Accès gratuit
Biologie Aujourd'hui
Volume 205, Numéro 2, 2011
Journées Claude Bernard 2010
Page(s) 105 - 110
Section Biologie et génétique du développement : Clés du passé et de l'avenir / Developmental biology and genetics: Keys to the past and the future
Publié en ligne 11 août 2011
  • Barreto G., Schäfer A., Marhold J., Stach D., Swaminathan S.K., Handa V., Döderlein G., Maltry N., Wu W., Lyko F., Niehrs C., Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature, 2007, 445, 671–675. [CrossRef] [PubMed]
  • Byrne J.A., Simonsson S., Gurdon J.B., From intestine to muscle: nuclear reprogramming through defective cloned embryos. Proc Natl Acad Sci USA, 2002, 99, 6059–6063. [CrossRef]
  • Byrne J.A., Simonsson S., Western P.S., Gurdon J.B., Nuclei of adult mammalian somatic cells are directly reprogrammed to oct-4 stem cell gene expression by amphibian oocytes. Curr Biol, 2003, 13, 1206–1213. [CrossRef] [PubMed]
  • Campbell K.H., McWhir J., Ritchie W.A., Wilmut I., Sheep cloned by nuclear transfer from a cultured cell line. Nature, 1996, 380, 64–66. [CrossRef] [PubMed]
  • D’Alessio J.A., Wright K.J., Tjian R., Shifting players and paradigms in cell-specific transcription. Mol Cell, 2009, 36, 924–931. [CrossRef] [PubMed]
  • El Jamil A., Kanhoush R., Magre S., Boizet-Bonhoure B., Penrad-Mobayed M., Sex-specific expression of SOX9 during gonadogenesis in the amphibian Xenopus tropicalis. Dev Dyn, 2008, 237, 2996–3005. [CrossRef] [PubMed]
  • Gurdon J.B., The developmental capacity of nuclei taken from differentiating endoderm cells of Xenopus laevis. J Embryol Exp Morphol, 1960, 8, 505–526. [PubMed]
  • Gurdon J.B., Elsdale T.R., Fischberg M., Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature, 1958, 182, 64–65. [CrossRef] [PubMed]
  • Halley-Stott R.P., Pasque V., Astrand C., Miyamoto K., Simeoni I., Jullien J., Gurdon J.B., Mammalian nuclear transplantation to germinal vesicle stage Xenopus oocytes – a method for quantitative transcriptional reprogramming. Methods, 2010, 51, 56–65. [CrossRef] [PubMed]
  • Hansis C., Barreto G., Maltry N., Niehrs C., Nuclear reprogramming of human somatic cells by Xenopus egg extract requires BRG1. Curr Biol, 2004, 14, 1475–1480 [CrossRef] [PubMed]
  • Jullien J., Astrand C., Halley-Stott R.P., Garrett N., Gurdon J.B., Characterization of somatic cell nuclear reprogramming by oocytes in which a linker histone is required for pluripotency gene reactivation. Proc Natl Acad Sci USA, 2010, 107, 5483–5488. [CrossRef]
  • Kato K., Gurdon J.B., Single-cell transplantation determines the time when Xenopus muscle precursor cells acquire a capacity for autonomous differentiation. Proc Natl Acad Sci USA, 1993, 90, 1310–1314. [CrossRef]
  • Koche R.P., Smith Z.D., Adli M., Gu H., Ku M., Gnirke A., Bernstein B.E., Meissner A., Reprogramming factor expression initiates widespread targeted chromatin remodeling. Cell Stem Cell, 2011, 8, 96–105. [CrossRef] [PubMed]
  • Koziol M.J., Garrett N., Gurdon J.B., Tpt1 activates transcription of oct4 and nanog in transplanted somatic nuclei. Curr Biol, 2007, 17, 801–807. [CrossRef] [PubMed]
  • Lund E., Paine P.L., Nonaqueous isolation of transcriptionally active nuclei from Xenopus oocytes. Methods Enzymol, 1990, 181, 36–43. [CrossRef] [PubMed]
  • Meshorer E., Yellajoshula D., George E., Scambler P.J., Brown D.T., Misteli T., Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell, 2006, 10, 105–116. [CrossRef] [PubMed]
  • Murata K., Kouzarides T., Bannister A.J., Gurdon J.B., Histone H3 lysine 4 methylation is associated with the transcriptional reprogramming efficiency of somatic nuclei by oocytes. Epigenetics Chromatin, 2010, 3, 4. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Pasque V., Miyamoto K., Gurdon J.B., Efficiencies and Mechanisms of Nuclear Reprogramming. Cold Spring Harb Symp Quant Biol., 2010, 75, 189–200. [CrossRef] [PubMed]
  • Pasque V., Gillich A., Garrett N., Gurdon J.B., Histone variant macroH2A confers resistance to nuclear reprogramming. EMBO J, 2011, 30, 2373–2387. [CrossRef] [PubMed]
  • Pereira C.F., Terranova R., Ryan N.K., Santos J., Morris K.J., Cui W., Merkenschlager M., Fisher A.G., Heterokaryon-based reprogramming of human B lymphocytes for pluripotency requires Oct4 but not Sox2. PLoS Genet, 2008, 4, e1000170 [CrossRef] [PubMed]
  • Simonsson S., Gurdon J., DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nat Cell Biol, 2004, 6, 984–990. [CrossRef] [PubMed]
  • Stadtfeld M., Hochedlinger K., Induced pluripotency: history, mechanisms, and applications. Genes Dev, 2010, 24, 2239–2263. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Takahashi K., Yamanaka S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126, 663–676. [CrossRef] [PubMed]
  • Whitfield T., Heasman J., Wylie C., XLPOU-60, a Xenopus POU-domain mRNA, is oocyte-specific from very early stages of oogenesis, and localised to presumptive mesoderm and ectoderm in the blastula. Dev Biol, 1993, 155, 361–370. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.