Accès gratuit
Biologie Aujourd'hui
Volume 206, Numéro 1, 2012
Page(s) 31 - 44
Section Cardiologie expérimentale et clinique : nouvelles avancées
Publié en ligne 3 avril 2012
  • Albouaini K., Egred M., Rao A., Alahmar A., Wright D.J., Cardiac resynchronisation therapy: evidence based benefits and patient selection. Eur J Intern Med, 2008, 19, 165–172. [CrossRef] [PubMed] [Google Scholar]
  • Amir G., Ma X., Reddy V.M., Hanley F.L., Reinhartz O., Ramamoorthy C., Riemer R.K., Dynamics of human myocardial progenitor cell populations in the neonatal period. Ann Thorac Surg, 2008, 86, 1311–1319. [CrossRef] [PubMed] [Google Scholar]
  • Amsalem Y., Mardor Y., Feinberg M.S., Landa N., Miller L., Daniels D., Ocherashvilli A., Holbova R., Yosef O., Barbash I.M., Leor J., Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation, 2007, 116, T38–T45. [CrossRef] [Google Scholar]
  • Baharvand H., Azarnia M., Parivar K., Ashtiani S.K., The effect of extracellular matrix on embryonic stem cell-derived cardiomyocytes. J Mol Cell Cardiol, 2005, 38, 495–503. [CrossRef] [PubMed] [Google Scholar]
  • Behfar A., Zingman L.V., Hodgson D.M., Rauzier J.M., Kane G.C., Terzic A., Pucéat M., Stem cell differentiation requires a paracrine pathway in the heart. FASEB J, 2002, 16, 1558–1566. [CrossRef] [PubMed] [Google Scholar]
  • Behfar A., Hodgson D.M., Zingman L.V., Perez-Terzic C., Yamada S., Kane G.C., Alekseev A.E., Pucéat M., Terzic A., Administration of allogenic stem cells dosed to secure cardiogenesis and sustained infarct repair. Ann N Y Acad Sci, 2005, 1049, 189–198. [CrossRef] [PubMed] [Google Scholar]
  • Behfar A., Yamada S., Crespo-Diaz R., Nesbitt J.J., Rowe L.A., Perez-Terzic C., Gaussin V., Homsy C., Bartunek J., Terzic A., Guided cardiopoiesis enhances therapeutic benefit of bone marrow human mesenchymal stem cells in chronic myocardial infarction. J Am Coll Cardiol, 2010, 56, 721–734. [CrossRef] [PubMed] [Google Scholar]
  • Blin G., Nury D., Stefanovic S., Neri T., Guillevic O., Brinon B., Bellamy V., Rücker-Martin C., Barbry P., Bel A., Bonnevie L., Bruneval P., Cowan C., Pouly J., Mitalipov S., Gouadon E., Binder P., Hagège A., Desnos M., Renaud J.F., Menasché Ph., Pucéat M., A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in post-myocardial infarcted non-human primates. J Clin Invest, 2010, 120, 1125–1139. [CrossRef] [PubMed] [Google Scholar]
  • Bolli R., Chugh A.R., D’Amario D., Loughran J.H., Stoddard M.F., Ikram S., Beache G.M., Wagner S.G., Leri A., Hosoda T., Sanada F., Elmore J.B., Goichberg P., Cappetta D., Solankhi N.K., Fahsah I., Rokosh D.G., Slaughter M.S., Kajstura J., Anversa P., Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet, 2011, 378, 1847–1857. [CrossRef] [PubMed] [Google Scholar]
  • Bollini S., Smart N., Riley P.R., Resident cardiac progenitor cells: At the heart of regeneration. J Mol Cell Cardiol, 2011, 50, 296–303. [CrossRef] [PubMed] [Google Scholar]
  • Brito-Martins M., Harding S.E., Ali N.N., Beta(1)- and beta(2)-adrenoceptor responses in cardiomyocytes derived from human embryonic stem cells: comparison with failing and non-failing adult human heart. Br J Pharmacol, 2008, 153, 751–759. [CrossRef] [PubMed] [Google Scholar]
  • Calderon D., Planat-Benard V., Bellamy V., Vanneaux V., Khun C., Peyrard S., Larghero J., Desnos M., Casteilla L., Pucéat M., Menasché P., Chatenoud L., Immune response to human embryonic stem cell-derived cardiac progenitors and adipose-derived stromal cells. J Cell Mol Med, 2011. Doi: 10.1111/j.1582-4934.2011.01435.x. [Epub ahead of print] [Google Scholar]
