Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 205, Numéro 4, 2011
Différentiation et régulation des fonctions ovariennes - Nouveaux concepts
Page(s) 201 - 221
DOI https://doi.org/10.1051/jbio/2011021
Publié en ligne 19 janvier 2012
  • Adelman C., Petrini J., ZIP4H (TEX11) deficiency in the mouse impairs meiotic double strand break repair and the regulation of crossing over. PLoS Genet, 2008, 4, e1000042. [CrossRef] [PubMed] [Google Scholar]
  • Al-Agha O., Huwait H., Chow C., Yang W., Senz J., Kalloger S., Huntsman D., Young R., Gilks C., FOXL2 is a sensitive and specific marker for sex cord-stromal tumors of the ovary. Am J Surg Pathol, 2011, 35, 484–494. [CrossRef] [PubMed] [Google Scholar]
  • Arango N., Lovell-Badge R., Behringer R., Targeted mutagenesis of the endogenous mouse Mis gene promoter, in vivo definition of genetic pathways of vertebrate sexual development. Cell, 1999, 99, 409–419. [CrossRef] [PubMed] [Google Scholar]
  • Aravin A., Gaidatzis D., Pfeffer S., Lagos-Quintana M., Landgraf P., Iovino N., Morris P., Brownstein M., Kuramochi-Miyagawa S., Nakano T., Chien M., Russo J., Ju J., Sheridan R., Sander C., Zavolan M., Tuschl T., A novel class of small RNAs bind to MILI protein in mouse testes. Nature, 2006, 442, 203–207. [PubMed] [Google Scholar]
  • Baillet A., Mandon-Pépin B., Cabau C., Poumerol E., Pailhoux E., Cotinot C., Identification of transcripts involved in meiosis and follicle formation during ovine ovary development. BMC Genomics, 2008, 9, 436. [CrossRef] [PubMed] [Google Scholar]
  • Baker S., Bronner C., Zhang L., Plug A., Robatzek M., Warren G., Elliott E., Yu J., Ashley T., Arnheim N., Flavell R., Liskay R., Male mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis. Cell, 1995, 82, 309–319. [CrossRef] [PubMed] [Google Scholar]
  • Baltus A., Menke D., Hu Y., Goodheart M., Carpenter A., de Rooij D., Page D., In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication. Nat Genet, 2006, 38, 1430–1434. [CrossRef] [PubMed] [Google Scholar]
  • Barr M., The sex chromosomes in evolution and in medicine. Can Med Assoc J, 1966, 95, 1137–1148. [PubMed] [Google Scholar]
  • Bartel D., MicroRNAs, genomics, biogenesis, mechanism, and function. Cell, 2004, 116, 281–297. [CrossRef] [PubMed] [Google Scholar]
  • Batista F., Vaiman D., Dausset J., Fellous M., Veitia R., Potential targets of FOXL2, a transcription factor involved in craniofacial and follicular development, identified by transcriptomics. Proc Natl Acad Sci USA, 2007, 104, 3330–3335. [CrossRef] [Google Scholar]
  • Bayne R.A., Martins da Silva S.J., Anderson R.A., Increased expression of the FIGLA transcription factor is associated with primordial follicle formation in the human fetal ovary. Mol Hum Reprod, 2004, 10, 373–381. [CrossRef] [PubMed] [Google Scholar]
  • Benayoun B.A., Kalfa N., Sultan C., Veitia R.A., The forkhead factor FOXL2: a novel tumor suppressor? Biochim Biophys Acta, 2010, 1805, 1–5. [PubMed] [Google Scholar]
  • Benayoun B.A., Georges A.B., L’Hote D., Andersson N., Dipietromaria A., Todeschini A.L., Caburet S., Bazin C., Anttonen M., Veitia R.A., Transcription factor FOXL2 protects granulosa cells from stress and delays cell cycle, role of its regulation by the SIRT1 deacetylase. Hum Mol Genet, 2011, 20, 1673–1686. [CrossRef] [PubMed] [Google Scholar]
  • Bernard P., Harley V.R., Wnt4 action in gonadal development and sex determination. Int J Biochem Cell Biol, 2007, 39, 31–43. [Google Scholar]
  • Berta P., Hawkins J.R., Sinclair A.H., Taylor A., Griffiths B.L., Goodfellow P.N., Fellous M., Genetic evidence equating SRY and the testis-determining factor. Nature, 1990, 348, 448–450. [CrossRef] [PubMed] [Google Scholar]
  • Bézard J., Vigier B., Tran D., Mauléon P., Josso N., Immunocytochemical study of anti-Mullerian hormone in sheep ovarian follicles during fetal and post-natal development. J Reprod Fertil, 1987, 80, 509–516. [CrossRef] [PubMed] [Google Scholar]
  • Bézard J., Vigier B., Tran D., Mauléon P., Josso N., Anti-mullerian hormone in sheep follicles. Reprod Nutr Dev, 1988, 28, 1105–1112. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Bigliardi E., Parma P., Peressotti P., De Lorenzi L., Wohlsein P., Passeri B., Jottini S., Cantoni A.M., Clinical, genetic, and pathological features of male pseudohermaphroditism in dog. Reprod Biol Endocrinol, 2011, 9, 12. [Google Scholar]
  • Birk O.S., Casiano D.E., Wassif C.A., Cogliati T., Zhao L., Zhao Y., Grinberg A., Huang S., Kreidberg J.A., Parker K.L., Porter F.D., Westphal H., The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature, 2000, 403, 909–913. [CrossRef] [PubMed] [Google Scholar]
