Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 205, Numéro 2, 2011
Journées Claude Bernard 2010
Page(s) 95 - 103
Section Biologie et génétique du développement : Clés du passé et de l'avenir / Developmental biology and genetics: Keys to the past and the future
DOI https://doi.org/10.1051/jbio/2011014
Publié en ligne 11 août 2011
  • Amaya E., Musci T.J., Kirschner M.W., Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell, 1991, 66, 257–270. [CrossRef] [PubMed] [Google Scholar]
  • Aulehla A., Pourquié O., Signaling gradient during paraxial mesoderm development. In Reading and Interpreting Gradients during Development, J. Briscoe, P. Lawrence, J. Vincent (Eds.), Cold Spring Harbor Laboratory Press, 2009. [Google Scholar]
  • Bénazéraf B., François P., Baker R.E., Denans N., Little C.D., Pourquié O., A random cell motility gradient downstream of FGF controls elongation of an amniote embryo. Nature, 2010, 466, 248–252. [CrossRef] [PubMed] [Google Scholar]
  • Boehm B., Westerberg H., Lesnicar-Pucko G., Raja S., Rautschka M., Cotterell J., Swoger J., Sharpe J., The role of spatially controlled cell proliferation in limb bud morphogenesis. PLoS Biol, 2010, 8, e1000420. [CrossRef] [PubMed] [Google Scholar]
  • Chapman S.C., Collignon J., Schoenwolf G.C., Lumsden A., Improved method for chick whole-embryo culture using a filter paper carrier. Dev Dyn, 2001, 220, 284–289. [CrossRef] [PubMed] [Google Scholar]
  • Cui C., Lansford R., Filla M.B., Little C.D., Cheuvront T.J., Rongish B.J., Electroporation and EGFP labeling of gastrulating quail embryos. Dev Dyn, 2006, 235, 2802–2810. [CrossRef] [PubMed] [Google Scholar]
  • Czirok A., Rupp P.A., Rongish B.J., Little C.D., Multi-field 3D scanning light microscopy of early embryogenesis. J Microscopy, 2002, 206, 209–217. [CrossRef] [Google Scholar]
  • Delfini M.C., Dubrulle J., Malapert P., Chal J., Pourquié O., Control of the segmentation process by graded MAPK/ERK activation in the chick embryo. Proc Natl Acad Sci USA, 2005, 102, 11343–11348. [CrossRef] [Google Scholar]
  • Dequéant M.L., Pourquié O., Segmental patterning of the vertebrate embryonic axis. Nat Rev Genet, 2008, 9, 370–382. [Google Scholar]
  • Dubrulle J., Pourquié O., fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo. Nature, 2004, 427, 419–422. [CrossRef] [PubMed] [Google Scholar]
  • Dubrulle J., McGrew M.J., Pourquié O., FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell, 2001, 106, 219–232. [CrossRef] [PubMed] [Google Scholar]
  • Gros J., Hu J.K., Vinegoni C., Feruglio P.F., Weissleder R., Tabin C.J., WNT5A/JNK and FGF/MAPK pathways regulate the cellular events shaping the vertebrate limb bud. Curr Biol, 2010, 20, 1993–2002. [CrossRef] [PubMed] [Google Scholar]
  • Hamburger V., Hamilton H.L., A series of normal stages in the development of the chick embryo (1951). Dev Dyn, 1992, 195, 231–272. [Google Scholar]
  • Iimura T., Pourquié O., Manipulation and electroporation of the avian segmental plate and somites in vitro. Methods Cell Biol, 2008, 87, 257–270. [CrossRef] [PubMed] [Google Scholar]
  • Keller R., Shook D., Skoglund P., The forces that shape embryos: physical aspects of convergent extension by cell intercalation. Phys Biol, 2008, 5, 15007. [Google Scholar]
  • Pezeron G., Mourrain P., Courty S., Ghislain J., Becker T.S., Rosa F.M., David N.B., Live analysis of endodermal layer formation identifies random walk as a novel gastrulation movement. Curr Biol, 2008, 18, 276–281. [CrossRef] [PubMed] [Google Scholar]
  • Rifes P., Carvalho L., Lopes C., Andrade R.P., Rodrigues G., Palmeirim I., Thorsteinsdottir S., Redefining the role of ectoderm in somitogenesis: a player in the formation of the fibronectin matrix of presomitic mesoderm. Development, 2007, 134, 3155–3165. [CrossRef] [PubMed] [Google Scholar]
  • Rupp P.A., Rongish B.J., Czirok A., Little C.D., Culturing of avian embryos for time-lapse imaging. Biotechniques, 2003, 34, 274–278. [PubMed] [Google Scholar]
  • Sbalzarini I.F., Koumoutsakos P., Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol, 2005, 151, 182–195. [Google Scholar]
  • Watanabe T., Saito D., Tanabe K., Suetsugu R., Nakaya Y., Nakagawa S., Takahashi Y., Tet-on inducible system combined with in ovo electroporation dissects multiple roles of genes in somitogenesis of chicken embryos. Dev Biol, 2007, 305, 625–636. [CrossRef] [PubMed] [Google Scholar]
  • Wei L., Roberts W., Wang L., Yamada M., Zhang S., Zhao Z., Rivkees S.A., Schwartz R.J., Imanaka-Yoshida K. Rho kinases play an obligatory role in vertebrate embryonic organogenesis. Development, 2001, 128, 2953–2962. [PubMed] [Google Scholar]
  • Wyngaarden L.A., Vogeli K.M., Ciruna B.G., Wells M., Hadjantonakis A.K., Hopyan S. Oriented cell motility and division underlie early limb bud morphogenesis. Development, 2010, 137, 2551–2558. [CrossRef] [PubMed] [Google Scholar]
  • Zamir E.A., Czirok A., Cui C., Little C.D., Rongish B.J., Mesodermal cell displacements during avian gastrulation are due to both individual cell-autonomous and convective tissue movements. Proc Natl Acad Sci USA, 2006, 103, 19806–19811. [CrossRef] [Google Scholar]
  • Zamir E.A., Rongish B.J., Little C.D., The ECM moves during primitive streak formation-computation of ECM versus cellular motion. PLoS Biol, 2008, 6, e247. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.