo M.M., Englert C., Scherer G., Homozygous inactivation of Sox9 causes complete XY sex reversal in mice. Biol Reprod, 2006, 74, 195–201. [CrossRef] [PubMed] [Google Scholar]
  • Blow M.J., McCulley D.J., Li Z., Zhang T., Akiyama J.A., Holt A., Plajzer-Frick I., Shoukry M., Wright C., Chen F., Afzal V., Bristow J., Ren B., Black B.L., Rubin E.M., Visel A., Pennacchio L.A., ChIP-Seq identification of weakly conserved heart enhancers. Nat Genet, 2010, 42, 806–810. [CrossRef] [PubMed] [Google Scholar]
  • Bridgewater L.C., Lefebvre V., de Crombrugghe B., Chondrocyte-specific enhancer elements in the Col11a2 gene resemble the Col2a1 tissue-specific enhancer. J Biol Chem, 1998, 273, 14998–15006. [CrossRef] [PubMed] [Google Scholar]
  • Cai J., Ash D., Kotch L.E., Jabs E.W., Attie-Bitach T., Auge, J., Mattei G., Etchevers H., Vekemans M., Korshunova Y., Tidwell R., Messina D.N., Winston J.B., Lovett M., Gene expression in pharyngeal arch 1 during human embryonic development. Hum Mol Genet, 2005, 14, 903–912. [CrossRef] [PubMed] [Google Scholar]
  • Cheung M., Chaboissier M.C., Mynett A., Hirst E., Schedl A., Briscoe J., The transcriptional control of trunk neural crest induction, survival, and delamination. Dev Cell, 2005, 8, 179–192. [CrossRef] [PubMed] [Google Scholar]
  • Cohen M.M. Jr.,, Robin sequences and complexes : causal heterogeneity and pathogenetic/phenotypic variability. Am J Med Genet, 1999, 84, 311–315. [CrossRef] [PubMed] [Google Scholar]
  • Consortium T.E.P., Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 2007, 447, 799–816. [CrossRef] [PubMed] [Google Scholar]
  • Crutchley J.L., Wang X.Q., Ferraiuolo M.A., Dostie J., Chromatin conformation signatures: ideal human disease biomarkers? Biomark Med, 2010, 4, 611–629. [CrossRef] [PubMed] [Google Scholar]
  • de Laat W., Grosveld F., Spatial organization of gene expression: the active chromatin hub. Chromosome Res, 2003, 11, 447–459. [CrossRef] [PubMed] [Google Scholar]
  • de Pontual L., Pelet A., Trochet D., Jaubert F., Espinosa-Parrilla Y., Munnich A., Brunet J.F., Goridis C., Feingold J., Lyonnet S., Amiel J., Mutations of the RET gene in isolated and syndromic Hirschsprung’s disease in human disclose major and modifier alleles at a single locus. J Med Genet, 2006, 43, 419–423. [CrossRef] [PubMed] [Google Scholar]
  • Dermitzakis E.T., Reymond A., Antonarakis S.E., Conserved non-genic sequences – an unexpected feature of mammalian genomes. Nat Rev Genet, 2005, 6, 151–157. [CrossRef] [PubMed] [Google Scholar]
  • Dillon N., Gene autonomy: positions, please. Nature, 2003, 425, 457. [CrossRef] [PubMed] [Google Scholar]
  • Dillon N., Sabbattini P., Functional gene expression domains: defining the functional unit of eukaryotic gene regulation. Bioessays, 2000, 22, 657–665. [CrossRef] [PubMed] [Google Scholar]
  • Elgar G., Vavouri T., Tuning in to the signals: noncoding sequence conservation in vertebrate genomes. Trends Genet, 2008, 24, 344–352. [CrossRef] [PubMed] [Google Scholar]
  • Emison E.S., McCallion A.S., Kashuk C.S., Bush R.T., Grice E., Lin S., Portnoy M.E., Cutler D.J., Green E.D., Chakravarti A., A common sex-dependent mutation in a RET enhancer underlies Hirschsprung disease risk. Nature, 2005, 434, 857–863. [CrossRef] [PubMed] [Google Scholar]