  • Cao F., Wagner R.A., Wilson K.D., Xie X., Fu J.D., Drukker M., Lee A., Li R.A., Gambhir S.S., Weissman I.L., Robbins R.C., Wu J.C., Transcriptional and functional profiling of human embryonic stem cell-derived cardiomyocytes. PLoS One, 2008, 3, e3474. [CrossRef] [PubMed] [Google Scholar]
  • Caspi O., Huber I., Kehat I., Xie X., Fu J.D., Drukker M., Lee A., Li R.A., Gambhir S.S., Weissman I.L., Robbins R.C., Wu J.C., Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol, 2007, 50, 1884–1893. [CrossRef] [PubMed] [Google Scholar]
  • Chatenoud L., CD3-specific antibody-induced active tolerance: from bench to bedside. Nat Rev Immunol, 2003, 3, 123–132. [CrossRef] [PubMed] [Google Scholar]
  • Chidgey A.P., Layton D., Trounson A., Boyd R., Tolerance strategies for stem-cell-based therapies. Nature, 2008, 453, 330–337. [CrossRef] [PubMed] [Google Scholar]
  • Cho H.J., Lee N., Lee J.Y., Choi Y.J., Ii M., Wecker A., Jeong J.O., Curry C., Qin G., Yoon Y.S., Role of host tissues for sustained humoral effects after endothelial progenitor cell transplantation into the ischemic heart. J Exp Med, 2007, 204, 3257–3269. [CrossRef] [PubMed] [Google Scholar]
  • Cristosomo P.R., Abarbanell A.M., Wang M., Lahm T., Wang Y., Meldrum D.R., Embryonic stem cells attenuate myocardial dysfunction and inflammation after surgical global ischemia via paracrine actions. Am J Physiol Heart Circ Physiol, 2010, 295, H1726–H1735. [CrossRef] [Google Scholar]
  • Dai W., Field L.J., Rubart M., Reuter S., Hale S.L., Zweigerdt R., Graichen R.E., Kay G.L., Jyrala A.J., Colman A., Davidson B.P., Pera M., Kloner R.A., Survival and maturation of human embryonic stem cell-derived cardiomyocytes in rat hearts. J Mol Cell Cardiol, 2007, 43, 504–516. [CrossRef] [PubMed] [Google Scholar]
  • Dickstein K., Cohen-Solal A., Filippatos G., McMurray J.J., Ponikowski P., Poole-Wilson P.A., Strömberg A., van Veldhuisen D.J., Atar D., Hoes A.W., Keren A., Mebazaa A., Nieminen M., Priori S.G., Swedberg K., ESC Committee for Practice Guidelines (CPG). ESC guidelines for the diagnosis of acite and chronic heart failure 2008. Eur Heart J, 2008, 29, 2388–2442. [CrossRef] [PubMed] [Google Scholar]
  • Duan Y., Liu Z., O’Neill J., Wan L.Q., Freytes D.O., Vunjak-Novakovic G., Hybrid gel composed of native heart matrix and collagen induces cardiac differentiation of human embryonic stem cells without supplemental growth factors. J Cardiovasc Transl Res, 2011, 5, 605–615. [CrossRef] [Google Scholar]
  • Dvir T., Timko B.P., Kohane D.S., Langer R., Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol, 2011, 6, 13–22. [CrossRef] [PubMed] [Google Scholar]
  • Fairchild P., The challenge of immunogenicity in the quest for induced pluripotency. Nat Rev Immunol, 2010, 10, 868–875. [CrossRef] [PubMed] [Google Scholar]
  • Fernandes S., Naumova A.V., Zhu W.Z., Laflamme M.A., Gold J., Murry C.E., Human embryonic stem cell-derived cardiomyocytes engraft but do not alter cardiac remodeling after chronic infarction in rats. J Mol Cell Cardiol, 2010, 49, 941–949. [CrossRef] [PubMed] [Google Scholar]
  • Fraga A.M., Sukoyan M., Rajan P., Paes de Almeida Ferreira Braga D., Iaconelli A., Franco J.G., Borges E., Pereira L.V., Establishment of a Brazilian line of human embryonic stem cells in defined medium: implications for cell therapy in an ethnically diverse population. Cell Transplant, 2011, 20, 431–440. [CrossRef] [PubMed] [Google Scholar]
