Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 205, Numéro 2, 2011
Journées Claude Bernard 2010
Page(s) 105 - 110
Section Biologie et génétique du développement : Clés du passé et de l'avenir / Developmental biology and genetics: Keys to the past and the future
DOI https://doi.org/10.1051/jbio/2011013
Publié en ligne 11 août 2011
  • Barreto G., Schäfer A., Marhold J., Stach D., Swaminathan S.K., Handa V., Döderlein G., Maltry N., Wu W., Lyko F., Niehrs C., Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature, 2007, 445, 671–675. [CrossRef] [PubMed]
  • Byrne J.A., Simonsson S., Gurdon J.B., From intestine to muscle: nuclear reprogramming through defective cloned embryos. Proc Natl Acad Sci USA, 2002, 99, 6059–6063. [CrossRef]
  • Byrne J.A., Simonsson S., Western P.S., Gurdon J.B., Nuclei of adult mammalian somatic cells are directly reprogrammed to oct-4 stem cell gene expression by amphibian oocytes. Curr Biol, 2003, 13, 1206–1213. [CrossRef] [PubMed]
  • Campbell K.H., McWhir J., Ritchie W.A., Wilmut I., Sheep cloned by nuclear transfer from a cultured cell line. Nature, 1996, 380, 64–66. [CrossRef] [PubMed]
  • D’Alessio J.A., Wright K.J., Tjian R., Shifting players and paradigms in cell-specific transcription. Mol Cell, 2009, 36, 924–931. [CrossRef] [PubMed]
  • El Jamil A., Kanhoush R., Magre S., Boizet-Bonhoure B., Penrad-Mobayed M., Sex-specific expression of SOX9 during gonadogenesis in the amphibian Xenopus tropicalis. Dev Dyn, 2008, 237, 2996–3005. [CrossRef] [PubMed]
  • Gurdon J.B., The developmental capacity of nuclei taken from differentiating endoderm cells of Xenopus laevis. J Embryol Exp Morphol, 1960, 8, 505–526. [PubMed]
  • Gurdon J.B., Elsdale T.R., Fischberg M., Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature, 1958, 182, 64–65. [CrossRef] [PubMed]
  • Halley-Stott R.P., Pasque V., Astrand C., Miyamoto K., Simeoni I., Jullien J., Gurdon J.B., Mammalian nuclear transplantation to germinal vesicle stage Xenopus oocytes – a method for quantitative transcriptional reprogramming. Methods, 2010, 51, 56–65. [CrossRef] [PubMed]
  • Hansis C., Barreto G., Maltry N., Niehrs C., Nuclear reprogramming of human somatic cells by Xenopus egg extract requires BRG1. Curr Biol, 2004, 14, 1475–1480 [CrossRef] [PubMed]
  • Jullien J., Astrand C., Halley-Stott R.P., Garrett N., Gurdon J.B., Characterization of somatic cell nuclear reprogramming by oocytes in which a linker histone is required for pluripotency gene reactivation. Proc Natl Acad Sci USA, 2010, 107, 5483–5488. [CrossRef]
  • Kato K., Gurdon J.B., Single-cell transplantation determines the time when Xenopus muscle precursor cells acquire a capacity for autonomous differentiation. Proc Natl Acad Sci USA, 1993, 90, 1310–1314. [CrossRef]
  • Koche R.P., Smith Z.D., Adli M., Gu H., Ku M., Gnirke A., Bernstein B.E., Meissner A., Reprogramming factor expression initiates widespread targeted chromatin remodeling. Cell Stem Cell, 2011, 8, 96–105. [CrossRef] [PubMed]
  • Koziol M.J., Garrett N., Gurdon J.B., Tpt1 activates transcription of oct4 and nanog in transplanted somatic nuclei. Curr Biol, 2007, 17, 801–807. [CrossRef] [PubMed]
  • Lund E., Paine P.L., Nonaqueous isolation of transcriptionally active nuclei from Xenopus oocytes. Methods Enzymol, 1990, 181, 36–43. [CrossRef] [PubMed]
  • Meshorer E., Yellajoshula D., George E., Scambler P.J., Brown D.T., Misteli T., Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell, 2006, 10, 105–116. [CrossRef] [PubMed]
  • Murata K., Kouzarides T., Bannister A.J., Gurdon J.B., Histone H3 lysine 4 methylation is associated with the transcriptional reprogramming efficiency of somatic nuclei by oocytes. Epigenetics Chromatin, 2010, 3, 4. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Pasque V., Miyamoto K., Gurdon J.B., Efficiencies and Mechanisms of Nuclear Reprogramming. Cold Spring Harb Symp Quant Biol., 2010, 75, 189–200. [CrossRef] [PubMed]
  • Pasque V., Gillich A., Garrett N., Gurdon J.B., Histone variant macroH2A confers resistance to nuclear reprogramming. EMBO J, 2011, 30, 2373–2387. [CrossRef] [PubMed]
  • Pereira C.F., Terranova R., Ryan N.K., Santos J., Morris K.J., Cui W., Merkenschlager M., Fisher A.G., Heterokaryon-based reprogramming of human B lymphocytes for pluripotency requires Oct4 but not Sox2. PLoS Genet, 2008, 4, e1000170 [CrossRef] [PubMed]
  • Simonsson S., Gurdon J., DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nat Cell Biol, 2004, 6, 984–990. [CrossRef] [PubMed]
  • Stadtfeld M., Hochedlinger K., Induced pluripotency: history, mechanisms, and applications. Genes Dev, 2010, 24, 2239–2263. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Takahashi K., Yamanaka S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126, 663–676. [CrossRef] [PubMed]
  • Whitfield T., Heasman J., Wylie C., XLPOU-60, a Xenopus POU-domain mRNA, is oocyte-specific from very early stages of oogenesis, and localised to presumptive mesoderm and ectoderm in the blastula. Dev Biol, 1993, 155, 361–370. [CrossRef] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.