  • Foster J.W., Mutations in SOX9 cause both autosomal sex reversal and campomelic dysplasia. Acta Paediatr Jpn, 1996, 38, 405–411. [PubMed] [Google Scholar]
  • Foster J.W., Dominguez-Steglich M.A., Guioli S., Kwok C., Weller P.A., Stevanovic M., Weissenbach J., Mansour S., Young I.D., Goodfellow P.N., Brook J.D., Schafer A.J., Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature, 1994, 372, 525–530. [CrossRef] [PubMed] [Google Scholar]
  • Frankel N., Davis G.K., Vargas D., Wang S., Payre F., Stern D.L., Phenotypic robustness conferred by apparently redundant transcriptional enhancers. Nature, 2010, 466, 490–493. [CrossRef] [PubMed] [Google Scholar]
  • Fuss S.H., Omura M., Mombaerts P., Local and cis effects of the H element on expression of odorant receptor genes in mouse. Cell, 2007, 130, 373–384. [CrossRef] [PubMed] [Google Scholar]
  • Gordon C.T., Tan T.Y., Benko S., Fitzpatrick D., Lyonnet S., Farlie P.G., Long-range regulation at the SOX9 locus in development and disease. J Med Genet, 2009, 46, 649–656. [CrossRef] [PubMed] [Google Scholar]
  • Heintzman N.D., Ren B., Finding distal regulatory elements in the human genome. Curr Opin Genet Dev, 2009, 19, 541–549. [CrossRef] [PubMed] [Google Scholar]
  • Heintzman N.D., Hon G.C., Hawkins R.D., Kheradpour P., Stark A., Harp L.F., Ye Z., Lee L.K., Stuart R.K., Ching C.W., Ching K.A., Antosiewicz-Bourget J.E., Liu H., Zhang X., Green R.D., Lobanenkov V.V., Stewart R., Thomson J.A., Crawford G.E., Kellis M., Ren B., Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature, 2009, 459, 108–112. [CrossRef] [PubMed] [Google Scholar]
  • Hill-Harfe K.L., Kaplan L., Stalker H.J., Zori R.T., Pop R., Scherer G., Wallace M.R., Fine mapping of chromosome 17 translocation breakpoints > or = 900 Kb upstream of SOX9 in acampomelic campomelic dysplasia and a mild, familial skeletal dysplasia. Am J Hum Genet, 2005, 76, 663–671. [CrossRef] [PubMed] [Google Scholar]
  • Holder-Espinasse M., Abadie V., Cormier-Daire V., Beyler C., Manach Y., Munnich A., Lyonnet S., Couly G., Amiel J., Pierre Robin sequence: a series of 117 consecutive cases. J Pediatr, 2001, 139, 588–590. [CrossRef] [PubMed] [Google Scholar]
  • Houdayer C., Portnoi M.F., Vialard F., Soupre V., Crumiere C., Taillemite J.L., Couderc R., Vazquez M.P., Bahuau M., Pierre Robin sequence and interstitial deletion 2q32.3-q33.2. Am J Med Genet, 2001, 102, 219–226. [CrossRef] [PubMed] [Google Scholar]
  • Houston C.S., Opitz J.M., Spranger J.W., Macpherson R.I., Reed M.H., Gilbert E.F., Herrmann J., Schinzel A., The campomelic syndrome: review, report of 17 cases, and follow-up on the currently 17-year-old boy first reported by Maroteaux et al. in 1971. Am J Med Genet, 1983, 15, 3–28. [CrossRef] [PubMed] [Google Scholar]
  • Jakobsen L.P., Knudsen M.A., Lespinasse J., Garcia Ayuso C., Ramos C., Fryns J.P., Bugge M., Tommerup N., The genetic basis of the Pierre Robin Sequence. Cleft Palate Craniofac J, 2006, 43, 155–159. [CrossRef] [PubMed] [Google Scholar]
  • Jakobsen L.P., Ullmann R., Christensen S.B., Jensen K.E., Molsted K., Henriksen K.F., Hansen C., Knudsen M.A., Larsen L.A., Tommerup N., Tümer Z., Pierre Robin sequence may be caused by dysregulation of SOX9 and KCNJ2. J Med Genet, 2007, 44, 381–386. [CrossRef] [PubMed] [Google Scholar]
