Accès gratuit
Biologie Aujourd'hui
Volume 206, Numéro 1, 2012
Page(s) 47 - 55
Section La fleur : développement, évolution et modélisation
Publié en ligne 3 avril 2012
  • Angenent G.C.,Busscher M.,Franken J.,Mol J., van Tunen A.J., Differential expression of two MADS box genes in wild-type and mutant Petunia flowers. Plant Cell, 1992, 4, 983–993. [CrossRef] [PubMed] [Google Scholar]
  • Angenent G.C.,Franken J.,Busscher M.,Weiss D., van Tunen A.J., Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J, 1994, 5, 33–44. [CrossRef] [PubMed] [Google Scholar]
  • Angenent G.C.,Busscher M.,Franken J.,Dons H., van Tunen A.J., Functional interaction between the homeotic genes FBP1 and pMADS1 during Petunia floral organogenesis. Plant Cell, 1995a, 7, 507–516. [CrossRef] [PubMed] [Google Scholar]
  • Angenent G.C.,Franken J.,Busscher M., van Dijken A., van Went J.L.,Dons H., van Tunen A.J., A novel class of MADS box genes is involved in ovule development in Petunia. Plant Cell, 1995b, 7, 1569–1582. [CrossRef] [PubMed] [Google Scholar]
  • Angenent G.C.,Stuurman J.,Snowden K.C.,Koes R., Use of Petunia to unravel plant meristem functioning. Trends Plant Sci, 2005, 10, 243–250. [CrossRef] [PubMed] [Google Scholar]
  • Becker A.,Saedler H.,Theissen G., Distinct MADS-box gene expression patterns in the reproductive cones of the gymnosperm Gnetum gnemon. Dev Genes Evol, 2003, 213, 567–572. [CrossRef] [PubMed] [Google Scholar]
  • Bowman J.L.,Smyth D.R.,Meyerowitz E.M., Genes directing flower development in Arabidopsis. Plant Cell, 1989, 1, 37–52. [CrossRef] [PubMed] [Google Scholar]
  • Bowman J.,Sakai H.,Jack T.,Weigel D.,Mayer U.,Meyerowitz E., SUPERMAN, a regulator of floral homeotic genes in Arabidopsis. Development, 1992, 114, 599–615. [PubMed] [Google Scholar]
  • Bowman J.L.,Alvarez J.,Weigel D.,Meyerowitz E.M.,Smyth D.R., Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development, 1993, 119, 721–743. [Google Scholar]
  • Cartolano M.,Castillo R.,Efremova N.,Kuckenberg M.,Zethof J.,Gerats T.,Schwarz-Sommer Z.,Vandenbussche M., A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity. Nat Genet, 2007, 39, 901–905. [CrossRef] [PubMed] [Google Scholar]
  • Coen E.S.,Meyerowitz E.M., The war of the whorls : Genetic interactions controlling flower development. Nature, 1991, 353, 31–37. [CrossRef] [PubMed] [Google Scholar]
  • Colombo L.,Franken J.,Koetje E., van Went J.,Dons H.,Angenent G.C., van Tunen A.J., The Petunia MADS box gene FBP11 determines ovule identity. Plant Cell, 1995, 7, 1859–1868. [CrossRef] [PubMed] [Google Scholar]
  • Crepet W.L., Progress in understanding angiosperm history, success, and relationships : Darwin’s abominably “perplexing phenomenon”. Proc Natl Acad Sci USA, 2000, 97, 12939–12941. [CrossRef] [Google Scholar]
  • Davies B.,Cartolano M.,Schwarz-Sommer Z., Flower development : The Antirrhinum perspective. Adv Bot Res Incorp Adv Plant Path, 2006, 44, 278–319. [Google Scholar]
  • de Martino G.,Pan I.,Emmanuel E.,Levy A.,Irish V.F., Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development. Plant Cell, 2006, 18, 1833–1845. [CrossRef] [PubMed] [Google Scholar]
  • Furutani I.,Sukegawa S.,Kyozuka J., Genome-wide analysis of spatial and temporal gene expression in rice panicle development. Plant J, 2006, 46, 503–511. [CrossRef] [PubMed] [Google Scholar]