  • Bolcun-Filas E., Costa Y., Speed R., Taggart M., Benavente R., De Rooij D.G., Cooke H.J., SYCE2 is required for synaptonemal complex assembly, double strand break repair, and homologous recombination. J Cell Biol, 2007, 176, 741–747. [CrossRef] [PubMed] [Google Scholar]
  • Bowles J., Knight D., Smith C., Wilhelm D., Richman J., Mamiya S., Yashiro K., Chawengsaksophak K., Wilson M.J., Rossant J., Hamada H., Koopman P., Retinoid signaling determines germ cell fate in mice. Science, 2006, 312, 596–600. [CrossRef] [PubMed] [Google Scholar]
  • Bowles J., Feng C.W., Spiller C., Davidson T.L., Jackson A., Koopman P., FGF9 suppresses meiosis and promotes male germ cell fate in mice. Dev Cell, 2010, 19, 440–449. [CrossRef] [PubMed] [Google Scholar]
  • Brennan J., Capel B., One tissue, two fates, molecular genetic events that underlie testis versus ovary development. Nat Rev Genet, 2004, 5, 509–521. [CrossRef] [PubMed] [Google Scholar]
  • Capel B., The battle of the sexes. Mech Dev, 2000, 92, 89–103. [CrossRef] [PubMed] [Google Scholar]
  • Carmell M.A., Girard A., van de Kant H.J., Bourc’his D., Bestor T.H., de Rooij D.G., Hannon G.J., MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell, 2007, 12, 503–514. [CrossRef] [PubMed] [Google Scholar]
  • Castrillon D.H., Miao L., Kollipara R., Horner J.W., DePinho R.A., Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science, 2003, 301, 215–218. [CrossRef] [PubMed] [Google Scholar]
  • Chassot A.A., Ranc F., Grégoire E.P., Roepers-Gajadien H.L., Taketo M.M., Camerino G., de Rooij D.G., Schedl A., Chaboissier M.C., Activation of beta-catenin signaling by Rspo1 controls differentiation of the mammalian ovary. Hum Mol Genet, 2008, 17, 1264–1277. [CrossRef] [PubMed] [Google Scholar]
  • Childs A.J., Cowan G., Kinnell H.L., Anderson R.A., Saunders P.T., Retinoic Acid signalling and the control of meiotic entry in the human fetal gonad. PLoS One, 2011, 6, e20249. [CrossRef] [PubMed] [Google Scholar]
  • Choi Y., Yuan D., Rajkovic A., Germ cell-specific transcriptional regulator sohlh2 is essential for early mouse folliculogenesis and oocyte-specific gene expression. Biol Reprod, 2008, 79, 1176–1182. [CrossRef] [PubMed] [Google Scholar]
  • Chuma S., Hiyoshi M., Yamamoto A., Hosokawa M., Takamune K., Nakatsuji N., Mouse Tudor Repeat-1 (MTR-1) is a novel component of chromatoid bodies/nuages in male germ cells and forms a complex with snRNPs. Mech Dev, 2003, 120, 979–990. [CrossRef] [PubMed] [Google Scholar]
  • Chuma S., Hosokawa M., Kitamura K., Kasai S., Fujioka M., Hiyoshi M., Takamune K., Noce T., Nakatsuji N., Tdrd1/Mtr-1, a tudor-related gene, is essential for male germ-cell differentiation and nuage/germinal granule formation in mice. Proc Natl Acad Sci USA, 2006, 103, 15894–15899. [CrossRef] [Google Scholar]
  • Combes A.N., Spiller C.M., Harley V.R., Sinclair A.H., Dunwoodie S.L., Wilhelm D., Koopman P., Gonadal defects in Cited2-mutant mice indicate a role for SF1 in both testis and ovary differentiation. Int J Dev Biol, 2010, 54, 683–689. [CrossRef] [PubMed] [Google Scholar]
  • Coré N., Joly F., Boned A., Djabali M., Disruption of E2F signaling suppresses the INK4a-induced proliferative defect in M33-deficient mice. Oncogene, 2004, 23, 7660–7668. [CrossRef] [PubMed] [Google Scholar]
  • Costa Y., Speed R.M., Gautier P., Semple C.A., Maratou K., Turner J.M., Cooke H.J., Mouse MAELSTROM, the link between meiotic silencing of unsynapsed chromatin and microRNA pathway? Hum Mol Genet, 2006, 15, 2324–2334. [CrossRef] [PubMed] [Google Scholar]
  • Crisponi L., Deiana M., Loi A., Chiappe F., Uda M., Amati P., Bisceglia L., Zelante L., Nagaraja R., Porcu S., Ristaldi M.S., Marzella R., Rocchi M., Nicolino M., Lienhardt-Roussie A., Nivelon A., Verloes A., Schlessinger D., Gasparini P., Bonneau D., Cao A., Pilia G., The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat Genet, 2001, 27, 159–166. [CrossRef] [PubMed] [Google Scholar]
  • Cui S., Ross A., Stallings N., Parker K.L., Capel B., Quaggin S.E., Disrupted gonadogenesis and male-to-female sex reversal in Pod1 knockout mice. Development, 2004, 131, 4095–4105. [CrossRef] [PubMed] [Google Scholar]
  • De Baere E., Lemercier B., Christin-Maitre S., Durval D., Messiaen L., Fellous M., Veitia R., FOXL2 mutation screening in a large panel of POF patients and XX males. J Med Genet, 2002, 39, e43. [CrossRef] [PubMed] [Google Scholar]
  • de Vries S.S., Baart E.B., Dekker M., Siezen A., de Rooij D.G., de Boer P., te Riele H., Mouse MutS-like protein Msh5 is required for proper chromosome synapsis in male and female meiosis. Genes Dev, 1999, 13, 523–531. [Google Scholar]
