Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 205, Numéro 4, 2011
Différentiation et régulation des fonctions ovariennes - Nouveaux concepts
Page(s) 223 - 233
DOI https://doi.org/10.1051/jbio/2011022
Publié en ligne 19 janvier 2012
  • Artus J., Vandormael-Pournin S., Frödin M., Nacerddine K., Babinet C., Cohen-Tannoudji M., Impaired mitotic progression and preimplantation lethality in mice lacking OMCG1, a new evolutionarily conserved nuclear protein. Mol Cell Biol, 2005, 25, 6289–6302. [CrossRef] [PubMed] [Google Scholar]
  • Behringer R.R., Cate R.L., Froelick G.J., Palmiter R.D., Brinster R.L., Abnormal sexual development in transgenic mice chronically expressing Müllerian inhibiting substance. Nature, 1990, 345, 167–170. [CrossRef] [PubMed] [Google Scholar]
  • Charpentier G., Magre S., Masculinizing effect of testes on developing rat ovaries in organ culture. Development, 1990, 110, 839–849. [PubMed] [Google Scholar]
  • Dong J., Albertini D.F., Nishimori K., Kumar T.R., Lu N., Matzuk M.M., Growth differentiation factor 9 is required during early ovarian folliculogenesis. Nature, 1996, 383, 531–535. [CrossRef] [PubMed] [Google Scholar]
  • El-Fouly M.A., Cook B., Nekola M., Nalbandov A.V., Role of the ovum in follicular luteinization. Endocrinology, 1970, 87, 286–293. [PubMed] [Google Scholar]
  • Elvin J.A., Yan C., Wang P., Nishimori K., Matzuk M.M., Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary. Mol Endocr, 1999, 13, 1018–1034. [CrossRef] [Google Scholar]
  • Eppig J.J., Wigglesworth K., Pendola F., Hirao Y., Murine oocytes suppress expression of luteinizing hormone receptor messenger ribonucleic acid by granulosa cells. Biol Reprod, 1997, 56, 976–984. [CrossRef] [PubMed] [Google Scholar]
  • Eppig J.J., Wigglesworth K., Pendola F.L., The mammalian oocyte orchestrates the rate of ovarian follicular development. Proc Natl Acad Sci USA, 2002, 99, 2890–2894. [CrossRef] [Google Scholar]
  • Falck B., Site of production of oestrogen in rat ovary as studied in micro-transplants. Acta Physiol Scand, 1959, Suppl. 47, 1–101. [Google Scholar]
  • Galloway S.M., McNatty K.P., Cambridge L.M., Laitinen M.P., Juengel J.L., Jokiranta T.S., McLaren R.J., Luiro K., Dodds K.G., Montgomery G.W., Beattie A.E., Davis G.H., Ritvos O., Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat Genet, 2000, 25, 279–283. [CrossRef] [PubMed] [Google Scholar]
  • Gougeon A., Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev, 1996, 17, 121–155. [PubMed] [Google Scholar]
  • Guigon C.J., Mazaud S., Forest M.G., Brailly-Tabard S., Coudouel N., Magre S., Unaltered development of the initial follicular waves and normal pubertal onset in female rats after neonatal deletion of the follicular reserve. Endocrinology, 2003, 144, 3651–3662. [CrossRef] [PubMed] [Google Scholar]
  • Guigon C.J., Coudouel N., Mazaud-Guittot S., Forest M.G., Magre S., Follicular cells acquire Sertoli cell characteristics after oocyte loss. Endocrinology, 2005, 146, 2992–3004. [CrossRef] [PubMed] [Google Scholar]
  • Guigon C.J., Magre S., Contribution of germ cells to the differentiation and maturation of the ovary: insights from models of germ cell depletion. Biol Reprod, 2006, 74, 450–458. [CrossRef] [PubMed] [Google Scholar]
  • Hayashi M., McGee E.A., Min G., Klein C., Rose U.M., van Duin M., Hsueh A.J., Recombinant growth differentiation factor 9 (GDF9) enhances growth and differentiation of cultured early ovarian follicles. Endocrinology, 1999, 140, 1236–1244. [CrossRef] [PubMed] [Google Scholar]
  • Hirshfield A.N., Patterns of [3H] thymidine incorporation differ in immature rats and mature, cycling rats. Biol Reprod, 1986, 34, 229–235. [CrossRef] [PubMed] [Google Scholar]
  • Houlard M., Artus J., Léguillier T., Vandormael-Pournin S., Cohen-Tannoudji M., DNA-RNA hybrids contribute to the replication dependent genomic instability induced by Omcg1 deficiency. Cell Cycle, 2011, 10, 108–117. [CrossRef] [PubMed] [Google Scholar]
  • Hsueh A.J., Billig H., Tsafriri A., Ovarian follicle atresia: a hormonally controlled apoptotic process. Endocr Rev, 1994, 15, 707–724. [PubMed] [Google Scholar]
  • Jost A., Vigier B., Prépin J., Perchellet J.P., Studies on sex differentiation in mammals. Rec Progr Horm Res, 1973, 29, 1–41. [Google Scholar]