  • Gerats T.,Vandenbussche M., A model system for comparative research. Petunia. Trends in Plant Sci, 2005, 10, 251–256. [CrossRef] [Google Scholar]
  • Goto K.,Meyerowitz E.M., Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev, 1994, 8, 1548–1560. [Google Scholar]
  • Gunn C.R., Gaffney F.B., Seed characteristics of 42 economically important species of Solanaceae in the United States. USDA, Technical Bulletin, 1974, 1417, 1–33. [Google Scholar]
  • Hernandez-Hernandez T.,Martinez-Castilla L.P.,Alvarez-Buylla E.R., Functional diversification of B MADS-box homeotic regulators of flower development : Adaptive evolution in protein-protein interaction domains after major gene duplication events. Mol Biol Evol, 2006, 24, 465–481. [CrossRef] [PubMed] [Google Scholar]
  • Hileman L.C.,Sundstrom J.F.,Litt A.,Chen M.,Shumba T.,Irish V.F., Molecular and phylogenetic analyses of the MADS-box gene family in tomato. Mol Biol Evol, 2006, 23, 2245–2258. [CrossRef] [PubMed] [Google Scholar]
  • Irish V.F.,Sussex I.M., Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell, 1990, 2, 741–753. [CrossRef] [PubMed] [Google Scholar]
  • Jack T.,Fox G.L.,Meyerowitz E.M., Arabidopsis homeotic gene APETALA3 ectopic expression : Transcriptional and posttranscriptional regulation determine floral organ identity. Cell, 1994, 76, 703–716. [CrossRef] [PubMed] [Google Scholar]
  • Jofuku K.D., Boer B.G.W.d., Montagu M.V., Okamuro J.K., Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell, 1994, 6, 1211–1225. [CrossRef] [PubMed] [Google Scholar]
  • Kater M.M.,Colombo L.,Franken J.,Busscher M.,Masiero S., Van Lookeren Campagne M.M., Angenent G.C., Multiple AGAMOUS homologs from cucumber and Petunia differ in their ability to induce reproductive organ fate. Plant Cell, 1998, 10, 171–182. [CrossRef] [PubMed] [Google Scholar]
  • Kater M.M.,Dreni L.,Colombo L., Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. J Exp Bot, 2006, 57, 3433–3444. [CrossRef] [PubMed] [Google Scholar]
  • Keck E.,McSteen P.,Carpenter R.,Coen E., Separation of genetic functions controlling organ identity in flowers. EMBO J, 2003, 22, 1058–1066. [CrossRef] [PubMed] [Google Scholar]
  • Kim S.,Yoo M.-J.,Albert V.A.,Farris J.S.,Soltis P.S.,Soltis D.E., Phylogeny and diversification of B-function MADS-box genes in angiosperms : Evolutionary and functional implications of a 260-million-year-old duplication. Amer J Bot, 2004, 91, 2102–2118. [CrossRef] [Google Scholar]
  • Knapp S., Floral diversity and evolution in the Solanaceae. In : Q.C.B. Cronk, R.M. Bateman, J.A. Hawkins (Eds.), Developmental Genetics and Plant Evolution, 2002, Taylor and Francis, London, UK, pp. 267–297. [Google Scholar]
  • Krizek B.,Meyerowitz E., The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development, 1996, 122, 11–22. [PubMed] [Google Scholar]
  • Kunst L.,Klenz J.E.,Martinez-Zapater J.,Haughn G.W., AP2 gene determines the identity of perianth organs in flowers of Arabidopsis thaliana. Plant Cell, 1989, 1, 1195–1208. [CrossRef] [PubMed] [Google Scholar]
  • Litt A., An evaluation of A-Function : Evidence from the APETALA1 and APETALA2 gene lineages. Inter J Plant Sci, 2007, 168, 73–91. [CrossRef] [Google Scholar]
  • Ma H.,Yanofsky M.,Meyerowitz E., AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev, 1991, 5, 484–495. [Google Scholar]