  • de Vries F.A., de Boer E., van den Bosch M., Baarends W.M., Ooms M., Yuan L., Liu J.G., van Zeeland A.A., Heyting C., Pastink A., Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation. Genes Dev, 2005, 19, 1376–1389. [Google Scholar]
  • Deng W.Lin H., miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell, 2002, 2, 819–830. [CrossRef] [PubMed] [Google Scholar]
  • DiNapoli L., Capel B., SRY and the standoff in sex determination. Mol Endocrinol, 2008, 22, 1–9. [CrossRef] [PubMed] [Google Scholar]
  • Dissen G.A., Hirshfield A.N., Malamed S., Ojeda S.R., Expression of neurotrophins and their receptors in the mammalian ovary is developmentally regulated, changes at the time of folliculogenesis. Endocrinology, 1995, 136, 4681–4692. [CrossRef] [PubMed] [Google Scholar]
  • Dissen G.A., Romero C., Hirshfield A.N., Ojeda S.R., Nerve growth factor is required for early follicular development in the mammalian ovary. Endocrinology, 2001, 142, 2078–2086. [CrossRef] [PubMed] [Google Scholar]
  • Dong J., Albertini D.F., Nishimori K., Kumar T.R., Lu N., Matzuk M.M., Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature, 1996, 383, 531–535. [CrossRef] [PubMed] [Google Scholar]
  • Durlinger A.L., Kramer P., Karels B., de Jong F.H., Uilenbroek J.T., Grootegoed J.A., Themmen A.P., Control of primordial follicle recruitment by anti-Mullerian hormone in the mouse ovary. Endocrinology, 1999, 140, 5789–5796. [CrossRef] [PubMed] [Google Scholar]
  • Edelmann W., Cohen P.E., Kane M., Lau K., Morrow B., Bennett S., Umar A., Kunkel T., Cattoretti G., Chaganti R., Pollard J.W., Kolodner R.D., Kucherlapati R., Meiotic pachytene arrest in MLH1-deficient mice. Cell, 1996, 85, 1125–1134. [CrossRef] [PubMed] [Google Scholar]
  • Edson M.A., Nagaraja A.K., Matzuk M.M., The mammalian ovary from genesis to revelation. Endocr Rev, 2009, 30, 624–712. [CrossRef] [PubMed] [Google Scholar]
  • Elvin J.A., Clark A.T., Wang P., Wolfman N.M., Matzuk M.M., Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol Endocrinol, 1999, 6, 1035–1048. [CrossRef] [Google Scholar]
  • Frost R.J., Hamra F.K., Richardson J.A., Qi X., Bassel-Duby R., Olson E.N., MOV10L1 is necessary for protection of spermatocytes against retrotransposons by Piwi-interacting RNAs. Proc Natl Acad Sci USA, 2010, 107, 11847–11852. [CrossRef] [Google Scholar]
  • Garcia-Ortiz J.E., Pelosi E., Omari S., Nedorezov T., Piao Y., Karmazin J., Uda M., Cao A., Cole S.W., Forabosco A., Schlessinger D., Ottolenghi C., Foxl2 functions in sex determination and histogenesis throughout mouse ovary development. BMC Dev Biol, 2009, 9, 36. [CrossRef] [PubMed] [Google Scholar]
  • George F.W., Wilson J.D., Conversion of androgen to estrogen by the human fetal ovary. J Clin Endocrinol Metab, 1978, 47, 550–555. [CrossRef] [PubMed] [Google Scholar]
  • Ghildiyal M., Zamore P.D., Small silencing RNAs, an expanding universe. Nat Rev Genet, 2009, 10, 94–108. [CrossRef] [PubMed] [Google Scholar]
  • Girard A., Sachidanandam R., Hannon G.J., Carmell M.A., A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature, 2006, 442, 199–202. [PubMed] [Google Scholar]
  • Goodfellow P.N., Lovell-Badge R., SRY and sex determination in mammals. Annu Rev Genet, 1993, 27, 71–92. [CrossRef] [PubMed] [Google Scholar]
  • Greenbaum M.P., Yan W., Wu M.H., Lin Y.N., Agno J.E., Sharma M., Braun R.E., Rajkovic A., Matzuk M.M., TEX14 is essential for intercellular bridges and fertility in male mice. Proc Natl Acad Sci USA, 2006, 103, 4982–4987. [CrossRef] [Google Scholar]
  • Grivna S.T., Beyret E., Wang Z., Lin H., A novel class of small RNAs in mouse spermatogenic cells. Genes Dev, 2006, 20, 1709–1714. [Google Scholar]
  • Hammes A., Guo J.K., Lutsch G., Leheste J.R., Landrock D., Ziegler U., Gubler M.C., Schedl A., Two splice variants of the Wilms’ tumor 1 gene have distinct functions during sex determination and nephron formation. Cell, 2001, 106, 319–329. [CrossRef] [PubMed] [Google Scholar]
  • Hanley N.A., Ball S.G., Clement-Jones M., Hagan D.M., Strachan T., Lindsay S., Robson S., Ostrer H., Parker K.L., Wilson D.I., Expression of steroidogenic factor 1 and Wilms’ tumour 1 during early human gonadal development and sex determination. Mech Dev, 1999, 87, 175–180. [CrossRef] [PubMed] [Google Scholar]
  • Hes O., Vanecek T., Petersson F., Grossmann P., Hora M., Perez Montiel D.M., Steiner P., Dvorak M., Michal M., Mutational analysis (c.402C>G) of the FOXL2 gene and immunohistochemical expression of the FOXL2 protein in testicular adult type granulosa cell tumors and incompletely differentiated sex cord stromal tumors. Appl Immunohistochem Mol Morphol, 2011, 19, 347–351. [Google Scholar]
  • Horie K., Takakura K., Taii S., Narimoto K., Noda Y., Nishikawa S., Nakayama H., Fujita J., Mori T., The expression of c-kit protein during oogenesis and early embryonic development. Biol Reprod, 1991, 4, 547–552. [CrossRef] [Google Scholar]
