Accès gratuit

Cet article a un erratum : [https://doi.org/10.1051/jbio/2017017]


Numéro
Biologie Aujourd'hui
Volume 206, Numéro 1, 2012
Page(s) 57 - 62
Section La fleur : développement, évolution et modélisation
DOI https://doi.org/10.1051/jbio/2012005
Publié en ligne 3 avril 2012
  • Boualem A., Fergany M., Fernandez R., Troadec C., Martin A., Morin H., Sari M.A., Collin F., Flowers J.M., Pitrat M., Purugganan M.D., Dogimont C., Bendahmane A., A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science, 2008, 321, 836–838. [CrossRef] [PubMed] [Google Scholar]
  • Boualem A., Troadec C., Kovalski I., Sari M.A., Perl-Treves R., Bendahmane A., A conserved ethylene biosynthesis enzyme leads to andromonoecy in two cucumis species. PLoS One, 2009, 4, e6144. [CrossRef] [PubMed] [Google Scholar]
  • Byers R.E, Baker L.R., Sell H.M., Herner R.C., Dilley D.R., Ethylene: A Natural Regulator of Sex Expression of Cucumis melo L. Proc Natl Acad Sci USA, 1972, 69, 717–720. [CrossRef] [Google Scholar]
  • Dellaporta S.L., Calderon-Urrea A., Sex determination in flowering plants. Plant Cell, 1993, 5, 1241–1251. [CrossRef] [PubMed] [Google Scholar]
  • Dellaporta S.L., Calderon-Urrea A., The sex determination process in maize. Science, 1994, 266, 1501–1505. [CrossRef] [PubMed] [Google Scholar]
  • Galun E., Study of the inheritance of sex expression in the cucumber, the interactions of major genes with modifying genetic and non-genetic factors. Genetica, 1961, 32, 134–136. [CrossRef] [Google Scholar]
  • Kenigsbuch D., Cohen Y., The inheritance of gynoecy in muskmelon. Genome, 1990, 33, 317–320. [CrossRef] [Google Scholar]
  • Martin A., Troadec C., Boualem A., Rajab M., Fernandez R., Morin H., Pitrat M., Dogimont C., Bendahmane A., A transposon-induced epigenetic change leads to sex determination in melon. Nature, 2009, 461, 1135–1138. [CrossRef] [PubMed] [Google Scholar]
  • McCallum C.M., Comai L., Greene E.A., Henikoff S., Targeted screening for induced mutations. Nat Biotechnol, 2000, 18, 455–457. [CrossRef] [PubMed] [Google Scholar]
  • Miller J.S., Diggle P.K., Diversification of andromonoecy in Solanum section Lasiocarpa (Solanaceae): the roles of phenotypic plasticity and architecture. Am J Bot, 2003, 90, 707. [CrossRef] [PubMed] [Google Scholar]
  • Poole C.F., Grimball P.C., Inheritance of new sex forms in Cucumis melo L. J Hered, 1939, 30, 21–25. [Google Scholar]
  • Saito S., Fujii N., Miyazawa Y., Yamasaki S., Matsuura S., Mizusawa H., Fujita Y., Takahashi H., Correlation between development of female flower buds and expression of the CS-ACS2 gene in cucumber plants. J Exp Bot, 2007, 58, 2897–2907. [CrossRef] [PubMed] [Google Scholar]
  • Tanurdzic M., Banks J.A., Sex-determining mechanisms in land plants. Plant Cell, 2004, 16, S61–S71. [CrossRef] [PubMed] [Google Scholar]
  • Yampolsky C., Yampolsky H., Distribution of sex forms in phanerogamic flora. Bibliographia Genetica, 1922, 3, 1–62. [Google Scholar]
  • Yin T., Quinn J.A., Tests of a mechanistic model of one hormone regulating both sexes in Cucumis sativus (Cucurbitaceae). Am J Bot, 1995, 82, 1537–1546. [CrossRef] [Google Scholar]
  • Weil C., Martienssen R., Epigenetic interactions between transposons and genes: lessons from plants. Curr Opin Genet Dev, 2008, 18, 188–192. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.