  • Jost A., Perchellet J.P., Prépin J., Vigier B., The prenatal development of bovine freemartins. Intersexuality in the animal Kingdom, Reinboth (Ed.). 1975, Springer-Verlag, Berlin, Heidelberg, New York, 392–406. [Google Scholar]
  • Konishi I., Fujii S., Okamura H., Parmley T., Mori T., Development of interstitial cells and ovigerous cords in the human fetal ovary: an ultrastructural study. J Anat, 1986, 148, 121–135. [PubMed] [Google Scholar]
  • Liang L.F., Soyal S.M., Dean J., Figla, a germ cell specific transcription factor involved in the coordinate expression of the zona pellucida genes. Development, 1997, 124, 4939–4949. [PubMed] [Google Scholar]
  • Lillie F.R., The freemartin, a study of the action of sex hormones in foetal life of cattle. J Exp Zool, 1917, 23, 371–451. [CrossRef] [Google Scholar]
  • Lyet L., Louis F., Forest M.G., Josso N., Behringer R.R., Vigier B., Ontogeny of reproductive abnormalities induced by deregulation of anti-mullerian hormone expression in transgenic mice. Biol Reprod, 1995, 52, 444–454. [CrossRef] [PubMed] [Google Scholar]
  • McLaren A., Development of the mammalian gonad: the fate of the supporting cell lineage. Bioessays 1991, 13, 151–156. [Google Scholar]
  • Matzuk M.M., Burns K.H., Viveiros M.M., Eppig J.J., Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science, 2002, 296, 2178–2180. [CrossRef] [PubMed] [Google Scholar]
  • Mazaud S., Guigon C.J., Lozach A., Coudouel N., Forest M.G., Coffigny H., Magre S., Establishment of the reproductive function and transient fertility of rats female lacking primordial follicle stock after fetal gamma-irradiation. Endocrinology, 2002a, 143, 4775–4787. [CrossRef] [PubMed] [Google Scholar]
  • Mazaud S., Oréal E., Guigon C.J., Carré-Eusèbe D., Magre S., Lhx9 expression during gonadal morphogenesis as related to the state of cell differentiation. Gene Expr Patterns, 2002b, 2, 373–377. [CrossRef] [PubMed] [Google Scholar]
  • Mazaud S., Guyot R., Guigon C.J., Coudouel N., Le Magueresse-Battistoni B., Magre S., Basal membrane remodeling during follicle histogenesis in the rat ovary:contribution of proteinases of the MMP and PA families. Dev Biol, 2005, 15, 403–416. [CrossRef] [Google Scholar]
  • Mazaud-Guittot S., Guigon C.J., Coudouel N., Magre S., Consequences of fetal irradiation on follicle histogenesis and early follicle development in rat ovaries. Biol Reprod, 2006, 75, 749–759. [CrossRef] [PubMed] [Google Scholar]
  • Merchant H., Rat gonadal and ovarian organogenesis with and without germ cells. An ultrastructural study. Dev Biol, 1975, 44, 1–21. [CrossRef] [PubMed] [Google Scholar]
  • Merchant-Larios H., Centeno B., Morphogenesis of the ovary from the sterile W/Wv mouse. Prog Clin Biol Res, 1981, 59B, 383–392. [PubMed] [Google Scholar]
  • Morais da Silva S., Hacker A., Harley V., Goodfellow P., Swain A., Lovell-Badge R., Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat Genet, 1996, 14, 62–68. [CrossRef] [PubMed] [Google Scholar]
  • Nekola M.V., Nalbandov A.V., Morphological changes of rat follicular cells as influenced by oocytes. Biol Reprod, 1971, 4, 154–160. [PubMed] [Google Scholar]
  • Otsuka F., Yao Z., Lee T., Yamamoto S., Erickson G.F., Shimasaki S., Bone morphogenetic protein15. Identification of target cells and biological functions. J Biol Chem, 2000, 275, 39523–39528. [CrossRef] [PubMed] [Google Scholar]
  • Ottolenghi C., Omari S., Garcia-Ortiz J.E., Uda M., Crisponi L., Forabosco A., Pilia G., Schlessinger D., Foxl2 is required for commitment to ovary differentiation. Hum Mol Genet, 2005, 14, 2053–2062. [CrossRef] [PubMed] [Google Scholar]
  • Pangas S.A., Choi Y., Ballow D.J., Zhao Y., Westphal H., Matzuk M.M., Rajkovic A., Oogenesis requires germ cell-specific transcriptional regulators Sohlh1 and Lhx8. Proc Natl Acad Sci USA, 2006, 103, 8090–8095. [CrossRef] [Google Scholar]
  • Pedersen T., Peters H., Proposal for a classification of oocytes and follicles in the mouse ovary. J Reprod Fertil, 1968, 17, 555–557. [CrossRef] [PubMed] [Google Scholar]
  • Prépin J., Hida N., Influence of age and medium on formation of epithelial cords in the rat fetal ovary in vitro. J Reprod Fertil, 1989, 87, 375–382. [CrossRef] [PubMed] [Google Scholar]