  • Hosokawa M., Shoji M., Kitamura K., Tanaka T., Noce T., Chuma S., Nakatsuji N., Tudor-related proteins TDRD1/MTR-1, TDRD6 and TDRD7/TRAP, domain composition, intracellular localization, and function in male germ cells in mice. Dev Biol, 2007, 301, 38–52. [CrossRef] [PubMed] [Google Scholar]
  • Ikeda Y., Luo X., Abbud R., Nilson J.H., Parker K.L., The nuclear receptor steroidogenic factor 1 is essential for the formation of the ventromedial hypothalamic nucleus. Mol Endocrinol, 1995, 9, 478–486. [CrossRef] [PubMed] [Google Scholar]
  • Ingraham H.A., Lala D.S., Ikeda Y., Luo X., Shen W.H., Nachtigal M.W., Abbud R., Nilson J.H., Parker K.L., The nuclear receptor steroidogenic factor 1 acts at multiple levels of the reproductive axis. Genes Dev, 1994, 8, 2302–2312. [Google Scholar]
  • Jacobs P.A., Strong J.A., A case of human intersexuality having a possible XXY sex-determining mechanism. Nature, 1959, 183, 302–303. [CrossRef] [PubMed] [Google Scholar]
  • Jamieson S., Butzow R., Andersson N., Alexiadis M., Unkila-Kallio L., Heikinheimo M., Fuller P.J., Anttonen M., The FOXL2 C134W mutation is characteristic of adult granulosa cell tumors of the ovary. Mod Pathol, 2010, 23, 1477–1485. [CrossRef] [PubMed] [Google Scholar]
  • Jeays-Ward K., Hoyle C., Brennan J., Dandonneau M., Alldus G., Capel B., Swain A., Endothelial and steroidogenic cell migration are regulated by WNT4 in the developing mammalian gonad. Development, 2003, 130, 3663–3670. [CrossRef] [PubMed] [Google Scholar]
  • John G.B., Gallardo T.D., Shirley L.J., Castrillon D.H., Foxo3 is a PI3K-dependent molecular switch controlling the initiation of oocyte growth. Dev Biol, 2008, 321, 197–204. [CrossRef] [PubMed] [Google Scholar]
  • Jordan B.K., Mohammed M., Ching S.T., Delot E., Chen X.N., Dewing P., Swain A., Rao P.N., Elejalde B.R., Vilain E., Up-regulation of WNT-4 signaling and dosage-sensitive sex reversal in humans. Am J Hum Genet, 2001, 68, 1102–1109. [CrossRef] [PubMed] [Google Scholar]
  • Joshi S., Davies H., Sims L.P., Levy S.E., Dean J., Ovarian gene expression in the absence of FIGLA, an oocyte-specific transcription factor. BMC Dev Biol, 2007, 7, 67. [CrossRef] [PubMed] [Google Scholar]
  • Jost A., Recherches sur la différenciation sexuelle de l’embryon de lapin. III Rôle des gonades fœtales dans la différenciation sexuelle somatique. Arch Anat Micr Morph Expérim, 1947, 36, 271–318. [Google Scholar]
  • Jost A., A new look at the mechanisms controlling sex differentiation in mammals. Johns Hopkins Med J, 1972, 130, 38–53. [PubMed] [Google Scholar]
  • Katahira J., Yoneda Y., Nucleocytoplasmic Transport of MicroRNAs and Related Small RNAs. Traffic, 2011, DOI: 10.1111/j.1600-0854. [Google Scholar]
  • Katoh-Fukui Y., Tsuchiya R., Shiroishi T., Nakahara Y., Hashimoto N., Noguchi K., Higashinakagawa T., Male-to-female sex reversal in M33 mutant mice. Nature, 1998, 393, 688–692. [CrossRef] [PubMed] [Google Scholar]
  • Kim Y., Capel B., Balancing the bipotential gonad between alternative organ fates, a new perspective on an old problem. Dev Dyn, 2006, 235, 2292–2300. [CrossRef] [PubMed] [Google Scholar]
  • Kim J.W., Bak C.W., Chin M.U., Cha D.H., Yoon T.K., Shim S.H., SRY-negative 46, XX infertile male with Leydig cell hyperplasia, clinical, cytogenetic, and molecular analysis and review of the literature. Fertil Steril, 2010a, 94, 753 e755–759. [Google Scholar]
  • Kim T., Sung C.O., Song S.Y., Bae D.S., Choi Y.L., FOXL2 mutation in granulosa-cell tumours of the ovary. Histopathology, 2010b, 56, 408–410. [CrossRef] [PubMed] [Google Scholar]
  • Kim J.H., Yoon S., Park M., Park H.O., Ko J.J., Lee K., Bae J., Differential apoptotic activities of wild-type FOXL2 and the adult-type granulosa cell tumor-associated mutant FOXL2 (C134W). Oncogene, 2011, 30, 1653–1663. [CrossRef] [PubMed] [Google Scholar]
  • Kneitz B., Cohen P.E., Avdievich E., Zhu L., Kane M.F., Hou H., Jr., Kolodner R.D., Kucherlapati R., Pollard J.W., Edelmann W., MutS homolog 4 localization to meiotic chromosomes is required for chromosome pairing during meiosis in male and female mice. Genes Dev, 2000, 14, 1085–1097. [Google Scholar]
  • Kocer A., Pinheiro I., Pannetier M., Renault L., Parma P., Radi O., Kim K.A., Camerino G., Pailhoux E., R-spondin1 and FOXL2 act into two distinct cellular types during goat ovarian differentiation. BMC Dev Biol, 2008, 8, 36. [CrossRef] [PubMed] [Google Scholar]
  • Koopman P., Gubbay J., Vivian N., Goodfellow P., Lovell-Badge R., Male development of chromosomally female mice transgenic for Sry. Nature, 1991, 351, 117–121. [CrossRef] [PubMed] [Google Scholar]