  • Jamshidi N., Macciocca I., Dargaville P.A., Thomas P., Kilpatrick N., McKinlay Gardner R.J., Farlie P.G., Isolated Robin sequence associated with a balanced t(2;17) chromosomal translocation. J Med Genet, 2004, 41, e1. [Google Scholar]
  • Kahn J.L., Bourjat P., Barrière P., Imaging of mandibular malformations and deformities. J Radiol, 2003, 84, 975–981. [PubMed] [Google Scholar]
  • Kleinjan D.A., van Heyningen V., Long-range control of gene expression: emerging mechanisms and disruption in disease. Am J Hum Genet, 2005, 76, 8–32. [CrossRef] [PubMed] [Google Scholar]
  • Kleinjan D.A., Lettice L.A., Long-range gene control and genetic disease. Adv Genet, 2008, 61, 339–388. [CrossRef] [PubMed] [Google Scholar]
  • Kleinjan D.J., Coutinho P., Cis-ruption mechanisms: disruption of cis-regulatory control as a cause of human genetic disease. Brief Funct Genomic Proteomic, 2009, 8, 317–332. [CrossRef] [PubMed] [Google Scholar]
  • Lecointre C., Pichon O., Hamel A., Heloury Y., Michel-Calemard L., Morel Y., David A., Le Caignec C., Familial acampomelic form of campomelic dysplasia caused by a 960 kb deletion upstream of SOX9. Am J Med Genet A, 2009, 149A, 1183–1189. [CrossRef] [PubMed] [Google Scholar]
  • Lefebvre V., Huang W., Harley V.R., Goodfellow P.N., de Crombrugghe B., SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol, 1997, 17, 2336–2346. [PubMed] [Google Scholar]
  • Leipoldt M., Erdel M., Bien-Willner G.A., Smyk M., Theurl M., Yatsenko S.A., Lupski J.R., Lane A.H., Shanske A.L., Stankiewicz P., Scherer G., Two novel translocation breakpoints upstream of SOX9 define borders of the proximal and distal breakpoint cluster region in campomelic dysplasia. Clin Genet, 2007, 71, 67–75. [CrossRef] [PubMed] [Google Scholar]
  • Lettice L.A., Horikoshi T., Heaney S.J., van Baren M.J., van der Linde H.C., Breedveld G.J., Joosse M., Akarsu N., Oostra B.A., Endo N., Shibata M., Suzuki M., Takahashi E., Shinka T., Nakahori Y., Ayusawa D., Nakabayashi K., Scherer S.W., Heutink P., Hill R.E., Noji S., Disruption of a long-range cis-acting regulator for Shh causes preaxial polydactyly. Proc Natl Acad Sci USA, 2002, 99, 7548–7553. [CrossRef] [Google Scholar]
  • Lettice L.A., Heaney S.J., Purdie L.A., Li L., de Beer P., Oostra B.A., Goode D., Elgar G., Hill R.E., de Graaff E., A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum Mol Genet, 2003, 12, 1725–1735. [CrossRef] [PubMed] [Google Scholar]
  • Levine M., Tjian R., Transcription regulation and animal diversity. Nature, 2003, 424, 147–151. [CrossRef] [PubMed] [Google Scholar]
  • Lewinsky R.H., Jensen T.G., Moller J., Stensballe A., Olsen J., Troelsen J.T., T-13910 DNA variant associated with lactase persistence interacts with Oct-1 and stimulates lactase promoter activity in vitro. Hum Mol Genet, 2005, 14, 3945–3953. [CrossRef] [PubMed] [Google Scholar]
  • Lomvardas S., Barnea G., Pisapia D.J., Mendelsohn M., Kirkland J., Axel R., Interchromosomal interactions and olfactory receptor choice. Cell, 2006, 126, 403–413. [CrossRef] [PubMed] [Google Scholar]