  • Ma H., The unfolding drama of flower development : Recent results from genetic and molecular analyses. Genes Dev, 1994, 8, 745–756. [Google Scholar]
  • Maes T., Van de Steene N., Zethof J., Karimi M., D Hauw M., Mares G., Van Montagu M., Gerats T., Petunia Ap2-like genes and their role in flower and seed development. Plant Cell, 2001, 13, 229–244. [CrossRef] [PubMed] [Google Scholar]
  • Malcomber S.T.,Preston J.C.,Reinheimer R.,Kossuth J.,Kellogg E.A., Developmental gene evolution and the origin of grass inflorescence diversity. Adv Bot Res Incorp Adv Plant Path, 2006, 44, 425–481. [Google Scholar]
  • Mayama T.,Ohtstubo E.,Tsuchimoto S., Isolation and expression analysis of Petunia CURLY LEAF-like genes. Plant Cell Physiol, 2003, 44, 811–819. [Google Scholar]
  • McGonigle B.,Bouhidel K.,Irish V.F., Nuclear localization of the Arabidopsis APETALA3 and PISTILLATA homeotic gene products depends on their simultaneous expression. Genes Dev, 1996, 10, 1812–1821. [Google Scholar]
  • McSteen P.C.,Vincent C.A.,Doyle S.,Carpenter R.,Coen E.S., Control of floral homeotic gene expression and organ morphogenesis in Antirrhinum. Development, 1998, 125, 2359–2369. [PubMed] [Google Scholar]
  • Mizukami Y.,Ma H., Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell, 1992, 71, 119–131. [CrossRef] [PubMed] [Google Scholar]
  • Motte P.,Saedler H.,Schwarz-Sommer Z., STYLOSA and FISTULATA : Regulatory components of the homeotic control of Antirrhinum floral organogenesis. Development, 1998, 125, 71–84. [PubMed] [Google Scholar]
  • Pnueli L.,Hareven D.,Broday L.,Hurwitz C.,Lifschitz E., The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers. Plant Cell, 1994, 6, 175–186. [CrossRef] [PubMed] [Google Scholar]
  • Riechmann J.,Wang M.,Meyerowitz E., DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Res, 1996a, 24, 3134–3141. [CrossRef] [PubMed] [Google Scholar]
  • Riechmann J.L.,Krizek B.A.,Meyerowitz E.M., Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc Natl Acad Sci USA, 1996b, 93, 4793–4798. [CrossRef] [Google Scholar]
  • Rijpkema A.S.,Royaert S.,Zethof J., van der Weerden G.,Gerats T.,Vandenbussche M., Analysis of the Petunia TM6 MADS box gene reveals functional divergence within the DEF/AP3 lineage. Plant Cell, 2006, 18, 1819–1832. [CrossRef] [PubMed] [Google Scholar]
  • Rijpkema A.S.,Gerats T.,Vandenbussche M., Evolutionary complexity of MADS complexes. Curr Opin Plant Biol, 2007, 10, 32–38. [CrossRef] [PubMed] [Google Scholar]
  • Sakai H.,Medrano L.J.,Meyerowitz E.M., Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature, 1995, 378, 199–203. [CrossRef] [PubMed] [Google Scholar]
  • Schwarz-Sommer Z.,Huijser P.,Nacken W.,Saedler H.,Sommer H., Genetic control of flower development by homeotic genes in Antirrhinum majus. Science, 1990, 250, 931–936. [CrossRef] [PubMed] [Google Scholar]
  • Scutt C.P.,Theissen G.,Ferrandiz C., The evolution of plant development : Past, present and future : Preface. Ann Bot, 2007, 100, 599–601. [CrossRef] [Google Scholar]
  • Sink K.C.,Power J.B., Incongruity of interspecific and intergeneric crosses involving Nicotiana and Petunia species that exhibit potential for somatic hybridization. Euphyt, 1978, 27, 725–730. [CrossRef] [Google Scholar]