  • Koubova J., Menke D.B., Zhou Q., Capel B., Griswold M.D., Page D.C., Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad Sci USA, 2006, 103, 2474–2479. [CrossRef] [Google Scholar]
  • Kreidberg J.A., Sariola H., Loring J.M., Maeda M., Pelletier J., Housman D., Jaenisch R., WT-1 is required for early kidney development. Cell, 1993, 74, 679–691. [CrossRef] [PubMed] [Google Scholar]
  • Kumar S., Chatzi C., Brade T., Cunningham T.J., Zhao X., Duester G., Sex-specific timing of meiotic initiation is regulated by Cyp26b1 independent of retinoic acid signalling. Nat Commun, 2011, 2, 151. [CrossRef] [PubMed] [Google Scholar]
  • Kuramochi-Miyagawa S., Kimura T., Ijiri T.W., Isobe T., Asada N., Fujita Y., Ikawa M., Iwai N., Okabe M., Deng W., Lin H., Matsuda Y., Nakano T., Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development, 2004, 131, 839–849. [CrossRef] [PubMed] [Google Scholar]
  • Kuramochi-Miyagawa S., Watanabe T., Gotoh K., Takamatsu K., Chuma S., Kojima-Kita K., Shiromoto Y., Asada N., Toyoda A., Fujiyama A., Totoki Y., Shibata T., Kimura T., Nakatsuji N., Noce T., Sasaki H., Nakano T., MVH in piRNA processing and gene silencing of retrotransposons. Genes Dev, 2010, 24, 887–892. [Google Scholar]
  • Larsson S.H., Charlieu J.P., Miyagawa K., Engelkamp D., Rassoulzadegan M., Ross A., Cuzin F., van Heyningen V., Hastie N.D., Subnuclear localization of WT1 in splicing or transcription factor domains is regulated by alternative splicing. Cell, 1995, 81, 391–401. [CrossRef] [PubMed] [Google Scholar]
  • LeBouffant R., Guerquin M.J., Duquenne C., Frydman N., Coffigny H., Rouiller-Fabre V., Frydman R., Habert R., Livera G., Meiosis initiation in the human ovary requires intrinsic retinoic acid synthesis. Hum Reprod, 2010, 25, 2579–2590. [CrossRef] [PubMed] [Google Scholar]
  • Li H., Clagett-Dame M., Vitamin A deficiency blocks the initiation of meiosis of germ cells in the developing rat ovary in vivo. Biol Reprod, 2009, 81, 996–1001. [CrossRef] [PubMed] [Google Scholar]
  • Liang L., Soyal S.M., Dean J., FIGalpha, a germ cell specific transcription factor involved in the coordinate expression of the zona pellucida genes. Development, 1997, 124, 4939–4947. [PubMed] [Google Scholar]
  • Libby B.J., De La Fuente R., O’Brien M.J., Wigglesworth K., Cobb J., Inselman A., Eaker S., Handel M.A., Eppig J.J., Schimenti J.C., The mouse meiotic mutation mei1 disrupts chromosome synapsis with sexually dimorphic consequences for meiotic progression. Dev Biol, 2002, 242, 174–187. [CrossRef] [PubMed] [Google Scholar]
  • Lin Y., Gill M.E., Koubova J., Page D.C., Germ cell-intrinsic and -extrinsic factors govern meiotic initiation in mouse embryos. Science, 2008, 322, 1685–1687. [CrossRef] [PubMed] [Google Scholar]
  • Lipkin S.M., Moens P.B., Wang V., Lenzi M., Shanmugarajah D., Gilgeous A., Thomas J., Cheng J., Touchman J.W., Green E.D., Schwartzberg P., Collins F.S., Cohen P.E., Meiotic arrest and aneuploidy in MLH3-deficient mice. Nat Genet, 2002, 31, 385–390. [PubMed] [Google Scholar]
  • Liu K., Rajareddy S., Liu L., Jagarlamudi K., Boman K., Selstam G., Reddy P., Control of mammalian oocyte growth and early follicular development by the oocyte PI3 kinase pathway, new roles for an old timer. Dev Biol, 2006, 299, 1–11. [CrossRef] [PubMed] [Google Scholar]
  • Liu L., Rajareddy S., Reddy P., Du C., Jagarlamudi K., Shen Y., Gunnarsson D., Selstam G., Boman K., Liu K. Infertility caused by retardation of follicular development in mice with oocyte-specific expression of Foxo3a. Development, 2007, 134, 199–209. [CrossRef] [PubMed] [Google Scholar]
  • Lu J., Chang P., Richardson J.A., Gan L., Weiler H., Olson E.N., The basic helix-loop-helix transcription factor capsulin controls spleen organogenesis. Proc Natl Acad Sci USA, 2000, 97, 9525–9530. [CrossRef] [Google Scholar]
  • Lu J.R., Bassel-Duby R., Hawkins A., Chang P., Valdez R., Wu H., Gan L., Shelton J.M., Richardson J.A., Olson E.N., Control of facial muscle development by MyoR and capsulin. Science, 2002, 298, 2378–2381. [CrossRef] [PubMed] [Google Scholar]
  • Luo X., Ikeda Y., Parker K.L., A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell, 1994, 77, 481–490. [CrossRef] [PubMed] [Google Scholar]
  • Luo X., Ikeda Y., Lala D.S., Baity L.A., Meade J.C., Parker K.L., A cell-specific nuclear receptor plays essential roles in adrenal and gonadal development. Endocr Res, 1995, 21, 517–524. [CrossRef] [PubMed] [Google Scholar]
  • Maatouk D.M., DiNapoli L., Alvers A., Parker K.L., Taketo M.M., Capel B., Stabilization of beta-catenin in XY gonads causes male-to-female sex-reversal. Hum Mol Genet, 2008, 17, 2949–2955. [CrossRef] [PubMed] [Google Scholar]