  • Mansour S., Hall C.M., Pembrey M.E., Young I.D., A clinical and genetic study of campomelic dysplasia. J Med Genet, 1995, 32, 415–420. [CrossRef] [PubMed] [Google Scholar]
  • Mattick J.S., Makunin I.V., Non-coding RNA. Hum Mol Genet, 2006, 15 Spec No 1, R17–29. [Google Scholar]
  • McKeown S.J., Lee V.M., Bronner-Fraser M., Newgreen D.F., Farlie P.G., Sox10 overexpression induces neural crest-like cells from all dorsoventral levels of the neural tube but inhibits differentiation. Dev Dyn, 2005, 233, 430–444. [CrossRef] [PubMed] [Google Scholar]
  • Melkoniemi M., Koillinen H., Mannikko M., Warman M.L., Pihlajamaa T., Kaariainen H., Rautio J., Hukki J., Stofko J.A., Cisneros G.J., Krakow D., Cohn D.H., Kere J., Ala-Kokko L., Collagen XI sequence variations in nonsyndromic cleft palate, Robin sequence and micrognathia. Eur J Hum Genet, 2003, 11, 265–270. [CrossRef] [PubMed] [Google Scholar]
  • Mikkelsen T.S., Ku M., Jaffe D.B., Issac B., Lieberman E., Giannoukos G., Alvarez P., Brockman W., Kim T.K., Koche R.P., Lee W., Mendenhall E., O’Donovan A., Presser A., Russ C., Xie X., Meissner A., Wernig M., Jaenisch R., Nusbaum C., Lander E.S., Bernstein B.E., Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 2007, 448, 553–560. [CrossRef] [PubMed] [Google Scholar]
  • Mori-Akiyama Y., Akiyama H., Rowitch D.H., de Crombrugghe B., Sox9 is required for determination of the chondrogenic cell lineage in the cranial neural crest. Proc Natl Acad Sci USA, 2003, 100, 9360–9365. [CrossRef] [Google Scholar]
  • Ninomiya S., Isomura M., Narahara K., Seino Y., Nakamura Y., Isolation of a testis-specific cDNA on chromosome 17q from a region adjacent to the breakpoint of t(12;17) observed in a patient with acampomelic campomelic dysplasia and sex reversal. Hum Mol Genet, 1996, 5, 69–72. [CrossRef] [PubMed] [Google Scholar]
  • Nobrega M.A., Ovcharenko I., Afzal V., Rubin E.M., Scanning human gene deserts for long-range enhancers. Science, 2003, 302, 413. [CrossRef] [PubMed] [Google Scholar]
  • Nobrega M.A., Zhu Y., Plajzer-Frick I., Afzal V., Rubin E.M., Megabase deletions of gene deserts result in viable mice. Nature, 2004, 431, 988–993. [CrossRef] [PubMed] [Google Scholar]
  • Ounap K., Ilus T., Laidre P., Uibo O., Tammur P., Bartsch O., A new case of 2q duplication supports either a locus for orofacial clefting between markers D2S1897 and D2S2023 or a locus for cleft palate only on chromosome 2q13-q21. Am J Med Genet A, 2005, 137A, 323–327. [CrossRef] [PubMed] [Google Scholar]
  • Pennacchio L.A., Ahituv N., Moses A.M., Prabhakar S., Nobrega M.A., Shoukry M., Minovitsky S., Dubchak I., Holt A., Lewis K.D., Plajzer-Frick I., Akiyama J., De Val S., Afzal V., Black B.L., Couronne O., Eisen M.B., Visel A., Rubin E.M., In vivo enhancer analysis of human conserved non-coding sequences. Nature, 2006, 444, 499–502. [CrossRef] [PubMed] [Google Scholar]
  • Pfeifer D., Kist R., Dewar K., Devon K., Lander E.S., Birren B., Korniszewski L., Back E., Scherer G., Campomelic dysplasia translocation breakpoints are scattered over 1 Mb proximal to SOX9: evidence for an extended control region. Am J Hum Genet, 1999, 65, 111–124. [CrossRef] [PubMed] [Google Scholar]
  • Pheasant M., Mattick J.S., Raising the estimate of functional human sequences. Genome Res 17, 2007, 1245–1253. [CrossRef] [PubMed] [Google Scholar]