  • Fukushima S., Varela-Carver A., Coppen S.R., Yamahara K., Felkin L.E., Lee J., Barton P.J., Terracciano C.M., Yacoub M.H., Suzuki K., Direct intramyocardial but not intracoronary injection of bone marrow cells induces ventricular arrhythmias in a rat chronic ischemic heart failure model. Circulation, 2007, 115, 2254–2261. [CrossRef] [PubMed] [Google Scholar]
  • Gai H., Leung E.L., Costantino P.D., Aguila J.R., Nguyen D.M., Fink L.M., Ward D.C., Ma Y., Generation and characterization of functional cardiomyocytes using induced pluripotent stem cells derived from human fibroblasts. Cell Biol Int, 2009, 33, 1184–1193. [CrossRef] [PubMed] [Google Scholar]
  • Grinnemo K.H., Kumagai-Braesch M., Månsson-Broberg A., Skottman H., Hao X., Siddiqui A., Andersson A., Strömberg A.M., Lahesmaa R., Hovatta O., Sylven C., Corbascio M., Dellgren G., Human embryonic stem cells are immunogenic in allogeneic and xenogeneic settings. Reprod Biomed Online, 2006, 13, 712–724. [CrossRef] [PubMed] [Google Scholar]
  • Guilak F., Cohen D.M., Estes B.T., Gimble J.M., Liedtke W., Chen C.S., Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell, 2009, 5, 17–26. [CrossRef] [PubMed] [Google Scholar]
  • Habib M., Shapira-Schweitzer K., Caspi O., Gepstein A., Arbel G., Aronson D., Seliktar D., Gepstein L., A combined cell therapy and in situ tissue-engineering approach for myocardial repair. Biomaterials, 2011, 32, 7514–7523. [CrossRef] [PubMed] [Google Scholar]
  • Hamdi H., Furuta A., Bellamy V., Bel A., Puymirat E., Peyrard S., Agbulut O., Menasché P., Cell delivery: intramyocardial injections or epicardial deposition? A head-to-head comparison. Ann Thorac Surg, 2009, 87, 1196–1203. [CrossRef] [PubMed] [Google Scholar]
  • Hentze H., Graichen R., Colman A., Cell therapy and the safety of embryonic stem cell-derived grafts. Trends Biotechnol, 2006, 25, 24–32. [CrossRef] [PubMed] [Google Scholar]
  • Hentze H., Soong P.L., Wang S.T., Phillips B.W., Putti T.C., Dunn N.R., Teratoma formation by human embryonic stem cells: Evaluation of essential parameters for future safety studies. Stem Cell Research, 2009, 2, 198–210. [CrossRef] [PubMed] [Google Scholar]
  • Heydendael V.M., Spuls P.I., Ten Berge I.J., Opmeer B.C., Bos J.D., de Rie M.A., Cyclosporin trough levels: is monitoring necessary during short-term treatment in psoriasis? A systematic review and clinical data on trough levels. Br J Dermatol, 2002, 147, 122–129. [CrossRef] [PubMed] [Google Scholar]
  • Ieda M., Fu J.D., Delgado-Olguin P., Vedantham V., Hayashi Y., Bruneau B.G., Srivastava D., Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell, 2010, 142, 375–386. [CrossRef] [PubMed] [Google Scholar]
  • Jones R.H., Velazquez E.J., Michler R.E., Sopko G., Oh J.K., O’Connor C.M., Hill J.A., Menicanti L., Sadowski Z., Desvigne-Nickens P., Rouleau J.L., Lee K.L., STICH Hypothesis 2 Investigators. Coronary bypass surgery with or without surgical ventricular reconstruction. N Engl J Med, 2009, 360, 1705–1717. [CrossRef] [PubMed] [Google Scholar]
  • Kattman S.J., Huber T.L., Keller G.M., Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell, 2006, 11, 723–732. [CrossRef] [PubMed] [Google Scholar]
  • Kehat I., Kenyagin-Karsenti D., Snir M., Segev H., Amit M., Gepstein A., Livne E., Binah O., Itskovitz-Eldor J., Gepstein L., Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest, 2001, 108, 407–414. [PubMed] [Google Scholar]