  • Mauléon P., Bézard J., Terqui M., Very early and transient 17 B-oestradiol secretion by fetal sheep ovary. In vitro study. Ann Biol Anim Bioch Biophys, 1977, 17, 399–401. [CrossRef] [EDP Sciences] [Google Scholar]
  • McElreavey K., Vilain E., Abbas N., Herskowitz I., Fellous M., A regulatory cascade hypothesis for mammalian sex determination: SRY represses a negative regulator of male development. Proc Natl Acad Sci USA, 1993, 90, 3368–3372. [CrossRef] [Google Scholar]
  • Menke D.B., Page D.C., Sexually dimorphic gene expression in the developing mouse gonad. Gene Expr Patterns, 2002, 2, 359–367. [CrossRef] [PubMed] [Google Scholar]
  • Menke A.L., van der Eb A.J., Jochemsen A.G., The Wilms’ tumor 1 gene, oncogene or tumor suppressor gene? Int Rev Cytol, 1998, 181, 151–212. [CrossRef] [PubMed] [Google Scholar]
  • Menke D.B., Koubova J., Page D.C., Sexual differentiation of germ cells in XX mouse gonads occurs in an anterior-to-posterior wave. Dev Biol, 2003, 262, 303–312. [CrossRef] [PubMed] [Google Scholar]
  • Miyamoto N., Yoshida M., Kuratani S., Matsuo I., Aizawa S., Defects of urogenital development in mice lacking Emx2. Development, 1997, 124, 1653–1664. [PubMed] [Google Scholar]
  • Nakamura M., The mechanism of sex determination in vertebrates-are sex steroids the key-factor? J Exp Zool A Ecol Genet Physiol, 2010. 313, 381–398. [CrossRef] [PubMed] [Google Scholar]
  • Nef S., Schaad O., Stallings N.R., Cederroth C.R., Pitetti J.L., Schaer G., Malki S., Dubois-Dauphin M., Boizet-Bonhoure B., Descombes P., Parker K.L., Vassalli J.D., Gene expression during sex determination reveals a robust female genetic program at the onset of ovarian development. Dev Biol, 2005, 287, 361–377. [CrossRef] [PubMed] [Google Scholar]
  • Ottolenghi C., Pelosi E., Tran J., Colombino M., Douglass E., Nedorezov T., Cao A., Forabosco A., Schlessinger D., Loss of Wnt4 and Foxl2 leads to female-to-male sex reversal extending to germ cells. Hum Mol Genet, 2007, 16, 2795–2804. [CrossRef] [PubMed] [Google Scholar]
  • Oulad-Abdelghani M., Bouillet P., Decimo D., Gansmuller A., Heyberger S., Dolle P., Bronner S., Lutz Y., Chambon P., Characterization of a premeiotic germ cell-specific cytoplasmic protein encoded by Stra8, a novel retinoic acid-responsive gene. J Cell Biol, 1996, 135, 469–477. [CrossRef] [PubMed] [Google Scholar]
  • Pailhoux E., Parma P., Sundstrom J., Vigier B., Servel N., Kuopio T., Locatelli A., Pelliniemi L.J., Cotinot C., Time course of female-to-male sex reversal in 38 XX fetal and postnatal pigs. Dev Dyn, 2001, 222, 328–340. [CrossRef] [PubMed] [Google Scholar]
  • Pangas S.A., Choi Y., Ballow D.J., Zhao Y., Westphal H., Matzuk M.M., Rajkovic A., Oogenesis requires germ cell-specific transcriptional regulators Sohlh1 and Lhx8. Proc Natl Acad Sci USA, 2006, 103, 8090–8095. [CrossRef] [Google Scholar]
  • Pannetier M., Fabre S., Batista F., Kocer A., Renault L., Jolivet G., Mandon-Pépin B., Cotinot C., Veitia R., Pailhoux E., FOXL2 activates P450 aromatase gene transcription, towards a better characterization of the early steps of mammalian ovarian development. J Mol Endocrinol, 2006, 36, 399–413. [CrossRef] [PubMed] [Google Scholar]
  • Pannetier M., Pailhoux E., FOXL2, the gatekeeper of ovarian identity. Med Sci (Paris), 2010, 26, 470–473. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Parma P., Radi O., Vidal V., Chaboissier M.C., Dellambra E., Valentini S., Guerra L., Schedl A., Camerino G., R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat Genet, 2006, 38, 1304–1309. [CrossRef] [PubMed] [Google Scholar]
  • Payen E., Pailhoux E., Abou Merhi R., Gianquinto L., Kirszenbaum M., Locatelli A., Cotinot C., Characterization of ovine SRY transcript and developmental expression of genes involved in sexual differentiation. Int J Dev Biol, 1996, 40, 567–575. [PubMed] [Google Scholar]
  • Pazin D.E., Albrecht K.H., Developmental expression of Smoc1 and Smoc2 suggests potential roles in fetal gonad and reproductive tract differentiation. Dev Dyn, 2009, 238, 2877–2890. [CrossRef] [PubMed] [Google Scholar]
  • Pittman D.L,Cobb J., Schimenti K.J., Wilson L.A., Cooper D.M., Brignull E., Handel M.A., Schimenti J.C., Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmc1, a germline-specific RecA homolog. Mol Cell, 1998, 1, 697–705. [CrossRef] [PubMed] [Google Scholar]
  • Quaggin S.E., Schwartz L., Cui S., Igarashi P., Deimling J., Post M., Rossant J., The basic-helix-loop-helix protein pod1 is critically important for kidney and lung organogenesis. Development, 1999, 126, 5771–5783. [PubMed] [Google Scholar]
  • Rajkovic A., Pangas S.A., Ballow D., Suzumori N., Matzuk M.M., NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science, 2004, 305, 1157–1159. [CrossRef] [PubMed] [Google Scholar]