  • Pop R., Conz C., Lindenberg K.S., Blesson S., Schmalenberger B., Briault S., Pfeifer D., Scherer G., Screening of the 1 Mb SOX9 5’ control region by array CGH identifies a large deletion in a case of campomelic dysplasia with XY sex reversal. J Med Genet, 2004, 41, e47. [CrossRef] [PubMed] [Google Scholar]
  • Prabhakar S., Visel A., Akiyama J.A., Shoukry M., Lewis K.D., Holt A., Plajzer-Frick I., Morrison H., Fitzpatrick D.R., Afzal V., Holt A., Plajzer-Frick I., Morrison H., Fitzpatrick D.R, Afzal V., Pennacchio L.A., Rubin E.M., Noonan J.P., Human-specific gain of function in a developmental enhancer. Science, 2008 321, 1346–1350. [CrossRef] [PubMed] [Google Scholar]
  • Sagai T., Hosoya M., Mizushina Y., Tamura M., Shiroishi T., Elimination of a long-range cis-regulatory module causes complete loss of limb-specific Shh expression and truncation of the mouse limb. Development, 2005, 132, 797–803. [CrossRef] [PubMed] [Google Scholar]
  • Sakai D., Suzuki T., Osumi N., Wakamatsu Y., Cooperative action of Sox9, Snail2 and PKA signaling in early neural crest development. Development, 2006, 133, 1323–1333. [CrossRef] [PubMed] [Google Scholar]
  • Satokata I., Maas R., Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet, 1994, 6, 348–356. [CrossRef] [PubMed] [Google Scholar]
  • Sekiya I., Tsuji K., Koopman P., Watanabe H., Yamada Y., Shinomiya K., Nifuji A., Noda M., SOX9 enhances aggrecan gene promoter/enhancer activity and is up-regulated by retinoic acid in a cartilage-derived cell line, TC6. J Biol Chem, 2000, 275, 10738–10744. [CrossRef] [PubMed] [Google Scholar]
  • Siepel A., Bejerano G., Pedersen J.S., Hinrichs A.S., Hou M., Rosenbloom K., Clawson H., Spieth J., Hillier L.W., Richards S., Weinstock G.M., Wilson R.K., Gibbs R.A., Kent W.J., Miller W., Haussler D., Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res, 2005, 15, 1034–1050. [CrossRef] [PubMed] [Google Scholar]
  • Spitz F., Duboule D., Global control regions and regulatory landscapes in vertebrate development and evolution. Adv Genet, 2008, 61, 175–205. [CrossRef] [PubMed] [Google Scholar]
  • Spitz F., Gonzalez F., Duboule D., A global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell, 2003, 113, 405–417. [CrossRef] [PubMed] [Google Scholar]
  • Spokony R.F., Aoki Y., Saint-Germain N., Magner-Fink E., Saint-Jeannet J.P., The transcription factor SOX9 is required for cranial neural crest development in Xenopus. Development, 2002, 129, 421–432. [PubMed] [Google Scholar]
  • Stathopoulos A., Levine M., Genomic regulatory networks and animal development. Dev Cell, 2005, 9, 449–462. [CrossRef] [PubMed] [Google Scholar]
  • Suda Y., Kokura K., Kimura J., Kajikawa E., Inoue F., Aizawa S., The same enhancer regulates the earliest Emx2 expression in caudal forebrain primordium, subsequent expression in dorsal telencephalon and later expression in the cortical ventricular zone. Development, 2010, 137, 2939–2949. [CrossRef] [PubMed] [Google Scholar]
  • Tishkoff S.A., Reed F.A., Ranciaro A., Voight B.F., Babbitt C.C., Silverman J.S., Powell K., Mortensen H.M., Hirbo J.B., Osman M., Ibrahim M., Omar S.A., Lema G., Nyambo T.B., Ghori J., Bumpstead S., Pritchard J.K., Wray G.A., Deloukas P., Convergent adaptation of human lactase persistence in Africa and Europe. Nat Genet, 2007, 39, 31–40. [CrossRef] [PubMed] [Google Scholar]