  • Rajah R., Glaser E.M., Hirshfield A.N., The changing architecture of the neonatal rat ovary during histogenesis. Dev Dyn, 1992, 194, 177–192. [CrossRef] [PubMed] [Google Scholar]
  • Rajkovic A., Pangas S.A., Ballow D., Suzumori N., Matzuk M.M., NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science, 2004, 305, 1157–1159. [CrossRef] [PubMed] [Google Scholar]
  • Richards J.S., Hormonal control of gene expression in the ovary. Endocr Rev, 1994, 15, 725–751. [PubMed] [Google Scholar]
  • Ruggiu M., Speed R., Taggart M., McKay S.J., Kilanowski F., Saunders P., Dorin J., Cooke H.J., The mouse Dazl gene encodes a cytoplasmic protein essential for gametogenesis. Nature, 1997, 389, 73–77. [CrossRef] [PubMed] [Google Scholar]
  • Soyal S.M., Amleh A., Dean J., FIGalpha, a germ cell-specific transcription factor required for ovarian follicle formation. Development, 2000, 127, 4645–4654. [PubMed] [Google Scholar]
  • Taketo T., Merchant-Larios H., Koide S.S., Induction of testicular differentiation in a fetal mouse ovary by transplantation into adult male mice. Proc Soc Exp Bio Med, 1984, 176, 148–153. [Google Scholar]
  • Taketo-Hosotani T., Merchant-Larios H., Thau R.B., Koide S.S., Testicular cell differentiation in fetal mouse ovaries following transplantation into adult male mice. J Exp Zool, 1985, 236, 229–237. [CrossRef] [PubMed] [Google Scholar]
  • Taketo T., Saeed J., Manganaro T., Takahashi M., Donahoe P.K., Mullerian inhibiting substance production associated with loss of oocytes and testicular differentiation in the transplanted mouse XX gonadal primordium. Biol Reprod, 1993, 49, 13–23. [CrossRef] [PubMed] [Google Scholar]
  • Uhlenhaut N.H., Jakob S., Anlag K., Eisenberger T., Sekido R., Kress J., Treier A.C., Klugmann C., Klasen C., Holter N.I., Riethmacher D., Schütz G., Cooney A.J., Lovell-Badge R., Treier M., Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell, 2009, 139, 1130–1142. [CrossRef] [PubMed] [Google Scholar]
  • Vainio S., Heikkila M., Kispert A., Chin N., McMahon A.P., Female development in mammals is regulated by Wnt4 signalling. Nature, 1999, 397, 405–409. [CrossRef] [PubMed] [Google Scholar]
  • Vanderhyden B.C., Telfer E.E., Eppig J.J., Mouse oocytes promote proliferation of granulosa cells from preantral and antral follicles in vitro. Biol Reprod, 1992, 46, 1196–1204. [CrossRef] [PubMed] [Google Scholar]
  • Vanderhyden B.C., Cohen J.N., Morley P., Mouse oocytes regulate granulosa cell steroidogenesis. Endocrinology, 1993, 133, 423–426. [CrossRef] [PubMed] [Google Scholar]
  • Vanderhyden B.C., Tonary A.M., Differential regulation of progesterone and estradiol production by mouse cumulus and mural granulosa cells by a factor(s) secreted by the oocyte. Biol Reprod, 1995, 53, 1243–1250. [CrossRef] [PubMed] [Google Scholar]
  • Vanderhyden B.C., Macdonald E.A., Mouse oocytes regulate granulosa cell steroidogenesis throughout follicular development. Biol Reprod, 1998, 59, 1296–1301. [CrossRef] [PubMed] [Google Scholar]
  • Vigier B., Watrin F., Magre S., Tran D., Josso N., Purified bovine AMH induces a characteristic freemartin effect in fetal rat prospective ovaries exposed to it in vitro. Development, 1987, 100, 43–55. [PubMed] [Google Scholar]
  • Vigier B., Watrin F., Magre S., Tran D., Garrigou O., Forest M.G., Josso N., Anti-mullerian hormone and freemartinism: inhibition of germ cell development and induction of seminiferous cord-like structures in rat fetal ovaries exposed in vitro to purified bovine AMH. Reprod Nutr Dev, 1988, 28, 1113–1128. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Yao H.H., DiNapoli L., Capel B., Meiotic germ cells antagonize mesonephric cell migration and testis cord formation in mouse gonads. Development, 2003, 130, 5895–5902. [CrossRef] [PubMed] [Google Scholar]
  • Yao H.H., Matzuk M.M., Jorgez C.J., Menke D.B., Page D.C., Swain A., Capel B., Follistatin operates downstream of Wnt4 in mammalian ovary organogenesis. Dev Dyn, 2004, 230, 210–215. [CrossRef] [PubMed] [Google Scholar]
  • Yoshida H., Takakura N., Kataoka H., Kunisada T., Okamura H., Nishikawa S.I., Stepwise requirement of c-kit tyrosine kinase in mouse ovarian follicle development. Dev Biol, 1997, 184, 122–137. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.