  • Kehat I., Khimovich L., Caspi O., Gepstein A., Shofti R., Arbel G., Huber I., Satin J., Itskovitz-Eldor J., Gepstein L., Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol, 2004, 22, 1282–1289. [CrossRef] [PubMed] [Google Scholar]
  • Keymeulen B., Walter M., Mathieu C., Kaufman L., Gorus F., Hilbrands R., Vandemeulebroucke E., Van de Velde U., Crenier L., De Block C., Candon S., Waldmann H., Ziegler A.G., Chatenoud L., Pipeleers D., Four-year metabolic outcome of a randomised controlled CD3-antibody trial in recent-onset type 1 diabetic patients depends on their age and baseline residual beta cell mass. Diabetologia, 2010, 53, 614–623. [CrossRef] [PubMed] [Google Scholar]
  • Kirouac D.C., Zandstra P.W., The systematic production of cells for cell therapies. Cell Stem Cell, 2008, 3, 369–381. [CrossRef] [PubMed] [Google Scholar]
  • Kiuru M., Boyer J., O’Connor T.P., Crystal R.G., Genetic control of wayward pluripotent stem cells and their progeny after transplantation. Cell Stem Cell, 2009, 4, 289–300. [CrossRef] [PubMed] [Google Scholar]
  • Kofidis T., Lebl D.R., Swijnenburg R.J., Greeve J.M., Klima U., Robbins R.C., Allopurinol/uricase and ibuprofen enhance engraftment of cardiomyocyte-enriched human embryonic stem cells and improve cardiac function following myocardial injury. Eur J Cardiothorac Surg, 2006, 29, 50–55. [CrossRef] [PubMed] [Google Scholar]
  • Kraehenbuehl T.P., Zammaretti P., Van der Vlies A.J., Schoenmakers R.G., Lutolf M.P., Jaconi M.E., Hubbell J.A., Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: Systematic modulation of a synthetic cell-responsive PEG-hydrogel. Biomaterials, 2008, 29, 2757–2766. [CrossRef] [PubMed] [Google Scholar]
  • Laflamme M., Chen K.Y., Naumova A.V., Muskheli V., Fugate J.A., Dupras S.K., Reinecke H., Xu C., Hassanipour M., Police S., O’Sullivan C., Collins L., Chen Y., Minami E., Gill E.A., Ueno S., Yuan C., Gold J., Murry C.E., Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol, 2007, 25, 1015–1024. [CrossRef] [PubMed] [Google Scholar]
  • Leor J., Gerecht S., Cohen S., Miller L., Holbova R., Ziskind A., Shachar M., Feinberg M.S., Guetta E., Itskovitz-Eldor J., Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart, 2007, 93, 1278–1284. [CrossRef] [PubMed] [Google Scholar]
  • Lindvall O., Kokaia Z., Prospects of stem cell therapy for replacing dopamine neurons in Parkinson’s disease. Trends Pharmacol Sci, 2009, 30, 260–267. [CrossRef] [PubMed] [Google Scholar]
  • Loh K.M., Lim B., A precarious balance: Pluripotency factors as lineage specifiers. Cell Stem Cell, 2011, 8, 363–369. [CrossRef] [PubMed] [Google Scholar]
  • Lu W.N., Lü S.H.L., Wang H.B., Li D.X., Duan C.M., Liu Z.Q., Hao T., He W.J., Xu B., Fu Q., Song Y.C., Xie X.H., Wang C.Y., Functional improvement of infarcted heart by co-injection of embryonic stem cells with temperature-responsive chitosan hydrogel. Tissue Eng, 2009, 15, 1437–1447. [CrossRef] [PubMed] [Google Scholar]
  • Matsuura K., Honda A., Nagai T., Fukushima N., Iwanaga K., Tokunaga M., Shimizu T., Okano T., Kasanuki H., Hagiwara N., Komuro I., Transplantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice. J Clin Invest, 2009, 119, 2204–2217. [PubMed] [Google Scholar]
  • Matsuura K., Masuda S., Haraguchi Y., Yasuda N., Shimizu T., Hagiwara N., Zandstra P.W., Okano T., Creation of mouse embryonic stem cell-derived cardiac cell sheets. Biomaterials, 2011, 32, 7355–7362. [CrossRef] [PubMed] [Google Scholar]