  • Reddy P., Liu L., Adhikari D., Jagarlamudi K., Rajareddy S., Shen Y., Du C., Tang W., Hamalainen T., Peng S.L., Lan ZJ., Cooney AJ., Huhtaniemi I., Liu K., Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science, 2008, 319, 611–613. [CrossRef] [PubMed] [Google Scholar]
  • Reynolds N., Collier B., Bingham V., Gray N.K., Cooke H.J., Translation of the synaptonemal complex component Sycp3 is enhanced in vivo by the germ cell specific regulator Dazl. RNA, 2007, 13, 974–981. [CrossRef] [PubMed] [Google Scholar]
  • Romanienko P.J., Camerini-Otero R.D., The mouse Spo11 gene is required for meiotic chromosome synapsis. Mol Cell, 2000, 6, 975–987. [CrossRef] [Google Scholar]
  • Sadovsky Y., Crawford P.A., Woodson K.G., Polish J.A., Clements M.A., Tourtellotte L.M., Simburger K., Milbrandt J., Mice deficient in the orphan receptor steroidogenic factor 1 lack adrenal glands and gonads but express P450 side-chain-cleavage enzyme in the placenta and have normal embryonic serum levels of corticosteroids. Proc Natl Acad Sci USA, 1995, 92, 10939–10943. [CrossRef] [Google Scholar]
  • Sasaki T., Shiohama A., Minoshima S., Shimizu N., Identification of eight members of the Argonaute family in the human genome small star, filled. Genomics, 2003, 82, 323–330. [CrossRef] [PubMed] [Google Scholar]
  • Sawyer H.R., Smith P., Heath D.A., Juengel J.L., Wakefield S.J., McNatty K.P., Formation of ovarian follicles during fetal development in sheep. Biol Reprod, 2002, 66, 1134–1150. [CrossRef] [PubMed] [Google Scholar]
  • Schmidt D., Ovitt C.E., Anlag K., Fehsenfeld S., Gredsted L., Treier A.C., Treier M., The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development, 2004, 131, 933–942. [CrossRef] [PubMed] [Google Scholar]
  • Sekido R., Lovell-Badge R., Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature, 2008, 453, 930–934. [CrossRef] [PubMed] [Google Scholar]
  • Sekido R., Bar I., Narvaez V., Penny G., Lovell-Badge R., SOX9 is up-regulated by the transient expression of SRY specifically in Sertoli cell precursors. Dev Biol, 2004, 274, 271–279. [CrossRef] [PubMed] [Google Scholar]
  • Shawlot W., Behringer R.R., Requirement for Lim1 in head-organizer function. Nature, 1995, 374, 425–430. [CrossRef] [PubMed] [Google Scholar]
  • Schibler L., Cribiu E.P., Oustry-Vaiman A., Furet J.P., Vaiman D., Fine mapping suggests that the goat Polled Intersex Syndrome and the human Blepharophimosis Ptosis Epicanthus Syndrome map to a 100-kb homologous region. Genome Res, 2000,10, 311–318. [Google Scholar]
  • Sinclair A., Smith C., Females battle to suppress their inner male. Cell, 2009, 139, 1051–1053. [CrossRef] [PubMed] [Google Scholar]
  • Sinclair A.H., Berta P., Palmer M.S., Hawkins J.R., Griffiths B.L., Smith M.J., Foster J.W., Frischauf A.M., Lovell-Badge R., Goodfellow P.N., A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature, 1990, 346, 240–244. [CrossRef] [PubMed] [Google Scholar]
  • Skrzypczak J., Pisarski T., Biczysko W., Kedzia H., Evaluation of germ cells development in gonads of human fetuses and newborns. Folia Histochem Cytochem (Krakow), 1981, 19, 17–24. [PubMed] [Google Scholar]
  • Smith C.A., Roeszler K.N, Bowles J., Koopman P., Sinclair A.H., Onset of meiosis in the chicken embryo, evidence of a role for retinoic acid. BMC Dev Biol, 2008a, 8, 85. [CrossRef] [PubMed] [Google Scholar]
  • Smith C.A., Shoemaker C.M., Roeszler K.N., Queen J., Crews D., Sinclair A.H., Cloning and expression of R-Spondin1 in different vertebrates suggests a conserved role in ovarian development. BMC Dev Biol, 2008b, 8, 72. [CrossRef] [PubMed] [Google Scholar]
  • Soper S.F., van der Heijden G.W., Hardiman T.C., Goodheart M., Martin S.L., de Boer P., Bortvin A., Mouse maelstrom, a component of nuage, is essential for spermatogenesis and transposon repression in meiosis. Dev Cell, 2008, 15, 285–297. [CrossRef] [PubMed] [Google Scholar]
  • Soyal S.M., Amleh A., Dean J., FIGalpha, a germ cell-specific transcription factor required for ovarian follicle formation. Development, 2000, 127, 4645–4654. [PubMed] [Google Scholar]
  • Suzuki A., Saga Y., Nanos2 suppresses meiosis and promotes male germ cell differentiation. Genes Dev, 2008, 22, 430–435. [Google Scholar]
  • Swain A., Lovell-Badge R., Mammalian sex determination, a molecular drama. Genes Dev, 1999, 13, 755–767. [Google Scholar]
  • Torley K.J., da Silveira J.C., Smith P., Anthony R.V., Veeramachaneni D.N., Winger Q.A., Bouma G.J. Expression of miRNAs in ovine fetal gonads, potential role in gonadal differentiation. Reprod Biol Endocrinol, 2011, 9, 2. [Google Scholar]