  • Troelsen J.T., Olsen J., Moller J., Sjostrom H., An upstream polymorphism associated with lactase persistence has increased enhancer activity. Gastroenterology, 2003, 125, 1686–1694. [CrossRef] [PubMed] [Google Scholar]
  • Uhlenhaut N.H., Jakob S., Anlag K., Eisenberger T., Sekido R., Kress J., Treier A.C., Klugmann C., Klasen C., Holter N.I., Riethmacher D., Schütz G., Cooney A.J., Lovell-Badge R., Treier M., Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell, 2009, 139, 1130–1142. [CrossRef] [PubMed] [Google Scholar]
  • Valle D., Genetics, individuality, and medicine in the 21st century. Am J Hum Genet, 2004, 74, 374–381. [CrossRef] [PubMed] [Google Scholar]
  • Velagaleti G.V., Bien-Willner, G.A., Northup J.K., Lockhart L.H., Hawkins J.C., Jalal S.M., Withers M., Lupski J.R., Stankiewicz P., Position effects due to chromosome breakpoints that map approximately 900 Kb upstream and approximately 1.3 Mb downstream of SOX9 in two patients with campomelic dysplasia. Am J Hum Genet, 2005, 76, 652–662. [CrossRef] [PubMed] [Google Scholar]
  • Visel A., Prabhakar S., Akiyama J.A., Shoukry M., Lewis K.D., Holt A., Plajzer-Frick I., Afzal V., Rubin E.M., Pennacchio L.A., Ultraconservation identifies a small subset of extremely constrained developmental enhancers. Nat Genet, 2008, 40, 158–160. [CrossRef] [PubMed] [Google Scholar]
  • Visel A., Akiyama J.A., Shoukry M., Afzal V., Rubin E.M., Pennacchio L.A., Functional autonomy of distant-acting human enhancers. Genomics, 2009a, 93, 509–513. [CrossRef] [PubMed] [Google Scholar]
  • Visel A., Blow M.J., Li Z., Zhang T., Akiyama J.A., Holt A., Plajzer-Frick I., Shoukry M., Wright C., Chen F., Afzal V., Ren B., Rubin E.M., Pennacchio L.A., ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature, 2009b, 457, 854–858. [CrossRef] [PubMed] [Google Scholar]
  • Visel A., Zhu Y., May D., Afzal V., Gong E., Attanasio C., Blow M.J., Cohen J.C., Rubin E.M., Pennacchio L.A., Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature, 2010, 464, 409–412. [CrossRef] [PubMed] [Google Scholar]
  • Wagner T., Wirth J., Meyer J., Zabel B., Held M., Zimmer J., Pasantes J., Bricarelli F.D., Keutel J., Hustert E., Wolf U., Tommerup N., Schempp W., Scherer G., Antonarakis S.E., Attwood J., Baertsch R., Bailey J., Barlow K., Beck S., Berry E., Birren B., Bloom T., Bork P., Botcherby M., Bray N., Brent M.R., Brown D.G., Brown S.D., Bult C., Burton J., Butler J., Campbell R.D., Carninci P., Cawley S., Chiaromonte F., Chinwalla A.T., Church D.M., Clamp M., Clee C., Collins F.S., Cook L.L., Copley R.R., Coulson A., Couronne O., Cuff J., Curwen V., Cutts T., Daly M., David R., Davies J., Delehaunty K.D., Deri J., Dermitzakis E.T., Dewey C.., Dickens NJ., Diekhans M., Dodge S., Dubchak I., Dunn D.M., Eddy S.R., Elnitski L., Emes R.D., Eswara P., Eyras E., Felsenfeld A., Fewell G.A., Flicek P., Foley K., Frankel W.N., Fulton L.A., Fulton R.S., Furey T.S., Gage D., Gibbs R.A., Glusman G., Gnerre S., Goldman N., Goodstadt L., Grafham D., Graves T.A., Green E.D., Gregory S., Guigó R., Guyer M., Hardison