  • Mayorga M., Finan A., Penn M., Pre-transplantation specification of stem cells to cardiac lineage for regeneration of cardiac tissue. Stem Cell Rev Rep, 2009, 5, 51–60. [CrossRef] [Google Scholar]
  • Menasché P., Cell-based therapy for heart disease: a clinically oriented perspective. Mol Ther, 2009, 17, 758–766. [CrossRef] [PubMed] [Google Scholar]
  • Mirotsou M., Jayawardena T.M., Schmeckpeper J., Gnecchi M., Dzau V.J., Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol, 2011, 50, 280–289. [CrossRef] [PubMed] [Google Scholar]
  • Mishra R., Vijayan K., Colletti E.J., Harrington D.A., Matthiesen T.S., Simpson D., Goh S.K., Walker B.L., Almeida-Porada G., Wang D., Backer C.L., Dudley S.C. Jr., Wold L.E., Kaushal S., Characterization and functionality of cardiac progenitor cells in congenital heart patients. Circulation, 2011, 123, 364–373. [CrossRef] [PubMed] [Google Scholar]
  • Mummery C., Ward-van Oostwaard D., Doevendans P., Spijker R., van den Brink S., Hassink R., van der Heyden M., Opthof T., Pera M., de la Rivière A.B., Passier R., Tertoolen L., Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation, 2002, 107, 2733–2740. [CrossRef] [Google Scholar]
  • Nakahara M., Saeki K., Nakamura N., Matsuyama S., Yogiashi Y., Yasuda K., Kondo Y., Yuo A., Human embryonic stem cells with maintenance under a feeder-free and recombinant cytokine-free condition. Cloning Stem Cells, 2009, 11, 5–18. [CrossRef] [PubMed] [Google Scholar]
  • Pera M.F., The dark side of induced pluripotency. Nature, 2011, 471, 46–47. [CrossRef] [PubMed] [Google Scholar]
  • Pillekamp F., Reppel M., Rubenchyk O., Pfannkuche K., Matzkies M., Bloch W., Sreeram N., Brockmeier K., Hescheler J., Force measurements of human embryonic stem cell-derived cardiomyocytes in an in vitro transplantation model. Stem Cells, 2007, 25, 174–180. [CrossRef] [PubMed] [Google Scholar]
  • Pouly J., Bruneval P., Mandet C., Proksch S., Peyrard S., Amrein C., Bousseaux V., Guillemain R., Deloche A., Fabiani J.N., Menasché P., Cardiac stem cells in the real world. J Thorac Cardiovasc Surg, 2008, 135, 673–678. [CrossRef] [PubMed] [Google Scholar]
  • Prokhorova T.A., Harkness L.M., Frandsen U., Ditzel N., Schrøder H.D., Burns J.S., Kassem M., Teratoma formation by human embryonic stem cells is site-dependent and enhanced by the presence of Matrigel. Stem Cells Dev, 2008, 18, 47–54. [Google Scholar]
  • Pucéat M., TGF-β in the differentiation of embryonic stem cells. Cardiovasc Res, 2007, 74, 256–261. [CrossRef] [PubMed] [Google Scholar]
  • Puymirat E., Geha R., Tomescot A., Bellamy V., Larghero J., Trinquart L., Bruneval P., Desnos M., Hagège A., Pucéat M., Menasché P., Can mesenchymal stem cells induce tolerance to cotransplanted human embryonic stem cells ? Mol Ther, 2009, 17, 176–182. [CrossRef] [PubMed] [Google Scholar]
  • Robey T.E., Saiget M.K., Reinecke H., Murry C.E., Systems approaches to preventing transplanted cell death in cardiac repair. J Mol Cell Cardiol, 2008, 45, 567–581. [CrossRef] [PubMed] [Google Scholar]
  • Roger V., Go A.S., Lloyd-Jones D.M., Adams R.J., Berry J.D., Brown T.M., Carnethon M.R., Dai S., de Simone G., Ford E.S., Fox C.S., Fullerton H.J., Gillespie C., Greenlund K.J., Hailpern S.M., Heit J.A., Ho P.M., Howard V.J., Kissela B.M., Kittner S.J., Lackland D.T., Lichtman J.H., Lisabeth L.D., Makuc D.M., Marcus G.M., Marelli A., Matchar D.B., McDermott M.M., Meigs J.B., Moy C.S., Mozaffarian D., Mussolino M.E., Nichol G., Paynter N.P., Rosamond W.D., Sorlie P.D., Stafford R.S., Turan T.N., Turner M.B., Wong N.D., Wylie-Rosett J., American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics – 2011 update: a report from the American Heart Association. Circulation, 2011, 123, e18–e209. [CrossRef] [PubMed] [Google Scholar]