  • Souer E., van der Krol A.,Kloos D.,Spelt C.,Bliek M.,Mol J.,Koes R., Genetic control of branching pattern and floral identity during Petunia inflorescence development. Development, 1998, 125, 733–742. [PubMed] [Google Scholar]
  • Tandre K.,Albert V.,Sundås A.,Engström P., Conifer homologues to genes that control floral development in angiosperms. Plant Molec Biol, 1995, 27, 69–78. [CrossRef] [Google Scholar]
  • Teeri T.H.,Elomaa P.,Kotilainen M.,Albert V.A., Mining plant diversity : Gerbera as a model system for plant developmental and biosynthetic research. BioEssays, 2006a, 28, 756–767. [CrossRef] [PubMed] [Google Scholar]
  • Trobner W.,Ramirez L.,Motte P.,Hue I.,Huijser P.,Lonnig W.,Saedler H.,Sommer H.,Schwarz-Sommer Z., GLOBOSA : A homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J, 1992, 11, 4693–4704. [PubMed] [Google Scholar]
  • Tsuchimoto S., van der Krol A.R.,Chua N.H., Ectopic expression of pMADS3 in transgenic Petunia phenocopies the Petunia blind mutant. Plant Cell, 1993, 5, 843–853. [CrossRef] [PubMed] [Google Scholar]
  • Tsuchimoto S.,Mayama T., van der Krol A.,Ohtsubo E., The whorl-specific action of a petunia class B floral homeotic gene. Genes Cells, 2000, 5, 89–99. [Google Scholar]
  • Vallade J.,Maizonnier D.,Cornu A., La morphogenèse florale chez le pétunia. Analyze d’un mutant à corolle staminée. Can J Bot, 1987, 65, 761–764. [CrossRef] [Google Scholar]
  • van der Krol A.,Brunelle A.,Tsuchimoto S.,Chua N.-H., Functional analysis of Petunia floral homeotic MADS box gene pMADS1. Genes Dev, 1993, 7, 1214–1228. [Google Scholar]
  • Vandenbussche M.,Theissen G., Van de Peer Y., Gerats T., Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations. Nucleic Acids Res, 2003, 31, 4401–4409. [CrossRef] [PubMed] [Google Scholar]
  • Vandenbussche M.,Zethof J.,Royaert S.,Weterings K.,Gerats T., The duplicated B-class heterodimer model : Whorl-specific effects and complex genetic interactions in Petunia hybrida flower development. Plant Cell, 2004, 16, 741–754. [CrossRef] [PubMed] [Google Scholar]
  • Vazquez-Lobo A.,Carlsbecker A.,Vergara-Silva F.,Alvarez-Buylla E.R.,Pinero D.,Engstrom P., Characterization of the expression patterns of LEAFY/FLORICAULA and NEEDLY orthologs in female and male cones of the conifer genera Picea, Podocarpus, and Taxus : Implications for current evo-devo hypotheses for gymnosperms. Evol Dev, 2007, 9, 446–459. [Google Scholar]
  • Weigel D.,Meyerowitz E., The ABCs of floral homeotic genes. Cell, 1994, 78, 203–209. [CrossRef] [PubMed] [Google Scholar]
  • Whipple C.J.,Schmidt R.J., Genetics of grass flower development. Adv Bot Res Incorp Adv Plant Path, 2006, 44, 385–424. [Google Scholar]
  • Winter K.-U.,Becker A.,Munster T.,Kim J.T.,Saedler H.,Theissen G., MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. Proc Natl Acad Sci USA, 1999, 96, 7342–7347. [CrossRef] [Google Scholar]
  • Yang Y.,Xiang H.,Jack T., pistillata-5, an Arabidopsis B class mutant with strong defects in petal but not in stamen development. Plant J, 2003a, 33, 177–188. [CrossRef] [PubMed] [Google Scholar]
  • Yang Y.,Fanning L.,Jack T., The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. Plant J, 2003b, 33, 47–59. [CrossRef] [PubMed] [Google Scholar]
  • Zahn L.M.,Feng B.,Ma H., Beyond the ABC-model : Regulation of floral homeotic genes. Adv Bot Res Incorp Adv Plant Path, 2006, 44, 163–207. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.