  • Tripurani S.K., Lee K.B., Wee G., Smith G.W., Yao J., MicroRNA-196a regulates bovine newborn ovary homeobox gene (NOBOX) expression during early embryogenesis. BMC Dev Biol, 11, 25. [Google Scholar]
  • Trombly D.J., Woodruff T.K., Mayo K.E. Suppression of Notch signaling in the neonatal mouse ovary decreases primordial follicle formation. Endocrinology, 2009, 150, 1014–1024. [CrossRef] [PubMed] [Google Scholar]
  • Tsuzuki T., Fujii Y., Sakumi K., Tominaga Y., Nakao K., Sekiguchi M., Matsushiro A., Yoshimura Y., Morita T. Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proc Natl Acad Sci USA, 1996, 93, 6236–6240. [CrossRef] [Google Scholar]
  • Uda M., Ottolenghi C., Crisponi L., Garcia J.E., Deiana M., Kimber W., Forabosco A., Cao A., Schlessinger D., Pilia G., Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum Mol Genet, 2004, 13, 1171–1181. [CrossRef] [PubMed] [Google Scholar]
  • Uhlenhaut N.H., Jakob S., Anlag K., Eisenberger T., Sekido R., Kress J., Treier A.C., Klugmann C., Klasen C., Holter N.I., Riethmacher D., Schutz G., Cooney A.J., Lovell-Badge R., Treier M., Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell, 2009, 139, 1130–1142. [CrossRef] [PubMed] [Google Scholar]
  • Vaiman D., Pailhoux E., Mammalian sex reversal and intersexuality, deciphering the sex-determination cascade. Trends Genet, 2000, 16, 488–494. [CrossRef] [PubMed] [Google Scholar]
  • Vainio S., Heikkila M., Kispert A., Chin N., McMahon A.P., Female development in mammals is regulated by Wnt-4 signalling. Nature, 1999, 397, 405–409. [CrossRef] [PubMed] [Google Scholar]
  • Veitia R.A., FOXL2 versus SOX9, a lifelong “battle of the sexes”. Bioessays, 2010, 32, 375–380. [CrossRef] [PubMed] [Google Scholar]
  • Vizziano-Cantonnet D., Baron D., Mahé S., Cauty C., Fostier A., Guiguen Y., Estrogen treatment up-regulates female genes but does not suppress all early testicular markers during rainbow trout male-to-female gonadal transdifferentiation. J Mol Endocrinol, 2008, 41, 277–288. [CrossRef] [PubMed] [Google Scholar]
  • Wallacides A., Chesnel A., Chardard D., Flament S., Dumond H., Evidence for a conserved role of retinoic acid in urodele amphibian meiosis onset. Dev Dyn, 2009, 238, 1389–1398. [CrossRef] [PubMed] [Google Scholar]
  • Watanabe T., Takeda A., Tsukiyama T., Mise K., Okuno T., Sasaki H., Minami N., Imai H., Identification and characterization of two novel classes of small RNAs in the mouse germline, retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev, 2006, 20, 1732–1743. [Google Scholar]
  • Watanabe T., Totoki Y., Toyoda A., Kaneda M., Kuramochi-Miyagawa S., Obata Y., Chiba H, Kohara Y., Kono T., Nakano T., Surani M.A., Sakaki Y., Sasaki H., Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature, 2008, 453, 539–543. [CrossRef] [PubMed] [Google Scholar]
  • Wilhelm D., Englert C., The Wilms tumor suppressor WT1 regulates early gonad development by activation of Sf1. Genes Dev, 2002, 16, 1839–1851. [Google Scholar]
  • Yang F., Eckardt S., Leu N.A., McLaughlin K.J., Wang P.J., Mouse TEX15 is essential for DNA double-strand break repair and chromosomal synapsis during male meiosis. J Cell Biol, 2008, 180, 673–679. [CrossRef] [PubMed] [Google Scholar]
  • Yao H.H., Matzuk M.M., Jorgez C.J., Menke D.B., Page D.C., Swain A., Capel B., Follistatin operates downstream of Wnt4 in mammalian ovary organogenesis. Dev Dyn, 2004, 230, 210–215. [CrossRef] [PubMed] [Google Scholar]
  • Yoshida H., Takakura N., Kataoka H., Kunisada T., Okamura H., Nishikawa S.I., Stepwise requirement of c-kit tyrosine kinase in mouse ovarian follicle development. Dev Biol, 1997, 184, 122–137. [CrossRef] [PubMed] [Google Scholar]
  • Yoshida K., Kondoh G., Matsuda Y., Habu T., Nishimune Y., Morita T., The mouse RecA-like gene Dmc1 is required for homologous chromosome synapsis during meiosis. Mol Cell, 1998, 1, 707–718. [CrossRef] [PubMed] [Google Scholar]
  • Yoshino O., McMahon H.E., Sharma S., Shimasaki S., A unique preovulatory expression pattern plays a key role in the physiological functions of BMP-15 in the mouse. Proc Natl Acad Sci USA, 2006, 103, 10678–10683. [CrossRef] [Google Scholar]
  • Yuan L., Liu J.G., Hoja M.R., Wilbertz J., Nordqvist K., Hoog C., Female germ cell aneuploidy and embryo death in mice lacking the meiosis-specific protein SCP3. Science, 2002, 296, 1115–1118. [CrossRef] [PubMed] [Google Scholar]
  • Zheng K., Xiol J., Reuter M., Eckardt S., Leu N.A., McLaughlin K.J., Stark A., Sachidanandam R., Pillai R.S., Wang P.J., Mouse MOV10L1 associates with Piwi proteins and is an essential component of the Piwi-interacting RNA (piRNA) pathway. Proc Natl Acad Sci USA, 2010, 107, 11841–11846. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.