  • Sartiani L., Bettiol E., Stillitano F., Mugelli A., Cerbai E., Jaconi M.E., Developmental changes in cardiomyocytes differentiated from human embryonic stem cells: a molecular and electrophysiological approach. Stem Cells, 2007, 25, 1136–1144. [CrossRef] [PubMed] [Google Scholar]
  • Scandling J.D., Busque S., Shizuru J.A., Engleman E.G., Strober S., Induced immune tolerance for kidney transplantation. N Engl J Med, 2011, 365, 1359–1360. [CrossRef] [PubMed] [Google Scholar]
  • Sekine H., Shimizu T., Hobo K., Sekiya S., Yang J., Yamato M., Kurosawa H., Kobayashi E., Okano T., Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation, 2008, 118, S145–S152. [CrossRef] [PubMed] [Google Scholar]
  • Sekine H., Shimizu T., Dobashi I., Matsuura K., Hagiwara N., Takahashi M., Kobayashi E., Yamato M., Okano T., Cardiac cell sheet transplantation improves damaged heart function via superior cell survival in comparison with dissociated cell injection. Tissue Eng, 2011, 17, 2973–2980. [CrossRef] [PubMed] [Google Scholar]
  • Singelyn J.M., DeQuach J.A., Seif-Naraghi S.B., Littlefield R.B., Schup-Magoffin P.J., Christman K.L., Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials, 2009, 30, 5409–5416. [CrossRef] [PubMed] [Google Scholar]
  • Singla D.K., McDonald D.E., Factors released from embryonic stem cells inhibit apoptosis of H9c2 cells. Am J Physiol Heart Circ Physiol, 2010, 293, H1590–H1595. [CrossRef] [Google Scholar]
  • Slaughter M.S., Meyer A.L., Birks E.J., Destination therapy with left ventricular assist devices: patient selection and outcomes. Curr Opin Cardiol, 2011, 26, 232–236. [CrossRef] [PubMed] [Google Scholar]
  • Smits A.M., van Laake L.W., den Ouden K., Schreurs C., Szuhai K., van Echteld C.J., Mummery C.L., Doevendans P.A., Goumans M.J., Human cardiomyocyte progenitor cell transplantation preserves long-term function of the infarcted mouse myocardium. Cardiovasc Res, 2009, 83, 527–535. [CrossRef] [PubMed] [Google Scholar]
  • Song H., Yoon C., Kattman S.J., Dengler J., Massé S., Thavaratnam T., Gewarges M., Nanthakumar K., Rubart M., Keller G.M., Radisic M., Zandstra P.W., Regenerative Medicine Special Feature: Interrogating functional integration between injected pluripotent stem cell-derived cells and surrogate cardiac tissue. Proc Natl Acad Sci USA, 2010, 107, 3329–3334. [CrossRef] [Google Scholar]
  • Stefanovic S., Abboud N., Désilets S., Nury D., Cowan C., Pucéat M., Interplay of Oct4 with Sox2 and Sox17: a molecular switch from stem cell pluripotency to specifying a cardiac fate. J Cell Biol, 2009, 186, 665–673. [CrossRef] [PubMed] [Google Scholar]
  • Stevens K.R., Kreutziger K.L., Dupras S.K., Korte F.S., Régnier M., Muskheli V., Nourse M.B., Bendixen K., Reinecke H., Murry C.E., Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proc Natl Acad Sci USA, 2009, 106, 16568–16573. [CrossRef] [Google Scholar]
  • Swijnenburg R.J., Schrepner S., Govaert J., Cao F., Ransohoff K., Sheikh A.Y., Haddad M., Connolly A.J., Davis M.M., Robbins R.C., Wu J.C., Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc Natl Acad Sci USA, 2008, 105, 12991–12996. [CrossRef] [Google Scholar]
  • Taylor C.J., Bolton E.M., Pocock S., Sharples L.D., Pedersen R.A., Bradley A., Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet, 2005, 366, 2019–2025. [CrossRef] [PubMed] [Google Scholar]