R.C., Haussler D., Hayashizaki Y., Hillier L.W., Hinrichs A., Hlavina W., Holzer T., Hsu F., Hua A., Hubbard T., Hunt A,. Jackson I., Jaffe D..B, Johnson L.S., Jones M., Jones T.A., Joy A., Kamal M., Karlsson E.K., Karolchik D., Kasprzyk A., Kawai J., Keibler E., Kells C., Kent W.J., Kirby A., Kolbe D.L., Korf I., Kucherlapati R.S., Kulbokas E.J., Kulp D., Landers T., Leger J.P., Leonard S., Letunic I., Levine R., Li J., Li M., Lloyd C., Lucas S., Ma B., Maglott D.R., Mardis E.R., Matthews L., Mauceli E., Mayer J.H., McCarthy M., McCombie W.R., McLaren S., McLay K., McPherson J.D., Meldrim J., Meredith B., Mesirov J.P., Miller W., Miner T.L., Mongin E., Montgomery K.T., Morgan M., Mott R., Mullikin J.C., Muzny D.M., Nash W.E.., Nelson J.O., Nhan M.N., Nicol R., Ning Z., Nusbaum C., O’Connor M.J., Okazaki Y., Oliver K., Overton-Larty E., Pachter L., Parra G., Pepin K.H., Peterson J., Pevzner P., Plumb R., Pohl C.S., Poliakov A., Ponce T.C., Ponting C.P., Potter S., Quail M., Reymond A., Roe B.A., Roskin K.M., Rubin E.M., Rust A.G., Santos R., Sapojnikov V., Schultz B., Schultz J., Schwartz M.S., Schwartz S., Scott C., Seaman S., Searle S., Sharpe T., Sheridan A., Shownkeen R., Sims S., Singer J.B., Slater G., Smit A., Smith D.R., Spencer B., Stabenau A., Stange-Thomann N., Sugnet C., Suyama M., Tesler G., Thompson J., Torrents D., Trevaskis E., Tromp J., Ucla C., Ureta-Vidal A., Vinson J.P., Von Niederhausern A.C., Wade C.M., Wall M., Weber R.J., Weiss R.B., Wendl M.C., West A.P., Wetterstrand K., Wheeler R., Whelan S., Wierzbowski J., Willey D., Williams S., Wilson R.K., Winter E., Worley K.C., Wyman D., Yang S., Yang S.P., Zdobnov E.M., Zody M.C., Lander E.S., Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell, 1994, 79, 1111–1120. [CrossRef] [PubMed] [Google Scholar]
  • Waterston R.H., Lindblad-Toh K., Birney E., Rogers J., Abril J.F., Agarwal P., Agarwala R., Ainscough R., Alexandersson M., An P., et al., Initial sequencing and comparative analysis of the mouse genome. Nature, 2002, 420, 520–562. [CrossRef] [PubMed] [Google Scholar]
  • Wirth J., Wagner T., Meyer J., Pfeiffer R.A., Tietze H.U., Schempp W., Scherer G., Translocation breakpoints in three patients with campomelic dysplasia and autosomal sex reversal map more than 130 kb from SOX9. Hum Genet, 1996, 97, 186–193. [CrossRef] [PubMed] [Google Scholar]
  • Woolfe A., Goodson M., Goode D.K., Snell P., McEwen G.K., Vavouri T., Smith S.F., North P., Callaway H., Kelly K., Walter K., Abnizova I., Gilks W., Edwards Y.J., Cooke J.E., Elgar G., Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol, 2005, 3, e7. [CrossRef] [PubMed] [Google Scholar]
  • Wunderle V.M., Critcher R., Hastie N., Goodfellow P.N., Schedl A., Deletion of long-range regulatory elements upstream of SOX9 causes campomelic dysplasia. Proc Natl Acad Sci USA, 1998, 95, 10649–10654. [CrossRef] [Google Scholar]
  • Xi H., Shulha H.P., Lin J.M., Vales T.R., Fu Y., Bodine D.M., McKay R.D., Chenoweth J.G., Tesar P.J., Furey T.S., Ren B., Weng Z., Crawford G.E., Identification and characterization of cell type-specific and ubiquitous chromatin regulatory structures in the human genome. PLoS Genet, 2007, 3, e136. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.