  • Tomescot A., Leschik J., Bellamy V., Dubois G., Messas E., Bruneval P., Desnos M., Hagège A.A., Amit M., Itskovitz J., Menasché P., Pucéat M., Differentiation in vivo of cardiac committed human embryonic stem cells in post-myocardial infarcted rats. Stem Cells, 2007, 25, 2200–2205. [CrossRef] [PubMed] [Google Scholar]
  • Van Laake L.W., Passier R.P., Monshouwer-Kloots J., Verkleij A.J., Lips D.J., Freund C., den Ouden K., Ward-van Oostwaard D., Korving J., Tertoolen L.G., van Echteld C.J., Doevendans P.A., Mummery C.L., Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Res, 2007, 1, 9–24. [CrossRef] [PubMed] [Google Scholar]
  • Van Laake L.W., Passier R., den Ouden K., Schreurs C., Monshouwer-Kloots J., Ward-van Oostwaard D., van Echteld C.J., Doevendans P.A., Mummery C.L., Improvement of mouse cardiac function by hESC-derived cardiomyocytes correlates with vascularity but not graft size. Stem Cell Res, 2009, 3, 106–112. [CrossRef] [PubMed] [Google Scholar]
  • Wang H., Liu Z., Li D., Guo X., Kasper F.K., Duan C., Zhou J., Mikos A.G., Wang C., Injectable biodegradable hydrogels for embryonic stem cell transplantation: improved cardiac remodeling and function of myocardial infarction. J Cell Mol Med, 2011. Doi: 10.1111/j.1582-4934.2011.01409.x. [Epub ahead of print]. [Google Scholar]
  • Winter E.M., van Oorschot, Hogers B., van der Graaf L.M., Doevendans P.A., Poelmann R.E., Atsma D.E., Gittenberger-de-Groot A.C., Goumans M.J., A new direction for cardiac regeneration therapy. Application of synregistically acting epicardium-derived cells and cardiomyocyte progenitor cells. Circ Heart Failure, 2009, 2, 643–653. [CrossRef] [Google Scholar]
  • Xie C.Q., Zhang J., Xiao Y., Zhang L., Mou Y., Liu X., Akinbami M., Cui T., Chen Y.E., Transplantation of human undifferentiated embryonic stem cells into a myocardial infarction rat model. Stem Cells Dev, 2007, 16, 25–29. [CrossRef] [PubMed] [Google Scholar]
  • Xiong Q., Hill K.L., Li Q., Suntharalingam P., Mansoor A., Wang X., Jameel M.N., Zhang P., Swingen C., Kaufman D.S., Zhang J., A fibrin patch-based enhanced delivery of human embryonic stem cell-derived vascular cell transplantation in a porcine model of postinfarction left ventricular remodeling. Stem Cells, 2011, 29, 367–375. [CrossRef] [PubMed] [Google Scholar]
  • Yaghoubi S.S., Jensen M.C., Satyamurthy N., Budhiraja S., Paik D., Czernin J., Gambhir S.S., Noninvasive detection of therapeutic cytolytic T cells with 18F-FHBG PET in a patient with glioma. Nat Clin Pract Oncol, 2009, 6, 53–58. [CrossRef] [PubMed] [Google Scholar]
  • Yu J., Du K.T., Fang Q., Gu Y., Mihardja S.S., Sievers R.E., Wu J.C., Lee R.J., The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarction in the rat. Biomaterials, 2010, 27, 7012–7020. [CrossRef] [Google Scholar]
  • Zakharova L., Mastroeni D., Mutlu N., Molina M., Goldman S., Diethrich E., Gaballa M.A., Transplantation of cardiac progenitor cell sheet onto infarcted heart promotes cardiogenesis and improves function. Cardiovasc Res, 2010, 87, 40–49. [CrossRef] [PubMed] [Google Scholar]
  • Zhao T., Zhang Z.N., Rong Z., Xu Y., Immunogenicity of induced pluripotent stem cells. Nature, 2011, 474, 212–215. [PubMed] [Google Scholar]
  • Zvibel I., Smets F., Soriano H., Anoikis: roadblock to cell transplantation ? Cell Transplant, 2002, 11, 621–630. [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.